. (,,87),+0,9 40: 50. + x+ X, 8±0 ; x 6 8 0 6 05-06-o quv yili matematikadan 9-sinf imtihon biletlari yechimlari -bilet 0,75,+0,9 90 0,9+0,9 90 0; ; (x-) +(x+),5(x-)(x+); x 4x-4+4x+43x -3; 3x -8x-30; (-8) -4 3 ( 3) 00 ; x 3 8+0 3; Javob: 3 km/soat 6 3. (x-)(x+) x +3x-4; x - x +3x-4; 3x 3; x ; Javob: x. 4. E erilgan E,F,N,M to g ri to rtburchak tomonlarining o rtalari. NEMF -paralleleogram N M Isbot: uchburchakda NE o rta chiziq,ne ga parallel va NE ; uchburchakda FM- o rta chiziq va? FM ga parallel va FM F Huddi shunigdek, da EM o rta chiziq va EM, da NF-o rta chiziq va NF Shundan NEMF-parallelogram ekanligi kelib chiqadi. 5. vatar. <O 46 0, <? Yechish: 46 0, < 73; Javob: < 730 O -bilet.,6:0,8+ (-,5) 3 0,8 3,375 0,8,7 0,7;. x x 4,3 y 5,8; 0,043x y 0,058x; 43 000y 53 ; Javob: 000 ta 00 00 3. x+y, x -y, x -(-); x - -; xy -, (-y)y -, y-y +0, y -y-0; y -; y ; Javob: x ; y -; x -; y. 4. K K va kesmalar nuqtada o rtasidan kesishadi. va K uchburchaklarning Tengligini isbotlash kerak. Isbot: va K uchburchaklarda, K, uchidagi burchaklar vertical. Uchburchaklar tengligining TT alomatiga ko ra K. 5. erilgan: romb. 0; << 60 0, he, <E 90 0 ; E va E? E Yechish: E da < 90-60 30; undan E 0 0;E -E 0-00 3-bilet 0,4(,6 ). 0,4 0,6 0,4 0,05; ((,4,6)(,4+,6), 4 8. 30 5 5:03: 40 55 0 Javob: :3 nisbarda olinadi. 3. 5x-8x+4 4x-0; -3x-4x -4; -7x -4; x ; 4. h m, -teng yonli. Isbot: mediana To g ri burchakli uchburchaklar tengligining KK alomatiga ko ra, undan yani uchburchak teng yonli ekanligi kelib chiqadi. 5. aylanaga tashqi chizilgan.8; 30; P? Yechish: + +; 8+30 38 +; P 38 76; 8 30 Javob: P 76 birlik 4-bilet. (3 4 ) 0,5 - -,5+3 3--,5+3 3,5;. 30%+70% 50%; Javob: 50% 3. x-+->x, x>4, x> 3x-<0, 3x<, x<, Javob: 3 4. ; va - mos bissektrisalar. ekankigini isbotlash kerak.
Isbot: ularda berilganga kora ; < < ;. undan kelib chiqadi 5. to rtburchak aylanaga ichki chizilgan. < 48 0, < 38 0 ; Topish kerak.<? Yechish. < ; < 48 96; < ; 38 76; < ; 96 76 0; < 0 0; J: < 00 5-bilet. a+a0,5 a +a0,5 + a+a0,5 +a a+a0,5 a 0,5 +a 0,5 +a 0,5 a0,5 (a 0,5 +)+(a 0,5 )(a 0,5 +) +a 0,5 +a 0,5 +a 0,5 +a 0,5 +a 0,5 (a0,5 + )(a 0,5 + a 0,5 ) ( + a 0,5 a 0,5 ; ). n(+ 5 ) 9 450 000; n(+,) 9 450 000;,n 9 450 000; n 9 450 000:,; n 4 500 000; 00 Javob: 4 500 000 so m. 3. 5+x+90 (5 x)(4 x) 5 x X 0+0 0; 5+x+90 0+5x+4x x 0; -x +0x+750; x -0x-750; (-0) -4 ( 75) 400; 5 x 5; Javob: x 5; 4. erilgan: va kesmalar o rtalarida kesishadi.oo; OO; Isbot qilish kerak parallel O Isbot: O O bunda O uchidagi burchak vertical, OO; OO Uchburchaklar tengligining TT alomatiga ko ra bu uchburchaklar teng. undan < < va < < kelib chiqadi bu degani.ikkita to g ri chiziqni kesuvchi bilan kesganda hosil bo lgan ichki alamashinuvchi burchaklar teng bo lsa, parallel ekanligi kelib chiqadi. 5. erilgan to g ri burchakli trapetsiya.< 45 0 ; 8sm; 4 sm; S? Yechish: E balandlik tushiramiz. E teng tomonli to gri burchakli uchburchak. E unga Pifagor teoremasini qo llasak,e ; E (4 ) E8-E 8- ; S 8 +8 6 4 ; Javob: S 6 4 kv.birlik 6-bilet. m0,5 + 5m0,5 m 0,5 +5 (m 0,5) 5 m0,5 (m 0,5 5)+5m 0,5 m 5 5 : 4 (5 5 75 5) : ( ) 5 4 4 4. 0 000 + 0000 p 00 m 5m0,5 +5m 0,5 m 5 m m 5 ; ( 4 ) ; 4 75 3 3 4600; 0 000+3600p4600; p 4600 0000 3600 3. b b 7; b 7 b 7 b q ; b b q ; b 3 b q ; b 4 b q 3 ; 7 b q q 7 b q q3 ; 7 q 3 3 b ; 7 q 3 7 ; 3 3 7q4 ; q 4 3 8 q b 4 9 ( 3 )3 9 7 3 ; Javob: b 9; b 3; b 3 ; b 4 3. 3 ; b 7 3 6; Javob: 6% 6 ; 9; b 7 9 3; b 3 9 ( 3 ) ; 4. uchburchakda -mediana ni yarmiga teng. ni to g ri burchakli ekanini isbot qiling. Isbot: ekanligidan. U holda va lar teng yonli uchburchaklar.teng yonli uchburchaklarni asosidagi burchaklari teng, demak < 45 0, <45 0. undan < 80-(45+45) 90. to g ri burchakli 5. erilgan parallelogram.< 30 0, < 9 0. <<? Yechish: < 30+959; < 59 0 ; x+x+ 59360; x 360-8; x ; J: << 0
7-bilet. x 4+6+x 8 (x 4) x+4 (x 4) x 4; (x 4)(x+4) x+4. 0 000-5 500 4 500; 0 000 00% 4 500 x %; x 4500 00 45; 0000 J: 45% 3. y x -x-3 ; a, b -, c -3; x 0 - ( ) 0 - -3-4; y (x-) -4-3 x -; x 3 J: -<x<3. 4. teng yonli uchburchak. asos o rtasi.e perpendikulyar, F per-r.. FE ekanligini isbot qilish kerak. Isbot. mediana tushiramiz.u ham bissektrisa ham balandlik bo ladi. F va E lar F E To g ri burchakli uchburchaklar.undan tashqari. F E chunki bularda umumiy uchidagi burchaklar teng.to g ri burchakli uchburchaklar tengligining G alomatiga ko ra.undan FE ekanlgi kelib chiqadi. 5. 5 erilgan trapetsiya.ef, 5, ni toppish kerak. E F Yechish: EF (c+)/; EF- 5 7; JVO: 7. 8-bilet. a + (a ) a ; a a. + x+6+x x x+6 5 x(x+6) 5 x + 6x; 30x+40 x + 6x; x + 6x 30x 40 0; X -4x-400; (-4) -4 ( 40) 96 + 960 56 > 0; X 4 34 0; x 4+34 4; 4+640; Javob: 40 soat 3. x -5x6-5x; x 6; x±4; x -4; x 4; y 6-5 ( 4) 6 + 0 36; y 6-5 4 6 0 4; J: (-4;36); (4;-4) 4. teng yonli uchburchak.o va O < va < larni bissektrisalari. <O < t Isbot:<O 80-( < < ) 80 t 80 0 -<; O 5. E va vatarlar. OE perpendikulyar, OF perpendikulyar ; 8; OE 3,OF4.? O Yechish: E / 8/4; EO to g ri burchakli uchburchakdan O E + OE F 4 + 3 5 5; OO emak, O 5; FO to g ri burchakli uchburchakdan F O OF 5 4 9 3; U holda F 3 6; Javob: 6. 9-bilet. 00 0,5 60+ 9 0 40 40 + 0 0; 5 9. + ; (x+3+x)x(x+3); 4x+6 x x+3 x +3x; x +3x-4x-60; x -x-60; x -; x 3; Javob: 3 soatda 3. y 4x+4; y -x; Javob: y 4x+4 o suvchi 4. ; Isbot qilish kerak ; Isbot: va balandliklar. ; < < ; << ;undan to g ri burchakli uchburchaklar tengligining G alomatiga ko ra.emak, 5. urinma. O markaz. 35 0 ; <O? Yechish: E 80 0 ; E 80 80 35 35 <O (45-35)/ 0/ 55; Javob: <O 55 0 O E
. ( 0-bilet a 4+a ): + a+4 a+a 4 a + (4+a )(4 a ) + + a (a ) ( a)(+a) 4 a a (4 a )(( a) 4+a a (4 a )( a) (4+a ) a (a ) a +a a (a ) ( a) (a ) ; (,5) (,5 ) (,5) 0,5 (,5 0,5 ) ( 3) 9;. 48 x 4 48 x 6 ; 6 48x-6(x-4) 48x(x-4); 88x-88x+5 x -4x; x -4x-50; x -3; x 36; 36-43; Javob: 36km/soat; 3 km/soat 3. -<3x-5<; 5-<3x<+5; 3<3x<7; <x< 3 ; Javob: <x< 3 ; 4. F parallelogram.e va F balandliklar. Isbot qilish kerak: E F Isbot:, EF. To g ri burchakli uchburchaklar tengligining GK alomatiga kora E F E 5. teng yonli uchburchak. < 0 0 ; 4;? Yechish: balandlikni tushiramiz. U holda ham mediana, ham bissektrisa. undan </ 60 0 ; to g ri burchakli uchburchakda < 30 0 ; U holda 4 3; 3 4 3; Javob: 4 3. -bilet. 6x+5 6x+5 6x+5 3 8 0 5 8 5 5 0 3 8 5 8 6 4 8 6 4 x; 3. x+4 + x x+4 6 4 5 ; x+4 6 4 3x+384; 35x-3x 384-336; 3x 48; x 6; 6+4+656; + x 8x+96 ; x+48+3x 8x+96 ; 5x+48 4 Javob: 56 km 3. S 0 + ++ +97 +98+99; a 0; a 90 99, n 90; S 90? Yechish: S 90 0+99 90 09 45 4905; Javob: S 4905. 8x+96 ; 7(5x+48)4(8x+96); 35x+336 4. to g ri to rtburchak. ni va uchburchaklar orqali isbotlang. Isbot: ; ularda ; to g ri burchakli uchburchaklar tengligining KK alomatiga ko ra.undan kelib chiqadi. 5. perpendikulyar. < 55 0 ; <? Yechish: O to g ri burchakli uchburchak.< 90-5535; undan < O 35 70; < ham ga tiralgan. emak, < / 70/35. J: <35 0 -bilet. a 6 + 6 ; b 3 + 7 a va b ni taqqoslang. 5 + 5 + 5 + 5,; 4 + 4 + +,5; 5,+,57,67 6 ; 5 0 4 0 3 9 + 4 9 + 4 3 + 3 ; 6 + 6 + 4 + 4 ; 3 + 4 7 9 9 3 3 6 8 8 3 8 6 0 9 va ; 7 95 va ; 7 4 0 0 < 95 0 0 ; Javob: a<b. x:y3,5:3; 3x3,5y; 3(600000+y) 3,5y; 800000+3y3,5y; 0,5y 800000; y 3600 000 x-y600 000 x 600000+y; x 600 000 +3 600 000 4 00 000; Javob: 4 00 000 KW; 3 600 000 kw. 3. a +a +a 3 0; a +a +a 3 +a 4 ; S 0? Yechish: a +a +d+a +d0; 3a -3d; a -d; (a +3d)/ 4 ; (-d+3d) ; d 0,5; a -0,5 S 0 ( 0,5)+0,5 9 0( -+4,5) 5 3,5 5 7,5; Javob: S 0 7,5. 4. parallelogram. d ga perpendikulyar.-romb ekanligini isbotlang. Isbot: O O. hunki O umumiy.to g ri burchakli uchburchaklar tengligining GK alomatiga ko ra.ya ni, c. emak romb O R 7, 5; S? Yechish: R a h c ; a R h c 7 5 5 34 (5 34) 5 5 34 65 5 5; 5. S ( )/ 5 5: 87,5; Javob: S87,5 kv.birlik 4 ;
. ( 97 43 8 30 ): ( 00 0 9 3-bilet 485 49 ) x: (3, + 0,8,5); : 0 90 00 9 56 x: (3, +,8); : 56 x: 4; 0,5 x:4; 90 45 X4 0,5; Javob: x. I- kuni 5%; II-kuni qolganini 0%.Necha % sotilmay qoldi? Yechish: x-0,5x0,85x; 0,85x 0,0 0,7x ; 0,7x+0,5x 0,3x; x-0,3x 0,64x; Javob: 64% 3. y 3 3; y 4,5; y y 5? Yechish: q y 4 :y 3,5:30,75; y 3 :y 0,75; y 3:0,754; y 5,5 0,75,6875; y y 5 4,6875 6,75; Javob: y y 5 6,75 4. teng yonli trapetsiya.<< ekanini isbotlang. Isbot: EF balandliklar tushiramiz. F F. EF,, EF.To g ri burchakli Uchburchaklar tengligining GK alomatiga ko ra.emak, << E F 5. erilgan: < 0 0 ; -bissektrisa.. <? Yechish:, -umumiy. Uchburchaklar tengligining TT alomatiga ko ra.undan teng yonli. 0+x80; x70; x 85; undan: < 85 70; Javob: <70 0. 4+a 4 : a +4a+4 a +4a 4+6 a (a ) a 4. 4 L 8% li 6 L 8% li x 8 4+8 6 0 4+6 0 3. b >0; b b 7; b 3 b 4 ; b, b,b 3, b 4? 3 b b q 7 ; b 7 q 4-bilet (a )(a+) (a+) a 8a+6 ; Javob: L 8(a+) 8 ; b q b q 3 ; 7 3 q q5 ; 3 q4 : 7 ; q ; b 3 8 3 7 8 9; b 9 3;b 3 3 3 ; b 3 4 ; 3 3 3 Javob: b 9; b 3; b 3 ; b 4. 3 4. trapetsiya. parallel. MN o rta chiziq.ef M N Isbot: MN + ; MEFN + ; EF E F 5. 5, os</3l;? Yechish: os< /; os< 5 48; Javob: 48 3 bo lishini isbotlang. + 5-bilet b. a+b 5++ 5 a(a b) b ab ( 5+)( 5 ) 5. 560 56; 560-56504; 504 68; 504-68 336; 0,6x +0,6x 336; 0,4x336; x 800; 0 3 0,6 800 08; 0,6 800 8. Javob: 08 sr; 8 sr. 3. S ( + ), q ; b? b S(-q) ( + ) ( ) ( + ) b. 4., urinma. ekanligini isbotlash kerak. Isbot: OO aylana radiusini chiqaramiz. ni O bilan tutashtiramiz. O O O ularda O umumiy,oo.to gri burchakli uchburchaklar tengligining KK alomatiga ko ra demak, 5. erilgan: teng yonli trapetsiya.e ga tushirilgan balandlik.e8, E8 MN? M N Yechish: FE8, E+E8+846, EF-E 46-8 0; E F MN + 0+46 8; Javob: MN 8
.( ( a+) ( a ) a + 4 a) a a (a+ a+ a+ a a 6-bilet + 4 a) a a (4 a a + 4 a) 4 a + 4(a ) a a a 4+4a-44a;. I da 40%; 40 3 3x+5x8; x; Javob: 3kg; 5 kg II da 3%; 35% 8kg 35 3 5 3. q ; S6(4+ ) ; b 4 7 3? Yechish: b S(-q) 6(4+ ) ( 7 4 b b q8 ; b 4 3 b q ; 4 Javob: b 3. 6(4+ ) ) ( 4 ) 6(6 ) 8; 7 4 8 4. erilgan: va o zaro perpendikulyar diametrlar. to rtburchak kvadrat ekan- Ligini isbotlash kerak. O Isbot: OO, OO; O + O ; O + O O + O ; O + O 5. a4; d5; S? Yechish: b d a 5 4 (5 4)(5 + 4) 49 7; S ab 4 7 68; J: S 68 kv.bir 7-bilet. 3 7,5 (,5) + ( ) 4 34 0,5 7,5 3 + 3 4 7,5 4 5 64 5 6 8 6 8 6 6 48 6 3;. 60 60 x ; x+3 60(x+3) -60x x(x+3); 60x+80-60xx +3x; x +3x-800; x -5; x ; Javob: km/soat; 5 km/soat 3. x ; x 5; x 3-3 - + - + -3 5 Javob: x<-3; <x<5 4. <-ichki chizilgan burchak. diametr. < to g ri burchak ekanligini isbotlang. Isbot: < / 80/90; emak < 90 0 5. erilgan: to g ri burchakli trapetsiya. 5; ; <45 0 ; S? Yechish: E balandlik tushiramiz.unda <E 45 0 ; emak, E teng yonli to g ri burchakli uchburchak.e-e-56; U holda E 6; S + E 5+ 6 48; E Javob: S 48 kv.bir 8-bilet. (3,4-,3,8): 8 (3,4 4,4) 7 0,9 7 9 7 7 ; 7 8 8 0 8 0. x+y 50; y 50-x; y 50-5000; 0,8x+,y60; 0,8x+, (50-x)60; 0,8x+80-,x60; -0,4x-0; x 50; J: 50 ta; 00 ta 3. sin( 3π α) cosα sinα ( sinα) ( cosα) cosα + sin α cos α + sin α ; 4. erilgan uchburchak. E-o rta chizig i.e uchburchak o xshash ekanligini isbotlang. Isbot: <<, <<E; E /; undan uchburchaklar o xshashligining -alomatiga ko ra E E 5. Kvadrat perimaetri 0 sm. R+? Yechish: a p 0,5; R a,5,5; Javob: R,5 sm 4 4 9-bilet. y 0 y y 3 y 0 y 5 y 0 y 5 y 0+5 y,5 ;
. (x+4)(x+30)-x(x+5)300; x +30x+4x+0-x -5x300; 9x80; x0; 0+44; X+4 X+4 0+3050; S 50 4 00; Javob: S 00 m X+5+5 3. + + +; + - - Javob: - 4. M M bo lsa, ni uchburchakka o xshashligini isbotlang. Isbot: M+M; M +M ; M uchburchak M uchburchakka o xshash.undan ni uchburchakka o xshashligi kelib chiqadi. M M 5. :00 S S ( 00 ) 0000 ; Javob: 0 000 marta 0-bilet. 0,6(- 7 ): 5 + 8 6 ( ) 4 + + 0; 6 4 00 0 6 5 5 5 5. 60 6,5 00; 60-0060; 00 00 60 x ; x 0 4 4 00(x 0) 60 4 x x(x 0); 400x-8000-40xx -0x; x -80x+80000; x 80; x 00; Javob: 00 km/soat; 80 km/soat 3. 3cos(50+30)-sin(80+3 30) + 5tg6 30 + sin30 3 + + 0 + 0,5 + 0; 4. erilgan romb. F,N,M,E tomonlarning o rtalari. FNME-to g ri t rtburchak ekanligini Isbotlash kerak. F N Isbot: da FN c ga parallel, FN/; da EM ga parallel EM /; da FE ga parallel FE /; da NM ga parallel NM/; undan FNEM; E M EFNM kelib chiqadi, demak FNME to g ri to rtburchak. 5. 0 bo lgan. R / 0/0; x 400; x 00; x 0 ; Javob: 0. xy +x y +x y (x y) : x 8y 4 0,9666667. xy(y+xy+x) ) (x y) 4 (x 8y)xy(y+xy+x) x 8y (x y) -bilet ( 8 0,065) 0,5(0,5+ 0,5+) ( 0,5),5,375,5,065,5 + ; 6(x-5) +6xx(x-5) ; 6x-30 +6x x x 5 6 x -5x; x -5x-x+300; x -7x+300; x ; x 5; 5-50; Javob: 5 soat; 0 soat 3. tgα ctg α tg α ctgα tg α tg α tg α tg α ; 4. O erilgan aylana diamter. ga perpendikulyar bolmagan urinma. va urinmaga perpendikulyar. O nuqta kesmani o rtasi ekanligini isbotlash kerak. va larni kesishguncha davom ettirsak burchak hosil O bo ladi.falesga ko ra O nuqta kesmani o rtasi boladi. 5. c-gipotenuza, -o tkir burchak, c5 sm, 30 0 ; X c Ikkinchi o tkir burchak va katetlarni c va orqali ifodalang. Yechish: β 90 α; x csin 4 sin30 0 4 0,5 ; Y Y ccos 4 cos30 0 4 3 ; Javob: ; 3.
-bilet. : 9 0 4 6 ; 5 0 5 9 9 36-7 7 ; 5 3 5 3 8 36 6 6 3 -; 36 Javob: - ; 36-6; 36-36. (x+x+5) 0; x+505; x 90; x 45; 45+560; S 45 60 700; Javob: S 700 m 3. sinccosx sinx+ + cosx sinx sinxcosx+cos x sonx+cosx sinx cosx(sinx + cosx): sinx+cosx sinx cosx(sinx + cosx) cosxsinx; sinx - ( 0,6) 0,36 0,64 0,8; -0,6 ( 0,8) 0,48; 4. -parallelogramm.s sin ekanligini isbotlash kerak. 5. ::3 a+c 7, ;? Yechish: x+x+3x80; x 30; Isbot: S S +S sin + sin sin; sinx sinx+cosx 30 0 ; 60 0 ; 90 0 ; x+x7,; 3x 7,; x,4;,4 4,8; Javob: c 4,8sm. 3-bilet. (,68:,6-,5) ( 5 ) : ( 0,09),05 ( 5 ) : ( 9 ) 05 ( 5 00 ) ( ) 35 3 8 ; 3 3 00 00 3 9 9 9. x+y 8; y 8-x; x-0,4x y-0,5y; 0,6x 0,75y; 0,6x 0,75 (8 x); 0,6x+0,75x3,5;,35x 3,5; x 0; y 8-08; Javob: 0 kg; 8 kg. 3. cos 0,8 0,36 0,6; cos cos π + sinαsin π 0,6 + 0,8 4 4 0 5 4. <O 60 0 ; OO ekanligini isbotlash kerak. Isbot: O teng yonli uchburchak.oo; undan asos demak, < < O 60+x80; x0; x 60; undan O teng tomonli uchburchak.undan O ekanligi kelib chiqadi 5. x+57+x+57360; x 360-4; x 46; x 3; Javob: 3 0 ; 3 0.. (x ) (y ) x y x +(x ) x y 5 5 4; (x +y )(x y ) x y x (+x ) x 4-bilet x + y x y ;. 36 ; x+ x 36(x-) 0(x+); 36x-7 0x +40; 36x-0x 40+7; 6x ; x 7; Javob: 7 km/soat 3. (x- )(x + 3) 0; x + 3x x 3 0; x + ( 3 )x 6 0; 4. M To g ri to rtburchak tomonlari o rtalarini tutashtirishdan hosil bo lgan to rtburchak romb E O F ekanligini isbotlang. N Isbot: EF va MN larni o tkazamiz. MN ; EF; EOM va EON uchburchaklarda EO umumiy OMON bu uchburchaklar KK alomatga ko ra teng. FOM va FON uchburchaklar ham teng, bularda OF umumiy ONOM KK alomatga ko ra teng. undan EMFN-romb ekanligi kelib chiqadi. 5. asos x bo lsin u holda yon tomonlar x- dan bo ladi; x-+x>x-; x>0; x-+x->x; x>4; 5;5;7 5-bilet. 8a6 b 9 0,5a b 4 a8 b 3 b; 7 ; 8a 8 b 8a 8 b 8 8 4 6. x-y4; x 4+y; xy96 (4+y)y96; 4y+y 96; y +4y-960; y -; y 8; 4+8; Javob: ;8. 3. 8x5y; 8x 5(44-6x); 8x0-80x; 8x+80x0; 88x0; x,5; 6x+y44; y 44-6x; y 44-6,5 44-404; Javob: x,5; y 4. 4. uchburchak. M mediana. M/; to g ri burchakli uchburchak ekanini isbotlang. Isbot: MMM. M teng yonli uchburchak.undan <M<M; M ham teng yonli Uchburchak.<M<M.undan < < u holda teng yonli to gri burchakli uchburchak. M 5. a 9sm, b sm; r?
Yechish: c 9 + 8 + 44 5 5; r a+b c 9+ 5 3; Javob: r 3sm. 6-bilet. EKUK(3,36,48) ning EKU(3,36,48) ga nisbatini toping. 3 5 ; 36 3 ; 48 4 3;. EKUK(3,36,48) 5 3 3 9 88; EKU(3,36,48) 3 4 3 ; 88: 4; Javob: 4.. n 70 850 so m; p8%; k 3,5 yil; 70850(+ 8 3,5 ) 70850( + 0,8) 9688; 9688-708500838; 00 Javob: 0838 so m 3. (x-3)(x+) +x (x+3)9(x+5); x +x-3x-3 +4x +x 9x+45; 5x +x-480; x -3,; x 3; Javob: x -3,. 4. sosdagi burchaklar otmas va to g ri burchak bola olmaydi.o tmas burchak bo lsa ta 90 0 dan kata burchaklar yig indisi 80 0 dan kata, bu esa mumkin emas.xuddi shungdek 90 0 dan ham bo la olmaydi.emak asosdagi burchaklar faqat o tlir ya ni 90 0 dan kichik bo ladi. 5. erilgan: trapetsiya; O diagonallar kesishgan nuqta. 9,6 dm96 sm; 4 sm; 5 sm; O? O Yechish: 4 ; 5 ; O 60; 96 4 O O 4 Javob: O 60 sm. 7-bilet. -7,5 43 + ( ) 4 34 0,5-5 + 3 5 + 3 4 3; 3 6 8 6. 60 3 96; 60-9664; 64 7 56; 60-(64+56) 50; Javob: 50 m 5 8 3. sin 0,8 0,36 0,6; -0,6-0,8:(-0,6) - 6 + 4 3 + 4 9+0 ; + 0 3 5 3 5 5 4. teng yonli uchburchak.. E ekanligini isbotlang. Isbot: E; chunki <<; <<; Uchburchaklar tengligining T lomatiga ko ra teng, demak, E. E 5. E O R 4,5 sm; O 9sm; E va urinmalar. <? Yechish: O va OE to g ri burchakli uchburchak.o va OE O radiusga teng O demak bularning har biri O gipotenuzaning yarmiga teng bo lsa </ 30 0 ;. ( a a+b a a ) a+b a a+b a a+b a. 00 00 x undan < 60 0 ; Javob: < 60 0 8-bilet a a+b a a+b a( a+b ) a + b ; 4 + 5 9 3 ; a a+b a a ; 00(x + 5) 00x (x + 5)x; 00x + 000 00x x+5 x + 0x; x +0x-0000; X +5x-5000; x -5; x 0; 0+5 5; 00:58; Javob: 8 kun. 3. -3 x 4; -3- x 4 ; 4 x 3; x,5; Javob:,5 x. 4. erilgan uchburchak. balandlik.< ni teng ikkiga bo ladi. -uchburchakni teng yonli ekanligini isbotlash kerak. Isbot: va to g ri burchakli uchburchaklarda umumiy, ; uchidagi burchaklari teng bo lganligidan to g ri burchakli uchburchaklar tengligining GK alomatiga ko ra bular teng.emak, teng yonli uchburchak. 5. erilgan : aylana va ikki kesuvchi. 50 0 ; E 6 0 ; <? Yechish: <( E) :(50-6): 44; Javob: < 44 0 E. (x 4y )(x +4y ) 3(y x) 3(x 4y ) (y x) (x +4y ) y x 3 ( 4 + ( 3,5)) 3 ( 4 7) 33. 3(x y)(x+y) (x y) 9-bilet 3(x + y);
. x+y,5; x+y 45; x+y45; y 45-x; y 45-5 0; (x-y) ; x-y 3 5 ; x-y 5; x 50; x 5; Javob: 5. 3 3 3 3. 9x 4-37x +40; x y; 9y -37y+40; (-37) -4 9 4 369 44 5; Y, 37±35 ; y 8 37 35 ; y 8 8 9 37+35 7 4; x 8 8, ± ± ; x 9 3 3,4 ± 4±; Javob: 0. 4. erilgan: teng tomonli uchburchak., E va F-balandliklar.EF ekanligini isbotlash kerak. F E Isbot: E F; ularda ; <E<.Togri burchakli uchburchaklar Tengligining KK alomatiga ko ra.undan EF ekanligi kelib chiqadi. 5. erilgan: 37,6 m; 3,8 m; 3,04 m;? Yechish: : 3,8:3,04,5; 37,6,5 47; Javob: 47 m 30-bilet. a -6 b 6 (3a 4 b - ) a -6 b 6 9a 8 b -4 8a b ; 8 ( 3 ) 8 4 4 8; 9. I- x; II-x+ x; 5 III-6 x + ; 5 x+6 x + + 6 x 6,; 0x+x+0+x6; 34x5; x,5; 5 5 I-,5; II-,,5,8; III-,8+,8; Javob:,5;,8;,8. 3. - sin x cos x cos x sin x; -(0,) -0,04,96. 4. erilgan: -aylana diametri. va o zaro parallel vatarlar. ekanligini isbotlash kerak. Isbot: ; -umumiy, <<; < va < diametrga tiralgan va 90 0 dan bo lgani uchun teng. To g ri burchakli uchburchaklar tengligining G alomatiga kora bular teng. emak,. 5. erilgan: trapetsiya; 5sm; 8sm; 3,6sm; 3,9 sm; M? ; M? Yechish: 5:8 x:(3,6+x); 5(3,6+x) 8x; 8+5x8x; 3x 8; x 6; M 5:8 y:(y+3,9); 5(y+3,9) 8y; 5y+9,5 8y; 3y 9,5; y 6,5. X y Javob: M 6 sm; M 6,5 sm.