Τμήμα Εφαρμοσμένης Πληροφορικής

Σχετικά έγγραφα
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

12/3/2012. Εργαστήριο Αλγόριθμοι Γραμμικής Βελτιστοποίησης. Lab03 1. Διανυσματοποίηση Βρόχων. Αρχικοποίηση μητρών (preallocating)

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 3/4/2012. Lecture08 1

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 28/3/2012. Lecture07 1

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Τμήμα Εφαρμοσμένης Πληροφορικής

z = c 1 x 1 + c 2 x c n x n

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Θεωρία Μεθόδου Simplex

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΕΝΑΣ ΝΕΟΣ ΤΡΟΠΟΣ ΔΗΜΙΟΥΡΓΙΑΣ ΤΥΧΑΙΩΝ ΒΕΛΤΙΣΤΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΚΑΙ ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ

Γραμμικός Προγραμματισμός

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Εφαρμοσμένη Βελτιστοποίηση

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Επιχειρησιακή Έρευνα I

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Επιχειρησιακή Έρευνα I

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί

Γραμμικός Προγραμματισμός

Παναγιώτης Ψαρράκος Αν. Καθηγητής

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

4. Μέθοδοι αναγνώρισης ταξινοµητές µε επόπτη

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

3.7 Παραδείγματα Μεθόδου Simplex

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον.

Εφαρμοσμένα Μαθηματικά ΙΙ

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 2. Σύντομες Λύσεις

ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

Γραμμικός Προγραμματισμός

Μοντελοποίηση προβληµάτων

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017

Γραμμική Άλγεβρα Ι,

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Επιχειρησιακή Έρευνα

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Μήτρες Ειδικές μήτρες. Στοιχεία Γραμμικής Άλγεβρας

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017

1,y 1) είναι η C : xx yy 0.

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Ακέραιος Γραμμικός Προγραμματισμός

Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ

Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119)

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ-ΦΕΒΡΟΥΑΡΙΟΣ 2004 Θέμα 1 ο. 4

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Τμήμα Διοίκησης Επιχειρήσεων

ΛΥΣΕΙΣ 6. a2 x 2 y 2. = y

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Πρόβληµα Μεταφοράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Επιχειρησιακή Έρευνα

Ακέραιος Γραμμικός Προγραμματισμός

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Διαχείριση ενεργειακών πόρων & συστημάτων Πρακτικά συνεδρίου(isbn: )

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Transcript:

Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ

Στόχοι Εργαστηρίου ημιουργία Τυχαίων Βέλτιστων Γ.Π. Περιγραφή μεθόδου για δημιουργία βέλτιστων Γ.Π. Καθορισμός μεταβλητών εισόδου/εξόδου Προγραμματισμός Συναρτήσεων Αποθήκευση Γ.Π. οκιμή των Συναρτήσεων 2

Μορφή Βέλτιστων Γ.Π. Τα τυχαία βέλτιστα Γ.Π. που θα δημιουργούνται είναι της μορφής min c T x μ. π. Ax b x 0 όπου A R m n, c, x R n, b R m και T σημαίνει αναστροφή. 3

Δημιουργία Βέλτιστων Γ.Π. (1) Ε x 0 R x 1 d 4

Δημιουργία Βέλτιστων Γ.Π. (2) Τα υπερεπίπεδα δημιουργούνται έτσι ώστε να εφάπτονται σε μια σφαίρα, Β(x 0, R), με κέντρο x 0 και ακτίνα R. Προς το σκοπό αυτό κατασκευάζεται τυχαίο διάνυσμα d μοναδιαίου μέτρου και στη συνέχεια βρίσκεται η τομή της ακτίνας {x 0 +td:t 0} με τη σφαίρα. Έστω x 1 το σημείο αυτό 1 0 1 0 x = x + td, d = 1,t 0 x x = td x x = R, R > 0 (x x ) = R (td) = R t = R 1 0 Ε πομένως x = x + Rd, d = 1 1 0 1 0 2 2 1 0 1 0 1 0 x x = td x x = td x x = td 2 2 2 2 t = R R 5

Δημιουργία Βέλτιστων Γ.Π. (3) Αν x είναι ένα σημείο του υπερεπιπέδου, το διάνυσμα v από το σημείο x 1 στο x είναι v=x-x 1 και επειδή το v είναι κάθετο στο d προκύπτει d Τ v=0 d Τ (x - x 0 -Rd)=0 d Τ x=d T x 0 +Rd T d d Τ x=d T x 0 +R Επομένως η εξίσωση του υπερεπιπέδου που εφάπτεται σε τυχαίο σημείο της σφαίρας Β(x 0,R)είναι d T x=r+d T x 0 οπότε η αντίστοιχη ανισότητα είναι d T x R+d T x 0, δηλαδή είναι a=dκαι b=r+a T x 0. 6

Μεταβλητές Εισόδου/Εξόδου (1) ΟΝΟΜΑ ΣΥΝΑΡΤΗΣΗΣ: optimalrandom ΑΡΧΕΙΟ ΣΥΝΑΡΤΗΣΗΣ: optimalrandom.m ΜΕΤΑΒΛΗΤΕΣ ΕΙΣΟΔΟΥ: n - Πλήθος περιορισμών του Γ.Π. m - Πλήθος στηλών του Γ.Π. Alu Εύρος τιμών της μήτρας Α clu Εύρος τιμών του διανύσματος c r - Η ακτίνα της σφαίρας (R) center- Το κέντρο(x 0 ) της σφαίρας 7

Μεταβλητές Εισόδου/Εξόδου (2) ΜΕΤΑΒΛΗΤΕΣ ΕΞΟΔΟΥ: Α mxn μήτρα συντελεστών b mx1 μήτρα δεξιού μέρους c 1xn μήτρα κόστους αντικειμενικής συνάρτησης eqin mx1 μήτρα για τον τύπο κάθε περιορισμού. Ισχύει eqin i = -1 ( ) minmax 1x1 μήτρα για τον τύπο του Γ.Π. Ισχύει minmax = -1 (min) 8

Επιλογή αρχικών μεταβλητών στη βάση (1) Γ.Π. με ισοτικούς περιορισμούς eqin i =0,i=1,2,,m Σχηματισμός της επαυξημένης μήτρας [Α b] Έλεγχος αν η επαυξημένη μήτρα είναι πλήρους βαθμού. Κάποιες από τις αρχικές μεταβλητές θα πρέπει να επιλεγούν ως βασικές. 9

Επιλογή αρχικών μεταβλητών στη βάση (2) Αν κατά τη διάρκεια του υπολογισμού του βαθμού της επαυξημένης μήτρας εμφανιστεί περιορισμός της μορφής a i1 x 1 +a i2 x 2 +... + a in x n = 0 όπου a ij = 0, i = 1, 2,..., m, j = 1, 2,, n τότε αυτός διαγράφεται. Αν εμφανιστεί περιορισμός της μορφής a i1 x 1 + a i2 x 2 +... + a in x n = b i όπου a ij = 0 και b i 0, i = 1, 2,..., m, j = 1, 2,, n τότε το Γ.Π. είναι αδύνατο. Ως βασικές μεταβλητές επιλέγονται εκείνες οι στήλες οι οποίες κατά τη διάρκεια εύρεσης του βαθμού σχηματίζουν τη μοναδιαία μήτρα. 10

Μεταβλητές Εισόδου/Εξόδου ΟΝΟΜΑ ΣΥΝΑΡΤΗΣΗΣ: lprref ΑΡΧΕΙΟ ΣΥΝΑΡΤΗΣΗΣ: lprref.m ΜΕΤΑΒΛΗΤΕΣ ΕΙΣΟΔΟΥ --A, b, eqin, tol:tolerance(1x1) ΜΕΤΑΒΛΗΤΕΣ ΕΞΟΔΟΥ --Aeqin:reduced row echelon form of A(mxn) --beqin:reduced vector b --jb:δείκτες στηλών από τις αρχικές μεταβλητές του Γ.Π. οι οποίες συμμετέχουν στο σχηματισμό της βάσης. --rowindex: Μήτρα (2xm) η οποία στην 1 η γραμμή έχει τους δείκτες των περιορισμών με τη σειρά που εξετάστηκαν, ενώ στη 2 η γραμμή δείχνει αν ένας περιορισμός είναι πλεονασματικός (=1) ή όχι (=0), 11

Παράδειγμα Να εφαρμοστεί η μέθοδος lprref στο παρακάτω Γ.Π. A = [-1 3 5-2 0 1-1 3 8 2 2-6 -10 4 0 4-2 1 3 4] eqin = 0 1 0 0 b = 4-3 -8 10 [Aeqin,beqin,jb,rowindex,feasinfeas] = lprref(a,b,eqin,10e-8) 12

Παράδειγμα Να εφαρμοστεί η μέθοδος lprref στο παρακάτω Γ.Π. A = [-1 3 5-2 0 1-1 3 8 2 2-6 -10 4 0 4-2 1 3 4] eqin = 0 1 0 0 b = 14-3 -8 10 [Aeqin,beqin,jb,rowindex,feasinfeas] = lprref(a,b,eqin,10e-8) 13