2002 Journal of Software., Timed Computation Tree Logic,Metric Interval Temporal Logic Real-Time Temporal Logic

Σχετικά έγγραφα
ER-Tree (Extended R*-Tree)

High order interpolation function for surface contact problem

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Congruence Classes of Invertible Matrices of Order 3 over F 2

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Quick algorithm f or computing core attribute

Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN

On a four-dimensional hyperbolic manifold with finite volume

Applying Markov Decision Processes to Role-playing Game

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Analysis of Security Protocols Based on Authentication Test

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Module 5. February 14, h 0min

Reading Order Detection for Text Layout Excluded by Image

The challenges of non-stable predicates

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Research on Economics and Management

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

INTEGRAL INEQUALITY REGARDING r-convex AND

Verification. Lecture 12. Martin Zimmermann

A Method for Describing Coordination Problem Based on Coordination Knowledge Level

Journal of the Institute of Science and Engineering. Chuo University

EE512: Error Control Coding

«Βιοδοκιμές αποτελεσματικότητας ουσιών φυτικής προέλευσης επί του δορυφόρου της πατάτας Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)»

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Instruction Execution Times

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Homomorphism in Intuitionistic Fuzzy Automata

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Utkin Walcott & Zak ¼

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Oscillatory integrals

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

CorV CVAC. CorV TU317. 1

A Formal Method for Analyzing Electronic Commerce Protocols

Every set of first-order formulas is equivalent to an independent set

Stabilization of stock price prediction by cross entropy optimization

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

DECO DECoration Ontology

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

,,, (, ) , ;,,, ; -

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Χρηματοοικονομική Ανάπτυξη, Θεσμοί και

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Το απόθεμα των σπόρων στο έδαφος σε λιβαδικά οικοσυστήματα του όρους Ψηλορείτη Κρήτης

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

Τομέας Επιστήμης Υπολογιστών και Αριθμητικής Ανάλυσης

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Lecture 5: Numerical Integration

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction


Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΗΡΕΑΖΕΙ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Buried Markov Model Pairwise

A Hierarchy of Theta Bodies for Polynomial Systems

Study of urban housing development projects: The general planning of Alexandria City

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

Policy Coherence. JEL Classification : J12, J13, J21 Key words :

Motion analysis and simulation of a stratospheric airship

Commutative Monoids in Intuitionistic Fuzzy Sets

Mining Syntactic Structures from Text Database

Ψηφιακή ανάπτυξη. Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS

Bounding Nonsplitting Enumeration Degrees

AME SAMPLE REPORT James R. Cole, Ph.D. Neuropsychology

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Journal of the Graduate School of the Chinese Academy of Sciences. Application Dependent Software. Standard Application Components.

Assalamu `alaikum wr. wb.

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ ΑΡΥΗΣΔΚΣΟΝΗΚΖ ΣΧΝ ΓΔΦΤΡΧΝ ΑΠΟ ΑΠΟΦΖ ΜΟΡΦΟΛΟΓΗΑ ΚΑΗ ΑΗΘΖΣΗΚΖ

Design Method of Ball Mill by Discrete Element Method

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Transcript:

000-985/00/30)0033-09 00 Journl of Softwre Vol3, No,,00080) E-mil {ligy,cst}@iosccn http//wwwiosccn,0,, Timed Computtion Tree Logic,Metric Intervl Temporl Logic Rel-Time Temporl Logic,,, liner temporl logic with clocks, LTLC) Mnn Pnueli LTLC,, LTLC TP30 A rel-time systems) [~4,,,,,0,, Timed Computtion Tree Logic [5, Metric Intervl Temporl Logic [6,Timed Propositionl Temporl Logic [7 Rel-Time Temporl Logic [8 specifiction lnguges), ), timed trnsition systems [3 ) clocked trnsition systems [4 ) timed utomt [9 ) system description lnguges),, ),,,,,,,, LTLCliner temporl logic with clocks) Mnn Pnueli LTL [0 000-07-0 00-06-0 6007300) 98-780-0-07-0) 863 863-306-ZT0-04-) 96 ),,,,,,, 95 ),,,,,,

34 Journl of Softwre 00,3) LTLC, LTLC LTLC 3 ), LTLC, LTLC 4 LTLC,,R,R + N {t i } i N, ) 0=t 0 <t <t < <t n < ) {t i } i N, lim = n t n R + ft), {t i } i N, i N, ft) i,t i+ ) ) ft) {0,}, ft) + 3 R ft), {ti} i N 0 = 0 f t) =, t ti ti, ti + t 0,t,t,,t n, 0=t 0 <t <t < <t n, 0 = 0 f t) = t ti ti, ti + t tn > tn,,, =0, ), ) 4 f R + f f ' R + R t 0 R +, f ' t ) = lim f ) 0 t t t 0 +, f f, f f LTLC, LTLC LTLC LTLC ) t ) u,u 0,u,u, 3) p,p 0,p,p, 4) x,x 0,x,x, 5) { m m N} 6) +,,* 7) =, 8), 9) 0), ),[ ),U )

35 LTLC e = t m u x x e e + e) e e),t, m,u,x LTLC ϕ = p p' e = e ) e e ) ϕ ϕ ϕ ) uϕ) [ ϕ ϕuϕ ),u,x,e e, ), ) ) <> ) [,<,> ) LTLC, vrϕ) vre) ϕ e vre) V, e V, vrϕ) V, ϕ V LTLC LTLC, R +, R +, p x f p f x, p x f p f x f p f x 3 V I= I,σ V LTLC- ), ) V u, I R u, Iu) R ) V p, σ R + f p p 3) V x, σ R + f x x 4 I= I,σ V LTLC-,e V t 0 R +, t=t 0,e I Ie,t 0 ) ) I t, ) = ) I m, ) = m 3) I u, ) = I u) 4) I x, t ) = f ), 0 x x, ) = f x ) e, ) = I e, e + e, ) = I e, ) + I e, e * e, ) = I e, ) * I e, I 5) I ) 6) I ) 7) I ) 5 I= I,σ V LTLC-,ϕ V t 0 R +, t=t 0,ϕ I ) I t 0 0 p ) I p, t ) = f ) ) I p', t ) = f p ) 0 I e, ) = I e, ) 3) I e = e, ) = I e, ) I e, ) 4) I e e, ) = 5) I t ) = I ) 0 ϕ ϕ, ) = I ϕ, ) I ϕ, 6) I ) t I t) = 7) I[ ) = t I t) = t [, t) I ϕ t) = 0 8) I ϕuϕ, ) =

36 Journl of Softwre 00,3) I[ / u ) = 9) I u ) =, I [ / u = I[/u,σ I[/u I w) w V w u I[ / u w) = w u It 0 )=, ϕ t=t 0 ϕ t=0, I ϕ LTLC- 6 ϕ V ) V LTLC I I ϕ LTLC-, ϕ LTLC-, LTLC- ) ϕ LTLC-, ϕ, = ϕ 7 ϕ φ V ϕ V ) φ, φ ϕ,= ϕ φ 8 LTLC ) = [[ϕ [ ϕ, =<><> ϕ <> ϕ ) = [ ϕ <> ϕ, = <> ϕ [ ϕ 3) = [ϕ ϕ, = ϕ <> ϕ 4) = [ ϕ φ) [ ϕ) [ φ) 5) =<> ϕ φ) <> ϕ) <> φ) 6) = [ ϕ φ) [ ϕ) [ φ 7) = ϕ φ, θ = [ θ = [ φ 6, LTLC, LTLC bounded-response) bounded-invrince), [3 6, 3 LTLC, 3,, ), vertex), Green Red),, x 3 x ),,, dely) ),,, 0 jump), 0 x=0 Green x> x=0 x 3, Fig Trffic_light Red timed modules) M x

37,,, vrm),ctrm) extlm) M vertex gurd new_vertex ssignment,vertex, new_vertex, gurd enbling condition), ) ssignment,, x 0 x =0), x =x) x e x e x k = = = e k, x,x, x k, i k e i 0 x i, ), vertex invrint vertex invrint,,, module externl controlled init jump dely module_nme {vrible_nmetype}* {vrible_nmetype}* init_cond {vertex gurd new_vertex ssignment}* {vertex invrint}*,type, boolen ) clock )init_cond, =0 ), 4 p q), ), p ), x module controlled init jump dely Trffic-light pboolen xclock p=0 x=0 p=0 x> p = x =0 p= x> p =0 x =0 p=0 x 3 p= x LTLC,, LTLC LTLC, LTLC αvertex gurd new_vertex ssignment, LTLC- vertex gurd new_vertex ssignment α, TLFα) βvertex invrint, LTLC- vertex invrint β, TLFβ) 3 M,α 0,α,,α n M,β 0,β,,β k M LTLC-

38 Journl of Softwre 00,3) init_cond [ Vc = V c \/ i n TLF i )))) [\/ j k TLF β j ))) < α < M,init_cond M,V c M V c =ctrm)),v c = V v=v ) TLFM) M c /\ v V c 3 ) TLFtrffic-light) TLF=p=0 x=0) [p =p x =x) p=0 x> p = x =0) p= x> p =0 x =0))) [p=0 x 3) p= x ))) M TLFM), TLFM) M 3 M,ϕ LTLC- TLF M ) = ϕ, ϕ M, M = ϕ, M ϕ TLFM) 33 M M, ctrm ) ctrm )= v vrm ) vrm ),v M M n M,M,,M n, M,M,,M n, [M M M n n TLFM ) TLFM ) TLFM n ) [M M M n TLFM ) TLFM ) TLFM n ) [M M M n 34 TLFM ) TLFM ) TLFM n ) = ϕ [M M M n 3 34) 4rilrod gte control [, ),, 3 Sg=out pssing x Sg=out fr x> x=0 Sg=in, x=0 ner x 4,, Fig Trin fr,ner pssing, fr ner, in ner, ~4 pssing pssing, fr, fr, out fr, ner, open ), in, down,down, closed, closed, out up up in, down, open open, in 3 x y, sg 3 module controlled init jump Trin p{fr,ner,pssing} sg{in,out} xclock p=fr sg=out x=0 p=fr p =ner sg =in x =0 p=ner x p =pssing sg =sg x =0 p=pssing p =fr sg =out x =x dely p=fr true // true ) p=ner x 4 p=pssing x

39 module externl controlled init jump dely Gte sg{in,out} q{open,closed,up,down} yclock q=open y=0 q=open sg =in q =down y =0 q=down y q =closed y =y q=closed sg =out q =up y =0 q=up sg =in q =down y =0 q=up y= q =open y =y q=open sg=out 3, q=down sg=in y q=closed sg=in q=up sg=out y y=0 y open sg=out up sg=out y sg =in y=0 sg =in y=0 sg =out y=0 down sg=in y y closed sg=in,,, Fig3 Gte 3 TLFTrin)=p=0 sg=0 x=0) [p =p sg =sg x =x) p=0 p = sg = x =0) p= x p = sg =sg x =0) p= p =0 sg =0 x =x))) [p=0 p= x 4) p= x ))), TLFGte)=q=0 y=0) [q =q y =y) q=0 sg = q = y =0) q= y q = y =y) q= sg =0 q =3 y =0) q=3 sg = q = y =0) q=3 y= q =0 y =y))) [q=0 sg=0) q= sg= y ) q= sg=) q=3 sg=0 y ))) [p= q=)[p=pssing q=closed)) [Trin Gte I TLFTrin) TLFGte), f p, f sg, f q, f x f y p,sg,q,x y I,,, n, f p, < < < n < f p, ) 0 =0, n N, f p n, n+ ) [p =p sg =sg x =x) p=0 p = sg = x =0) p= x p = sg =sg x =0) p= p =0 sg =0 x =x)),f p 3, f p 0,,,,0, f sg 0 3, f sg 0 f p, i N, 0 f p t) = f sg 0 t) = 3i, 3i,,,, 3, ) ) 3 [q=0 sg=0) q= sg=) q= sg=) q=3 sg=0)) ) { 0, 3} f q t) {, } 3i,, 3) f p )= [p =p sg =sg x =x) p=0 p = sg = x =0) p= x p = sg =sg x =0) p= p =0 sg =0 x =x)) f x ), 3 t 0, 3, 3) f q t 0 )= f q t 0 )= f q t 0 )=, [q=0 sg=0) q= sg= y ) q= sg=) q=3 sg=0 y )) f y t 0 ), t 0 t 0 > +, 0, 3 f q t 0 )= ), t 0 R +, f p t 0 )=, f q t 0 )= I [p= q=) I TLFTrin) TLFGte), 34,[p= q=) 3

40 Journl of Softwre 00,3) [Trin Gte 4 LTLC,, Timed Computtion Tree Logic [5,Metric Intervl Temporl Logic [6 TLA+ [3,LTLC,, LTLC ),, LTLC, LTLC,, LTLC LTLC LTLC, LTLC, model checking) [,4 LTLC, Leicester, References [ Alur, R, Henzinger, TA Rel-Time system=discrete system+clock vribles Softwre Tools for Technology Trnsfer, 997, /) 86~09 [ de Bkker, JW, Huizing, K, de Rover, W-P, et l, eds Proceedings of the REX Workshop Rel-Time Theory in Prctice Lecture Notes in Computer Science 600, New York Springer-Verlg, 99 [3 Henzinger, TA, Mnn, Z, Pnueli, A Temporl proof methodologies for timed trnsition systems Informtion nd Computtion 994,)73~337 [4 Mnn, Z, Pnueli, A Clocked trnsition systems In Pnueli, A, Lin, H, eds Logic nd Softwre Engineering Singpore World Scientific, 996 3~4 [5 Alur, R, Courcoubetis, C, Dill, DL Model-Checking in dense rel-time Informtion nd Computtion, 993,04)~34 [6 Alur, R, Feder, T Henzinger, TA The benefits of relxing punctulity Journl of the ACM, 996,43)6~46 [7 Alur, R, Henzinger, TA A relly temporl logic Journl of the ACM, 994,4)8~04 [8 Ostroff, JS Temporl logic for rel-time systems Tunton, Englnd Reserch Studies Press Ltd, 989 [9 Alur, R, Dill, DL A theory of timed utomt Theoreticl Computer Science, 994,6)83~35 [0 Mnn, Z, Pnueli, A The temporl logic of rective nd concurrent systems Specifiction New York Springer-Verlg, 99 [ Bjφrner, N, Mnn, Z, Sipm, HB, et l Deductive verifiction of rel-time systems using STeP In Rus, T, Bertrn, M, eds Proceedings of the ARTS 97 Lecture Notes in Computer Science 3, New York Springer-Verlg, 997 ~43 [ Henzinger, TA, Nicollin, X, Sifkis, J, et l Symbolic model checking for rel-time systems Informtion nd Computtion, 994,)93~44 [3 Lmport, L Hybrid systems in TLA+ In Rischel, H, Rvn, AP, Nerode, A, Grossmnn, RL, eds Hybrid Systems Lecture Notes in Computer Science 736, New York Springer-Verlg, 993 77~0 [4 Clrke, EM, Emerson, EA, Sistl, AP Automtic verifiction of finite-stte concurrent systems using temporl-logic specifictions ACM Trnsctions on Progrmming Lnguges nd Systems, 986,8)44~63

4 A Liner Temporl Logic with Clocks for Verifiction of Rel-Time Systems LI Gung-yun, TANG Zhi-song Key Lbortory of Computer Science, Institute of Softwre, The Chinese Acdemy of Sciences, Beijing 00080, Chin) E-mil {ligy,cst}@iosccn http //wwwiosccn Abstrct In order to specify rel-time systems, mny temporl logics such s Timed Computtion Tree Logic, Metric Intervl Temporl Logic nd Rel-Time Temporl Logic hve been proposed Although these logics re good t specifying properties of rel-time systems, they re not suitble for describing the implementtions of such systems Thus, the specifictions nd the implementtions re usully described by different lnguges for rel-time systems In this pper, new liner temporl logic with clocks, clled LTLC, is introduced It is n extension of Mnn nd Pnueli s liner temporl logic It cn express both the properties nd the implementtions of rel-time systems With LTLC, systems cn be described t mny levels of bstrction, from high-level requirement specifictions to low-level implementtion models, nd the conformnce between different descriptions cn be expressed by logicl impliction This spect of LTLC will be beneficil to the verifiction nd the stepwise refinements of rel-time systems Key words rel-time system timed utomton liner temporl logic specifiction lnguge system description lnguge property verifiction Received July 0, 000 ccepted June 0, 00 Supported by the Ntionl Nturl Science Foundtion of Chin under Grnt No6007300 the Key Sci-Tech Project of the Ntionl Ninth Five-Yer-Pln of Chin under Grnt No98-780-0-07-0 the Ntionl High Technology Development 863 Progrm of Chin under Grnt No863-306-ZT0-04-