A Truthful Interdependent Value Auction Based on Contingent Bids

Σχετικά έγγραφα
theory) (Clarke IoT (International Conference on Autonomous Agents and Multiagent Systems (AAMAS)) 1/3 (Distributed problem solving)

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

Probabilistic Approach to Robust Optimization

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Buried Markov Model Pairwise

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

ΜΑΡΙΝΑ Ε. ΜΠΙΣΑΚΗ. Τκήκα Δθαξκνζκέλωλ Μαζεκαηηθώλ Παλεπηζηήκην Κξήηεο Τ.Θ , Ηξάθιεην, Κξήηε

ER-Tree (Extended R*-Tree)

Security in the Cloud Era

Quick algorithm f or computing core attribute

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

High order interpolation function for surface contact problem

Stabilization of stock price prediction by cross entropy optimization

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 13η: Multi-Object Auctions Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Η διδασκαλία της θεωρίας της εξέλιξης στη δευτεροβάθμια εκπαίδευση

Ε.Ε. Παρ. III(I) 639 Κ.Δ.Π. 151/2000 Αρ. 3412,

{takasu, Conditional Random Field

Πρόσκληση. DOSSIER-Cloud DevOpS-based Software engineering for the cloud

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

CONFIOUS: The Conference Nous Σύστημα Διαχείρισης Επιστημονικών & Ακαδημαϊκών Συνεδρίων. (

Δημοπρασίες (Auctions)

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

A Method for Describing Coordination Problem Based on Coordination Knowledge Level

Automatic extraction of bibliography with machine learning

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: , ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ. Βιογραφικό Σημείωμα

Study of urban housing development projects: The general planning of Alexandria City

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Research on Economics and Management

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

Solution Concepts. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Ιρλανδία-Δουβλίνο: Έπιπλα 2017/S Προκήρυξη σύμβασης. Αγαθά

Τι είναι η Θεωρία Παιγνίων;

From Secure e-computing to Trusted u-computing. Dimitris Gritzalis

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Optimal Impartial Selection

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 12η: Introduction of Auctions Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

A research on the influence of dummy activity on float in an AOA network and its amendments

From Information Security to Cyber Defense. Dimitris Gritzalis

: Six Sigma, Process Cycle Efficiency, Lean,,

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Κ.Δ.Π. 362/2000. E.E. Παρ. Ι(Π) Αρ. 3457, Αριθμός 362 Ο ΠΕΡΙ ΕΠΙΣΤΗΜΟΝΙΚΟΥ ΤΕΧΝΙΚΟΥ ΕΠΙΜΕΛΗΤΗΡΙΟΥ ΚΥΠΡΟΥ ΝΟΜΟΣ

Adaptive grouping difference variation wolf pack algorithm

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Εκτεταμένη περίληψη Περίληψη



ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Topic Structure Mining based on Wikipedia and Web Search

Προγράμματα Σπουδών Αξιολογημένα Πιστοποιημένα ΚΑΤΑ ΚΟΛΕΓΙΟ Ημερομηνία Τελευταίας Ενημέρωσης, 15/05/2015

Archive of SID. (Tg)

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. 1.3.Ξένες γλώσσες Αγγλικά πολύ καλά 1.4.Τεχνικές γνώσεις

Αριθμός 240 Ο ΠΕΡΙ ΕΠΙΣΤΗΜΟΝΙΚΟΥ ΤΕΧΝΙΚΟΥ ΕΠΙΜΕΛΗΤΗΡΙΟΥ ΚΥΠΡΟΥ ΝΟΜΟΣ

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Strategic management application for secondary school principals in Taif city from the agents and teachers point of view

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

,

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

ΜΙΧΑΗΛ ΑΝΘΡΩΠΕΛΟΣ ΤΡΕΧΟΥΣΑ ΑΚΑΔΗΜΑΪΚΗ ΘΕΣΗ

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Κβαντική Επεξεργασία Πληροφορίας

Simplex Crossover for Real-coded Genetic Algolithms

Homomorphism in Intuitionistic Fuzzy Automata

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

DECO DECoration Ontology

Motion analysis and simulation of a stratospheric airship

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ - ΒΙΟΓΡΑΦΙΚΟ

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

Κβαντικη Θεωρια και Υπολογιστες

CorV CVAC. CorV TU317. 1

ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE

Ε.Ε. Παρ. III(I) 1658 Κ.Δ.Π. 189/2002 Αρ. 3594, Αριθμός 189 Ο ΠΕΡΙ ΕΠΙΣΤΗΜΟΝΙΚΟΥ ΤΕΧΝΙΚΟΥ ΕΠΙΜΕΛΗΤΗΡΙΟΥ ΚΥΠΡΟΥ ΝΟΜΟΣ

Προγράμματα Σπουδών Αξιολογημένα Πιστοποιημένα ΚΑΤΑ ΠΟΛΗ Ημερομηνία Τελευταίας Ενημέρωσης, 08/07/2015

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Applying Markov Decision Processes to Role-playing Game

Transcript:

a) b) A Truthful Interdependent Value Auction Based on Contingent Bids Takayuki ITO a) and David C. PARKES b) Dasgupta and Maskin [1] Contingent Bids 1 A x y 1 2 Efficient Truthful 3 1. [2] Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya-shi, 466 8555 Japan Division of Engineering and Applied Science, Faculty of Arts and Sciences, Harvard University, 209 Maxwell Dworkin, 33 Oxford University, Cambridge 02138, USA a) E-mail: ito.takayuki@nitech.ac.jp b) E-mail: parkes@eecs.harvard.edu Optimal Efficient [3] [1], [4] Dasgupta and Maskin [1] Contingent Bids Direct Revelation Framework D Vol. J90 D No. 5 pp. 1209 1218 c 2007 1209

2007/5 Vol. J90 D No. 5 1 2 y x Dasgupta and Maskin [1] Dash [5] Ito [6], [7] AI 1 2 Efficient Truthful 3 Likhodedov and Sandholm [8], [9] interim Individual Rationality: IR 1 [10] Ex post Nash Equilibrium i α i α Pareto Efficient Efficient Truthful Strategy-proof 1 2 1 2 2. 3. Dasgupta and Maskin [1] 4. 5. 6. 2. 1 Cremer and McLean [10] 1210

3. v i0 α ij Dash [5] Krishna [3] Dasgupta and Maskin [1] Dash [5] [6], [7], [11] Dash [5] [6], [7], [11] [6], [7], [11] [6], [7], [11] [6], [7], [11] strategy-proof 2 [12] Krishna [3] Dasgupta and Maskin [1] Dasgupta and Maskin [1] 3. [1] [3] Dasgupta and Maskin [1] Krishna [3] 10 10.1 VCG Generalized Vickrey-Clarke-Groves VCG VCG 2 i {1,...,N} S i s i S i 1211

2007/5 Vol. J90 D No. 5 i z i(s) 0 s =(s 1,...,s N) 2 p z i(s) p s i (s 1,...,s i 1,s i+1,...,s N ) (z 1,...,z N ) 2 ŝ i z i(ŝ) i max i{z i(ŝ)} p i p i =min s i s.t. z i(s i, ŝ i) (1) z i(s i, ŝ i) max{z j(s i, ŝ i)} z i(s) =max {z j(s)} s monotonicitysinglecrossing condition: SCC monotonicity z i(s) s i 0, s, i single-crossing condition: SCC z i(s) s i > zj(s) s i 1 VCG [3] 10 10.1 (1) i p i p i i ŝ i = s i SCC i ŝ i = s i p i s i SCC p i s i i s i i i Vickrey Dasgupta and Maskin [1] z i Dasgupta and Maskin [1] Contingent bids v i = z i(s) 0 i b i : R N 1 0 b i(v i) v i =(v 1,...,v i 1,v i+1,...,v N ) (v 1,...,v N ) (b 1(v 1),...,b N(v N )) v v z(s) i b i(z i(s i,s i)) = z i(s i,s i), s i, s i i i s i 2 z i : S 1...S N R 0 b i : R N 1 R 0 0 v i R 0 i z i (s) 1212

(v1,...,v N )=(z 1(s),...,z N(s)) Dasgupta and Maskin [1] well-defined 1 (v1,...,v N ) 2 i 3 i p i p i v i max {vj } min v i j i vj = b j(v i,v ij) i v i v ij i j v i =(v1,...,v i 1,v i+1,...,v N ) v i vj 2 SCC [1] 1 4. 4. 1 (2) SCC b i(v i) =v i0 + α ijv j, (2) v i0 0 0 i α ij [0, 1) i v i0 α z =(z 1,...,z N) 1 i αij < 1 {1, 2, 3} 1 2 3 b 1(v 2,v 3)=50+0.3v 2 +0.5v 3 (3) (3) 1 2 0.3 α 3 0.5 α 2 3 b 2(v 1,v 3)=60+0.4v 1 +0.4v 3 (4) b 3(v 1,v 2)=70 (5) 1 2 3 α 1.0 4. 2 (3) (4) (5) (v1,v 2,v 3) v 1 =50+0.3v 2 +0.5v 3 v 2 =60+0.4v 1 +0.4v 3 v 3 =70 (v1,v 2,v 3) = (126.6, 138.6, 70.0) 2 2 1213

2007/5 Vol. J90 D No. 5 v 2 v 2 = max{v 1,v 3} v 1 = b 1(v 2,v 3) v3 = b 3(v 2,v 1) 2 b 2(v 1,v 3)=v 2 v 1 = b 1(v 2,v 3) = 50 + 0.3v 2 +0.5v3 v3 = b 3(v 2,v 1) = 70 v1 = 85 + 0.3max{v1,v 3} v1 > v3 v1 =85+0.3v1 v 2 = v1 v1 = 850/7 121.4 2 121.4 v1 1 2 (6) (2) b i(v i) =v i0 + α max v j. (6) α [0, 1) 4. 2 SCC (v 1,...,v N ) (b 1(v 1),...,b N (v N )) α α ij [13] 3 (Y,d) 3 f : Y Y Y x, y Y q<1 d(f(x),f(y)) q d(x, y) f x x Y x 0 f limit x y d(x, y) =d(f(x),f(y)) q d(x, y) q<1 d(x, y) q d(x, y) d(x, y) =0 d x = y Y N R N 0 f b(v) =(b 1(v 1),...,b N(v N )) b i (2)R N 0 d v, w R N 0 d(v, w) = max v i w i. i {1,...,N} α 12 = α 21 =0.5 v =(v 1,v 2) R 2 0 w =(w 1,w 2) R 2 0 d(v, w) =max( v 1 w 1, v 2 w 2 ) d(b(v),b(w)) = max( v 10 +v 2/2 (v 10 +w 2/2), v 20 + v 1/2 (v 20 + w 1/2) ) =max( v 1/2 w 1/2, v 2/2 w 2/2 ) b(v) =v 10 + v 2/2 (2) max( v 1/2 w 1/2, v 2/2 w 2/2 ) < max( v 1 w 1, v 2 w 2 ) 1 i αij < 1 b : R N 0 R N 0 v 0 R N 0 3 d Y x, y, z Y d(x, y) +d(y, z) d(x, z) d(x, y) = d(y, x) d(x, x) = 0 d(x, y) = 0 x = y lim m d(x m,x m+1 ) = 0 (0, 1) 1/2, 1/3,... [0, 1] R d R d 0 1214

v, w R N 0 max i{ b i(v) b i(w) } < max i{ v i w i } i b i(v) b i(w) < max { v j w j } v i0 + αijvj (vi0 + αijwj) < max { v j w j } (vj wj) < max { v j w j } αij vj w j < max { v j w j } αij < 1 αij [0, 1) αij vj wj < max { v j w j } i αij < 1 SCC 2 i αij < 1 i, j vj / v i0 < vi / v i0 N w i v i0 v1 v 2 v 1 vj = α 21 + α 2j w 1 w 1 w 1 w 1 j 1 j {1,2} α1j < 1 α1j 0 N>2 j {1, 2} v j / w 1 > v 2/ w 1 v3/ w 1 > v2/ w 1 v1/ w 1 3 α 31 v 1 w 1 + α 32 v 2 w 1 + j {1,2,3} α 3j v j w 1 > v 2 w 1 N>3 v4/ w 1 > v3/ w 1 vi / v i0 0 v b(v) 4 expressive expressive 1 2 2 well-defined j i b i i b i i b i(v i) =v i0 SCC i i v i0 α 5. Likhodedovand Sandholm [8] i =0 Myerson [14] β i [0, 1] β β [8], [14] α β α β Likhodedov and Sandholm [8] Myerson [14] x =(x 0,x 1,...,x N) 1215

2007/5 Vol. J90 D No. 5 x i {0, 1} N xi =1 x0 {0, 1} i=0 { N } max x β 0v 0(x)+ β ivi (x), i=1 x i =1 0 vi (x) =vi x 0 =1 0 v 0(x) =v 0 v 0 vi v 0 β β 1 2 3 4 1 v 0 β β [0, 1] N+1 2 (v1,...,v N ) v 0 3 4 i 0 v i β iv i =max, j=0 {β jvj } 4 vj v i i j j vj = b j(v i,v ij) i α β v 0 =0 Myerson [14] i 0 s i s i Uniform(0, 100) i L i =10+iδ δ = 300 10 N Uniform(0,L i) i α (1) j i 0.5 α ij =0 0.5 Uniform(0, 1) α ij (2) α m i (3.1) 0.5 0.25 [0, 1) (3.2) µ i =0.3 +iδ δ = 1.0 0.3 0.25 N [0, 1) α (4) α m i α ij α i (v 0,β 0,β 1,...,β N ) (v 0,β 0,β 1,...,β N ) 1 4 1 1 2 β β 0 =1/N n βi =1 i=1 n =(1+N)/N i=0 i>1 β 1 v 0 {0, 10,...,100} β i {0, 0.1,...,1} {1/N } 4j i β j v j j =0 j 0 j i i {1,...,N} j =0 1216

1 Fig. 1 Average efficiency in the optimal auction for the symmetric and asymmetric environments. 5 β β 3 β 1 0.5 2 0.3 3 0.2 β Myerson [14] β v 0 50 110 80 6. 2 Fig. 2 Average normalized revenue in the optimal auction for the symmetric and asymmetric environments. Likhodedovand Sandholm [9] 1 4000 1 5000 1 2 Dasgupta and Maskin [1] 2 [15] [1] P. Dasgupta and E. Maskin, Efficient auctions, The Quarterly Journal of Economics, vol.cxv, pp.341 388, 2000. [2] T. Ito and D.C. Parkes, Instantiating the contingent bids model of truthful interdependent value auctions, Proc. International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS-06), pp.1151 1158, 2006. [3] V. Krishna, Auction Theory, Academic Press, 2002. [4] P. Jehiel and B. Moldovanu, Efficient design with 1217

2007/5 Vol. J90 D No. 5 interdependent valuations, Econometrica, vol.69, no.5, pp.1237 1259, 2001. [5] R.K. Dash, A. Rogers, and N.R. Jennings, A mechanism for multiple goods and interdependent valuations, Proc. 6th Int. Workshop on Agent-Mediated E-Commerce, pp.197 210, 2004. [6] T. Ito, M. Yokoo, and S. Matsubara, Designing an auction protocol under asymmetric information on nature s selection, Proc. 1st International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS02), pp.61 68, 2002. [7] T. Ito, M. Yokoo, and S. Matsubara, A combinatorial auction protocol among versatile experts and amateurs, Proc. 3rd International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS04), pp.378 385, 2004. [8] A. Likhodedov and T. Sandholm, Methods for boosting revenue in combinatorial auctions, Proc. National Conference on Artificial Intelligence (AAAI), pp.232 237, 2004. [9] A. Likhodedov and T. Sandholm, Approximating revenue-maximizing combinatorial auctions, Proc. National Conference on Artificial Intelligence, pp.267 274, 2005. [10] J. Cremer and R.P. McLean, Full extraction of surplus in Bayesian and dominant strategy aucitons, Econometrica, vol.56, no.6, pp.1247 1257, 1988. [11] T. Ito, M. Yokoo, and S. Matsubara, Towards a combinatorial auction protocol among experts and amateurs: The case of single-skilled experts, Proc. 2nd International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS03), pp.481 488, 2003. [12] M. Perry and P.J. Reny, An efficient auction, Econometrica, vol.70, no.3, pp.1199 1212, 2002. [13] R. Vohra, Advanced Mathematical Economics, Routledge, 2005. [14] R.B. Myerson, Optimal auction design, Mathematics of Operations Research, vol.6, pp.58 73, 1981. [15] D vol.j90-d, no.5, pp.1219 1228, May 2007. 18 6 20 10 4 12 11 13 12 13 13 15 17 18 18 AAMAS2006 Best Paper Award 2005 16 IPA 66 AAAI ACM David C. Parkes is the John L. Loeb Associate Professor of the Natural Sciences and Associate Professor of Computer Science at Harvard University. He received his Ph.D. degree in Computer and Information Science from the University of Pennsylvania in 2001, and an M.Eng. (First class) in Engineering and Computing Science from Oxford University in 1995. He was awarded the prestigious NSF CAREER Award in 2002, an IBM Faculty Partnership Award in 2002 and 2003, and the Alfred P. Sloan Fellowship in 2005. Parkes has published extensively on topics related to electronic markets, computational mechanism design, auction theory, and multi-agent systems. He serves on the editorial board of the Journal of Artificial Intelligence Research and the Electronic Commerce Research Journal, and has served on the Program Committee of a number of leading conferences in artificial intelligence, multiagent systems and electronic commerce, including ACM-EC, AAAI, IJCAI, UAI and AAMAS. He is the co-program chair of the ACM Conference on Electronic Commerce, 2007. 1218