CS348B Lecture 10 Pat Hanrahan, Spring 2002

Σχετικά έγγραφα
Reflection Models. Reflection Models

.. (1,2).

Example 1: THE ELECTRIC DIPOLE

Lecture Number 02 Unit 1: Quantum Theory of Collisions

Phasor Diagram of an RC Circuit V R

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

Note: Please use the actual date you accessed this material in your citation.

Some Theorems on Multiple. A-Function Transform

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

fysikoblog.blogspot.com

ΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Συμπλήρωμα 1 2 ος νόμος του Νεύτωνα σε 3 διαστάσεις

Laplace s Equation in Spherical Polar Coördinates

Tutorial Note - Week 09 - Solution

Inflation and Reheating in Spontaneously Generated Gravity

General theorems of Optical Imaging systems

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

9ο Μάθημα Μοντέλα και Αλγόριθμοι Φωτισμού

α & β spatial orbitals in

Lifting Entry (continued)

Διανύσματα 1. Διανύσματα Πρόσθεση Διανυσμάτων Φυσική ποσότητα που περιγράφεται μόνο από ένα αριθμό ονομάζεται βαθμωτή.

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Α Ρ Ι Θ Μ Ο Σ : 6.913

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling

Γενική Φυσική. Ενότητα 1: Κινητική. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών

V. Finite Element Method. 5.1 Introduction to Finite Element Method

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

A 1 A 2 A 3 B 1 B 2 B 3


Spherical Coordinates

CORDIC Background (4A)

Accelerator Physics. G. A. Krafft, A. Bogacz, and H. Sayed Jefferson Lab Old Dominion University Lecture 9

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor


Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

Solution Set #2

8.324 Relativistic Quantum Field Theory II

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

CORDIC Background (2A)

OΡΘΟΣΤΑΤΕΣ ΤΟΙΧΟΥ & ΒΡΑΧΙΟΝΕΣ Uprights and brackets. 50 mm

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Ενδεικτικές Λύσεις Θεµάτων Εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University Physics 804 Electromagnetic Theory II

Answer sheet: Third Midterm for Math 2339

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

6.4 Superposition of Linear Plane Progressive Waves

Solutions - Chapter 4

Matrix Hartree-Fock Equations for a Closed Shell System

Generalized Linear Model [GLM]


ΠΡΟΦΙΛ ΑΛΟΥΜΙΝΙΟΥ ALUMINIUM PROFILES. aluminium

m 1, m 2 F 12, F 21 F12 = F 21

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων

MEASUREMENT OF SURFACE TENSION IN BASE METAL SULFIDE MATTES BY AN IMPROVED SESSILE DROP METHOD

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Section 8.3 Trigonometric Equations

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

Dielectric Wave Guide

2.153 Adaptive Control Lecture 7 Adaptive PID Control

Problems in curvilinear coordinates

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

Εφαρμοσμένα Μαθηματικά ΙΙ 2ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

ANTENNAS and WAVE PROPAGATION. Solution Manual

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

Notes 6 Coordinate Systems

Section 8.2 Graphs of Polar Equations

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Drude Model for dielectric constant of metals.

The Laplacian in Spherical Polar Coordinates

Space-Time Symmetries

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΜΕΘΟΔΟΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ

3.7 Governing Equations and Boundary Conditions for P-Flow

m i N 1 F i = j i F ij + F x

A Lambda Model Characterizing Computational Behaviours of Terms

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΦΥΛΛΑΔΙΟ 2 ΑΝΑΛΥΣΗΣ/ ΥΠΟΛΟΓΙΣΜΟΣ ΑΟΡΙΣΤΩΝ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ., (γ) sin 5xdx sin x cos x. x + x + 1 dx.. 2x 1 2 2

Homework 8 Model Solution Section

2 Lagrangian and Green functions in d dimensions

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Transcript:

Page 1 Reflecton Models I Today Types of eflecton models The BRDF and eflectance The eflecton equaton Ideal eflecton and efacton Fesnel effect Ideal dffuse Next lectue Glossy and specula eflecton models Rough sufaces and mcofacets Self-shadowng Ansotopc eflecton models Reflecton Models Defnton: Reflecton s the pocess by whch lght ncdent on a suface nteacts wth the suface such that t leaves on the ncdent sde wthout change n fequency. Popetes Specta and Colo [Moon Specta] Polazaton Dectonal dstbuton Theoes Phenomenologcal Physcal

Page Types of Reflecton Functons Ideal Specula Reflecton Law Mo Ideal Dffuse Lambet s Law Matte Specula Glossy Dectonal dffuse Mateals Plastc Metal Matte Fom Apodaca and Gtz, Advanced RendeMan

Page 3 The Reflecton Equaton L(, xω L(, xω ˆN θ θ dω φ φ L ( x, ω = f ( x, ω ω L( x, ω cosθ dω H The BRDF Bdectonal Reflectance-Dstbuton Functon dl (, x ω ˆN θ L(, xω θ dω φ φ dl( ω ω 1 f( ω ω de s

Page 4 The BSSRDF Bdectonal Suface Scatteng Reflectance- Dstbuton Functon L(, xω ˆN dl(, x ω θ θ dω x x φ φ Tanslucency dl( x, ω x, ω Sx (, ω x, ω dφ Gonoeflectomete

Page 5 Popetes of BRDF s 1. Lneaty Fom Sllon, Avo, Westn, Geenbeg. Recpocty pncple f ( ω ω = f ( ω ω Popetes of BRDF s 3. Isotopc vs. ansotopc f ( θ, ϕ ; θ, ϕ = f ( θ, θ, ϕ ϕ Recpocty and sotopy f ( θ, θ, ϕ ϕ = f ( θ, θ, ϕ ϕ = f ( θ, θ, ϕ ϕ 4. Enegy consevaton

Page 6 Enegy Consevaton L( ωcosθ dω dφ Ω = dφ L( ω cosθ dω = Ω Ω Ω 1 f ( ω ω L( ω cosθ dω cosθ dω Ω L( ω cosθ dω Ω Ω The Reflectance Defnton: Reflectance s ato of eflected to ncdent powe Ω Ω ρ( Ω Ω Ω Ω Ω Ω Consevaton of enegy: 0 < ρ < 1 3 by 3 set of possbltes: Unts: ρ [dmensonless], f [1/steadans] f ( ω ω cosθ dω cosθ dω cosθ dω f ( ω ω L( ω cosθ dω cosθ dω L( ω cosθ dω Ω Ω { dω, Ω, H } { dω, Ω, H}

Page 7 Law of Reflecton Î θ Nˆ θ Rˆ ϕ ϕ θ = θ ϕ = ( ϕ + πmod π Rˆ + ( Iˆ = cosθ Nˆ = ( Iˆ NN ˆ ˆ Rˆ = Iˆ ( Iˆ NN ˆ ˆ Ideal Reflecton (Mo L( θ, ϕ L( θ, ϕ θ θ Lm, ( θ, ϕ = L( θ, ϕ± π f δ (cosθ cos θ ( θ, ϕ ; θ, ϕ = δ( ϕ ϕ ± π m, cosθ L ( θ, ϕ = f ( θ, ϕ ; θ, ϕ L( θ, ϕ cosθ dcosθ dϕ, m, m δ(cosθ cos θ = δ ( ϕ ϕ ± π L( θ, ϕ cos θ dcos θ d ϕ cosθ = L ( θ, ϕ ± π

Page 8 Snell s Law Î ˆN θ ϕ ϕt θ t ˆT ϕ = ϕ ± π t n snθ = n snθ t t n Nˆ Iˆ = n Nˆ Tˆ t Law of Refacton ˆN Î µ = n / n θ t θ t ˆT Total ntenal eflecton: ( I N 1 µ (1 ˆ ˆ < 0 Nˆ Tˆ = µ Nˆ Iˆ Nˆ ( Tˆ µ Iˆ = 0 Tˆ = µ Iˆ+ γ Nˆ ˆ ˆ ˆ T = 1= µ + γ + µγ I N { 1 ( 1 ( } 1 { } γ = µ Iˆ Nˆ ± µ Iˆ Nˆ = µ cosθ ± 1 µ sn θ = µ cosθ ± cosθ = µ cosθ cosθ t t γ = µ 1 1

Page 9 Optcal Manhole Total ntenal eflecton 4 n w = 3 Fom Lvngston and Lynch Fesnel Reflectance Metal (Alumnum Delectc (N=1.5 Gold Slve F(0=0.8 F(0=0.95 Glass n=1.5 F(0=0.04 Damond n=.4 F(0=0.15 Schlck Appoxmaton F( θ = F(0 + (1 F(0(1 cos θ 5

Page 10 Expement Reflectons fom a shny floo Fom Lafotune, Foo, Toance, Geenbeg, SIGGRAPH 97 Cook-Toance Model fo Metals Reflectance of Coppe as a functon of wavelength and angle of ncdence Lght specta Measued Reflectance ρ Appoxmated Reflectance π θ Coppe specta Cook-Toance appoxmaton F( θ F(0 R = R(0 + R( π / λ F( π / F(0

Page 11 Ideal Dffuse Reflecton Assume lght s equally lkely to be eflected n any output decton (ndependent of nput decton. L ( ω = f L( ω cosθ dω d, d, = f L( ω cosθ dω = d, f d, M = L ( ω cosθ dω = L cosθ dω = πl M π L π f d, E ρd ρd = = = = π f, d f, d = E E E π E Lambet s Cosne Law M = ρ E = ρ E cosθ d d s s Dffuse Reflecton Theoetcal Bougue - Specal mco-facet dstbuton Seelge - Subsuface eflecton Multple suface o subsuface eflectons Expemental Pessed magnesum oxde powde Almost neve vald at hgh angles of ncdence Pant manufactues attempt to ceate deal dffuse

Page 1 Phong Model R(L E N E N R(E L L ( Eˆ R Lˆ Recpocty: ( s ( Lˆ R Eˆ ( ˆ ( ˆ s E R L = ( Lˆ R ( Eˆ s ( s Dstbuted lght souce! Phong Model Mo Dffuse s

Page 13 Popetes of the Phong Model Enegy nomalze Phong Model H ( Rˆ H ( Lˆ R Eˆ s ( H = ( cos d H ( Nˆ ρ ω θ ω ( Lˆ R ( Eˆ s π cos θ dω = s + 1 s dω