Keywords: SiC, high blocking voltage, JFET, SEJFET, specific on-resistance, threshold voltage, current gain, turn on time, turn off time FET

Σχετικά έγγραφα
Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET)

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

IXBH42N170 IXBT42N170

Α.Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

SYLLABUS. osmania university POWER SEMICONDUCTOR DIODES AND TRANSISTORS POWER TRANSISTOR AND RECTIFIERS CONTROLLED RECTIFIERS AND CONVERTERS

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

IXBK64N250 IXBX64N250

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

HiPerFAST TM IGBT with Diode

2.5 GHz SILICON MMIC WIDE-BAND AMPLIFIER

Aspects of High-Frequency Modelling with EKV3

3 V, 1500 MHz Si MMIC WIDEBAND AMPLIFIER

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

Thermistor (NTC /PTC)

3 V, 900 MHz LOW NOISE SI MMIC AMPLIFIER

MZ0.5GF SERIES ZENER DIODE TECHHICAL SPECIFICATION FEATURES. ABSOLUTE MAXIMUM RATINGE: (Ta=25 ) Parameter Symbols Limits Unit

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 2 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

3 V, 900 MHz Si MMIC AMPLIFIER

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

EE101: Resonance in RLC circuits

DATA SHEET Surface mount NTC thermistors. BCcomponents

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

MZ0.5GN SERIES ZENER DIODE TECHHICAL SPECIFICATION FEATURES. ABSOLUTE MAXIMUM RATINGE: (Ta=25 ) Parameter Symbols Limits Unit

ER-Tree (Extended R*-Tree)

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

[1] P Q. Fig. 3.1

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

VGS=-8V. RG=15ohm. Item Symbol Condition Limit Unit. VDS=50V, IDS1=0.9mA VDS=50V, IDS2=7.2mA

DC-DC converter circuits for mobile phones, wearbale devices, DVCs, HDDs, etc.

PRELIMINARY DATA SHEET NPN EPITAXIAL SILICON TRANSISTOR FOR MICROWAVE HIGH-GAIN AMPLIFICATION

5V/9V/12V Output QC2.0+USB Auto Detect+USB-PD Type-C Application Report ACT4529

Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Strain gauge and rosettes

Single Stage Amplifiers

15W DIN Rail Type DC-DC Converter. DDR-15 s e r i e s. File Name:DDR-15-SPEC

NPN Silicon RF Transistor BFQ 74

TRC ELECTRONICS, INC LED Driver Constant Voltage 45W MEAN WELL IDLV-45 Series

ΗΛΕΚΤΡΟΝΙΚΑ ΙΣΧΥΟΣ ΗΜΥ 444

OWA-60E series IP67. 60W Single Output Moistureproof Adaptor. moistureproof. File Name:OWA-60E-SPEC

15W DIN Rail Type DC-DC Converter. DDR-15 series. File Name:DDR-15-SPEC

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

Electronic Analysis of CMOS Logic Gates

Μικροηλεκτρονική - VLSI

First Sensor Quad APD Data Sheet Part Description QA TO Order #

65W PWM Output LED Driver. IDPV-65 series. File Name:IDPV-65-SPEC

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

IDPV-45 series. 45W PWM Output LED Driver. File Name:IDPV-45-SPEC S&E

RSDW08 & RDDW08 series

Transient Voltage Suppressor

SMBJ SERIES. SMBG Plastic-Encapsulate Diodes. Transient Voltage Suppressor Diodes. Peak pulse current I PPM A with a 10/1000us waveform See Next Table

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Metal Oxide Varistors (MOV) Data Sheet

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Homomorphism in Intuitionistic Fuzzy Automata

the total number of electrons passing through the lamp.

Overview: Relay Modules

PRELIMINARY DATA SHEET. C to Ku BAND SUPER LOW NOISE AMPLIFIER N-CHANNEL HJ-FET

Bulletin 1489 UL489 Circuit Breakers

Buck Solution_9W LED Driver for Bulb LD9852_9W_R00_TEST. Size 34.2mm(L)ⅹ26mm(W)ⅹ18mm(H) Key Features

Capacitors - Capacitance, Charge and Potential Difference

Characterization of Nitrogen-Doped 6H-SiC Single Crystals Grown by Sublimation Method

TODA-ISU Corporation. SMD Power Inductor. SPI series. SMD Team

Ceramic PTC Thermistor Overload Protection

Series AM2DZ 2 Watt DC-DC Converter

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

SCOPE OF ACCREDITATION TO ISO 17025:2005

Αξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα Νικελίου Για Φωτοβολταϊκές Εφαρμογές

60W AC-DC High Reliability Slim Wall-mounted Adaptor. SGA60E series. File Name:SGA60E-SPEC

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

SMD Power Inductor-VLH

Buck Solution_20W LED Driver for T8 LD7835_T8_20W_R00_TEST. Key Features

Power Devices SiC Power Devices

Εισαγωγή στις κρυσταλλολυχνίες (Transistors)

Table of Contents. Preface... xi

IDPV-25 series. 25W PWM Output LED Driver. File Name:IDPV-25-SPEC S&E

CMOS Time-of-Flight Range Image Sensors

Buck Solution_10W LED Driver for Bulb LD7835_10W_R01_TEST. Size 55mm(L)ⅹ28mm(W)ⅹ18mm(H) Key Features

Buried Markov Model Pairwise

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Exercises in Electromagnetic Field

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene


555 TIMER APPLICATIONS AND VOLTAGE REGULATORS

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Divergent synthesis of various iminocyclitols from D-ribose

C4C-C4H-C4G-C4M MKP Series AXIAL CAPACITORS PCB APPLICATIONS

Ηλεκτρονικά Στοιχεία και Κυκλώματα ΙΙ. Εισαγωγή σε Βασική Φυσική Στοιχείων MOS

SPECIFICATIONS. PRODUCT NAME: AC COB15W LED module (3120) General Customer MODEL NAME: CUSTOMER P/N: DATE:

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

SMD Power Inductor-VLH

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Transcript:

5kV 4H-SiC SEJFET Sei-Hyung Ryu John W. Palmour Temperature dependence of On-state characteristics, and Switching characteristics of 5 kv class 4H-SiC SEJFET Katsunori Asano, Member, Toshihiko Hayashi, Member, Daisuke Takayama,Member, Yoshitaka Sugawara, Member, Sei-Hyung Ryu, Non-member, John W. Palmour, Non-member A normally-off type 5 kv class 4H-SiC JFET with low specific on-resistance, called SEJFET (Static Expansion channel JFET), has been fabricated. Its normally-off operation is realized at the temperature from RT to 600 K. A very fast switching time of the 4H-SiC SEJFET are realized. The turn-on time at RT is 20ns and the turn-off time at RT is 47ns. In this SEJFET, temperature dependences of the output characteristics and transfer characteristics are evaluated. Its specific on-resistance has a large positive temperature dependence, and its transconductance has a large negative temperature dependence. SiCJFET SEJFET Keywords: SiC, high blocking voltage, JFET, SEJFET, specific on-resistance, threshold voltage, current gain, turn on time, turn off time 1. Si Si Si Si SiC SiC Si 10 3.2 ev 4H-SiC Si 3 (1) Si FET 661-0974 3-11-20 Electric Power Engineering Research Center, The Kansai Electric Power Company 11-20, 3-Chome, Nakoji, Amagasaki 661-0974 Cree, Inc 4600 Silicon Drive, Durham, NC 27703 USA SIT SiC FET Si FET SiC FET (2) (15) 4H-SiC MOSFET 10 cm 2 /Vs (2) (4) (6) Si MOSFET 1/32 4kV 6kVSiCSIAFET (7) (8) 5 kv SEMOSFET (9) SiC JFET (10) (11) 5 kv 5.5 kv JFET SEJFET; Static Expansion channel JFET (12) (13) 3kV JFET (14) (15) SEJFET 2. 4H-SiC SEJFET 1 4H-SiC SEJFET SEJFET 2 D 125 2 2005 147

1 4H-SiC SEJFET Fig. 1. Schematic cross-sectional structure of 4H-SiC SEJFET. 2 4H-SiC SEJFET 300 K Fig. 2. Output characteristics of a fabricated 4H-SiC SEJFET at 300 K. JFET p p n p p 4H-SiC 2.7 V (12) 3. 4H-SiC SEJFET 3 1 4H-SiC SEJFET 4H-SiC SEJFET 30 /cm 2 5 10 19 cm 3 n + 4H-SiC CVD (16) 9 10 14 cm 3 45 µm p Al n p p 6.2 kv 4H-SiC pn JTE (17) 4H-SiC SEJFET 1.7 mm 1.7 mm 4.45 10 3 cm 2 1.3 3 2 4H-SiC SEJFET 2 5.1 kv 4H-SiC SEJFET V GS 0V I DS V GS 2.0 V I DS V GS =5V V DS =1V78 mωcm 2 V GS = 5V 0.29 ma 5kV 69 mωcm 2 (13) SEJFET 600 K 300 K V GS =5V 22.2 A/cm 2 = 98.8 ma/4.45 10 3 cm 2 p p 3 8 4H-SiC SEJFET 3 148 IEEJ Trans. IA, Vol.125, No.2, 2005

SiCSEJFET 3 4H-SiC SEJFET Fig. 3. Output characteristics of a fabricated 4H-SiC SEJFET at V GS = 5 V at various temperatures. 4 4H-SiC SEJFET Fig. 4. Temperature dependence of the specific onresistance of a fabricated 4H-SiC SEJFET at V GS =5V and V DS =1V. V GS =5V 4H-SiC 4 4H-SiC SEJFET Specific On-resistance V GS =5V V DS 1V 2.8 4H-SiC 4H-SiC 2.0 3.1 (18) (19) 4H-SiC SEJFET 5 4H-SiC SEJFET V DS 5V I DS V GS 6 gm gm 5 gm 2.1 5 4H-SiC SEJFET Fig. 5. Transfer characteristics of a fabricated 4H-SiC SEJFET at various temperatures. 7 Vth Vth 5 V GS 2.5 V 4.0 V I DS =0 V GS Vth Vth 500 K 8 4H-SiC SEJFET V GS 5V V DS 1V I GS 300 K 0.29 ma I GS 600 K 5.5 ma 9 4H-SiC SEJFET D 125 2 2005 149

6 4H-SiC SEJFET gm Fig. 6. Temperature dependence of the transconductances of a fabricated 4H-SiC SEJFET. 8 4H-SiC SEJFET Fig. 8. Gate current of a fabricated 4H-SiC SEJFET at elevated temperatures. 7 4H-SiC SEJFET Vth Fig. 7. Temperature dependence of the threshold voltages of a fabricated 4H-SiC SEJFET. 9 4H-SiC SEJFET Fig. 9. Temperature dependence of the current gains of a fabricated 4H-SiC SEJFET. Current gain V GS 5V I GS 300 K 343, 600 K 3.7 9 exp( 0.0153T)T 3 3 4H-SiC SEJFET 10 4H-SiC SEJFET Fig. 10. 10 Measurement circuit of the switching characteristics. 150 IEEJ Trans. IA, Vol.125, No.2, 2005

SiCSEJFET SEJFET 4. 11 4H-SiC SEJFET Fig. 11. Turn-on waveforms at room temperature of a fabricated 4H-SiC SEJFET. 4H-SiC JFET SEJFET 1 4H-SiC SEJFET 600 K 2 4H-SiC SEJFET 2.8 2.1 4 4H-SiC SEJFET 343 5 4H-SiC SEJFET 20 ns 47 ns 15 9 19 16 9 1 12 4H-SiC SEJFET Fig. 12. Turn-off waveforms at room temperature of a fabricated 4H-SiC SEJFET. 4H-SiC SEJFET 11 12 5V V DS 30 V 11 V DS I DS 20 ns 7ns 13 ns 47 ns 7ns 40 ns 1 SiC,, Vol.185, p.282 (1998) 2 S. Onda, R. Kumar, and K. Hara: SiC integrated MOSFETs, Phys. stat. sol. (a) 162, pp.369 388 (1997) 3 Y. Sugawara and K. Asano: 1.4 kv 4H-SiC UMOSFET with Low Specific On-Resistance, Proceedings of ISPSD 98, pp.119 122 (1998) 4 J. Tan, J.A. Cooper, and M.R. Melloch Jr.: High-voltage accumulationlayer UMOSFET s in 4H-SiC, IEEE Electron Device Letters, Vol.19, No.12, pp.487 489 (1998) 5 D. Peters, R. Schorner, P. Friedrichs, J. Volkl, H. Mitlehner, and D. Stephani: An 1800 V triple implanted vertical 6H-SiC MOSFET, IEEE Transact. Electron Devices, Vol.46, No.3, pp.542 545 (1990) 6 P.M. Senoy and B.J. Baliga: The planar 6H-SiC ACCUFET: A new highvoltage power MOSFET structure, IEEE Electron Device Letters, Vol.18, No.12, pp.589 591 (1997) 7 Y. Sugawara, K. Asano, R. Singh, J. Palmour, and D. Takayama: 4.5 kv novel high voltage high performance SiC-FET SIAFET, Proceedings of ISPSD 2000, pp.105 108 (2000) 8 D. Takayama, Y. Sugawara, T. Hayashi, R. Singh, J. Palmour, S. Ryu, and K. Asano: Static and Dynamic Characteristics of 4-6 kv 4H-SiC SIAFETs, Proceedings of ISPSD 01, pp.41 44 (2001) 9 Y. Sugawara, K. Asano, D. Takayama, S. Ryu, R. Singh, J. Palmour, and T. Hayashi: 5.0 kv 4H-SiC SEMOSFET with low RonS of 88 mωcm 2, Proceedings of ICSCRM2001 (2001) 10 H. Mitlehner, W. Bartsch, K.O. Dohnke, P. Rriedrichs, R. Kaltschmidt, U. Weinert, B. Weis, and D. Stephani: Dynamic characteristics of high voltage 4H-SiC vertical JFETs, Proc. of ISPSD 99, pp.339 342 (1999) 11 P. Friendrichs, H. Witlehner, K.O. Dohnke, D. Peters, R. Schorner, U. Weinert, E. Baudelot, and D. Stephani: SiC Power devices with low onresistance for fast switching applications, Proc. of ISPSD2000, pp.213 216 (2000) 12 K. Asano, Y. Sugawara, S. Ryu, R. Singh, J. Palmour, T. Hayashi, and D. Takayama: 5.5 kv Normally-off Low RonS 4H-SiC SEJFET, Proc. of ISPSD 01, pp.23 26 (2001) 13 K.Asano,Y.Sugawara,T.Hayashi,S.Ryu,R.Singh,J.Palmour,andD. Takayama: 5 kv 4H-SiC SEJFET with Low RonS of 69 mωcm 2, Proc. of ISPSD 02, pp.61 64 (2002) 14 J.H.Zhao,X.Li,K.Tone,P.Alexandrov,M.Pan,andM.Weiner: ANovel High-Voltage Normally-Off 4H-SiC Vertical JFET, Materials Science Forum Vol.389-393, pp.1223 1226 (2002) 15 J.H. Zao, K. Tone, X. Li, P. Alexandrov, L. Fursin, and M. Weiner: 3.6mWcm 2, 1726 V 4H-SiC Normally-off Trenched-and-Implanted Verti- D 125 2 2005 151

cal JFETs, Proc. of ISPSD 2003, pp.50 53 (2003) 16 O. Kordina, J.P. Bergman, A. Henry, E. Janzen, S. Savage, J. Andre, L.P. Ramberg, U. Lindefelt, W. Hermansson, and K. Bergman: A 4.5 kv 6H silicon carbide rectifier, Appl. Phys. Letter, Vol.67, pp.1561 1563 (1995) 17 Y. Sugawara and K. Asano: 6.2 kv 4H-SiC pin diode with low forward voltagedrop,materials Science Forum Vol.338 342, pp.1371 1374 (2000) 18 A. Itoh, T. Kimoto, and H. Matsunami: Efficient Power Schottky Rectifiers of 4H-SiC, Proc. of ISPSD 95, pp.101 106 (1995) 19 K. Asano, T. Hayashi, R. Saito, and Y. Sugawara: High Temperature Static and Dynamic Characteristics of 3.7 kv High Voltage 4H-SiC JBS, Proc. of ISPSD2000, pp.97 100 (2000) 1965 7 20 1991 3 4 SF 6 HVDC 8kV SiC 1970 12 9 1996 3 4 1999 SiC 1970 7 17 1996 3 4 1999 SiC 1969 MOCVD IC 1995 HVDC 8kV SiC 1998 ISPSD IEEE Sei-Hyung Ryu He was received B.S. Degree in February, 1992 from Seoul National University (Seoul, Korea), and M.S. and Ph.D. degrees in Electrical Engineering in December 1993 and in May 1997, respectively, from Purdue University, where he developed a CMOS technology in 6H-SiC for smart power applications. He continued his research in SiC devices as a Post- Doctoral Research Associate with the Wide Bandgap Research Group of Purdue University until January 1999. Since February 1999, He is with Cree, Inc., where he has been developing high performance power switching devices such as DiMOSFETs, SIAFETs, SEJFETs, SEMOSFETs, GTO s, BJT s, IGBT s, and Schottky rectifiers. John W. Palmour He is a co-founder of Cree Inc., Durham, NC, where he is the Director of Advanced Devices. He has been responsible for the development of high voltage, high temperature 4H-SiC power diodes, MOSFETs and thyristors, as well as high frequency MESFETs and SiC CMOS circuits. He is also responsible for Cree s development of microwave GaN HEMTs. Dr. Palmour received his B.S. and Ph.D. degrees in Materials Science from North Carolina State University in 1982 and 1988, respectively. He has co-authored over 165 publications in various conference proceedings and refereed journals, and is an inventor on 17 issued US patents concerning semiconducting SiC. He also serves on the Board of Directors for Cree, Inc. 152 IEEJ Trans. IA, Vol.125, No.2, 2005