o quv yili matematikadan 9-sinf imtihon biletlari yechimlari 1-bilet = 0,75 1,2+0,9. = 73; Javob: <CAB= 730

Σχετικά έγγραφα
Stereometriya asoslari. 8. Aksiomatik nazariya. Stereometriya aksiomalari. Ularning planimetriya aksiomalari bilan aloqasi. Fazodagi aksiomalar

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

O ZBЕKISTОN RЕSPUBLIKАSI ХАLQ TА`LIMI VАZIRLIGI RЕSPUBLIKА TА`LIM MАRKАZI

TENGSIZLIKLAR-II. ISBOTLASHNING ZAMONAVIY USULLARI

ALGEBRA VA MAÒEMAÒIK ANALIZ ASOSLARI

Sog liqni saqlash vazirligi Toshkent Farmatsevtika Instituti Muxandislik grafikasi fanidan ma ruzalar matni

B.Haydarov, E.Sariqov, A.Qo chqorov

FOYDALANILGAN ADABIYOTLAR raqamlarining ba zilari orasiga + va - ishoralarini shunday qo yingki, natijada 100 hosil bo lsin.

Otaxanov Nurillo Abdumalikovich. Dasturlash uchun masalalar to plami. Taqrizchilar: 1. FMFD Badalov M. 2. FMFN, dotsent,olimov M.

funksiyaning birinchi tartibli xususiy hosilasidan

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

GEOMETRIYA 7. Umumiy o4rta ta lim maktablarining 7-sinfi uchun darslik. Tuzatilgan va to4ldirilgan uchinchi nashr

-! " #!$ %& ' %( #! )! ' 2003

!"!# ""$ %%"" %$" &" %" "!'! " #$!

O`ZBEKISTON RESPUBLIKASI OLIY VA O`RTA MAXSUS TA`LIM VAZIRLIGI. QARSHI MUHANDISLIK IQTISODIYOT INSTITUTI.

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

Answers to practice exercises

O ZBЕKISTОN RЕSPUBLIKАSI ХАLQ TА`LIMI VАZIRLIGI RЕSPUBLIKА TА`LIM MАRKАZI

Το άτομο του Υδρογόνου

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

OLIY GEODEZIYA ASOSLARI

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

..,..,..,..,..,.. $#'().. #*#'!# !" #$% &'( )*%!"( %+

x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

ITU-R P (2012/02)

АЛГЕБРА ВА АНАЛИЗ АСОСЛАРИ ФАНИДАН ТАЯНЧ КОНСПЕКТ

Differensial hisobning tatbiqlari

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Bitiruv malakaviy ish

Uzviylashtirilgan Davlat ta lim standarti va o quv dasturi Matematika Fizika Informatika va hisoblash texnikasi asoslari (5 9 -sinflar)

Φυσική Ι. Ενότητα 3: Μηχανικές δυνάμεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

FORD RANGER Ranger_2013.5_Cover_V2.indd 1 20/12/ :57

Homework 8 Model Solution Section

Sheet H d-2 3D Pythagoras - Answers

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

*+,'-'./%#0,1"/#'2"!"./+3(,'4+*5#( *9.!/%#+7(,'#%*!.2 :;!"#/5".+!"#$() $!"#%"&'#$() 50&(#5"./%#0,1"/#'2"+*5#(35&* &*,'2-<:):0&3%!.2=#(,1,.%!.

IQTISODIY MATEMATIK USULLAR VA MODELLAR (nazariy asoslar va amaliy tavsiyalar)

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =


(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

Αλληλεπίδραση ακτίνων-χ με την ύλη

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

..., ISBN: :.!". # -. $, %, 1983 &"$ $ $. $, %, 1988 $ $. ## -. $, ', 1989 (( ). '. ') "!$!. $, %, 1991 $ 1. * $. $,.. +, 2001 $ 2. $. $,, 1992 # $!

a,b a f a = , , r = = r = T

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Batigoal_mathscope.org ñược tính theo công thức

x E[x] x xµº λx. E[x] λx. x 2 3x +2

Παρουσίαση του Mathematica

Προσομoίωση Απόκρισης Συστήματος στο MATLAB

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

Vn 1: NHC LI MT S KIN TH C LP 10

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.

Déformation et quantification par groupoïde des variétés toriques

Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Εργασία Παραγωγίζοντας και ολοκληρώνοντας

x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα:

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc)

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες.

KIMYO. 8 sinf uchun darslik TOSHKENT

10 MEXANIKA MEXANIKADA SAQLANISH QONUNLARI MEXANIK TEBRANISHLAR VA TO LQINLAR

O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI QARSHI MUHANDISLIK IQTISODIYOT INSTITUTI ENERGETIKA FAKULTETI

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ



O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI TOSHKENT MOLIYA INSTITUTI MIKROIQTISODIYOT FANIDAN MASALALAR TO PLAMI

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Φυσική Ι. Ενότητα 8 : Περιστροφική κίνηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU:

What happens when two or more waves overlap in a certain region of space at the same time?


Ασκήσεις. 5Β: 1s 2 2s 2 2p 2, β) 10 Νe: 1s 2 2s 2 2p 4 3s 2, γ) 19 Κ: 1s 2 2s 2 2p 6 3s 2 3p 6,

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

Alisher Navoiy nomidagi Samarqand Davlat universiteti

Chương 2: Đại cương về transistor

M p f(p, q) = (p + q) O(1)

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του


Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b

O`ZBeKISTON ReSPUBLIKASI XALQ TA`LIM VAZIRLIGI. AJINIYOZ NOMIDAGI NUKUS DAVLAT PeDAGOGIKA INSTITUTI. «Tasviriy san`at va chizmachilik» kafedrasi

! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#

Μέγιστα & Ελάχιστα. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Transcript:

. (,,87),+0,9 40: 50. + x+ X, 8±0 ; x 6 8 0 6 05-06-o quv yili matematikadan 9-sinf imtihon biletlari yechimlari -bilet 0,75,+0,9 90 0,9+0,9 90 0; ; (x-) +(x+),5(x-)(x+); x 4x-4+4x+43x -3; 3x -8x-30; (-8) -4 3 ( 3) 00 ; x 3 8+0 3; Javob: 3 km/soat 6 3. (x-)(x+) x +3x-4; x - x +3x-4; 3x 3; x ; Javob: x. 4. E erilgan E,F,N,M to g ri to rtburchak tomonlarining o rtalari. NEMF -paralleleogram N M Isbot: uchburchakda NE o rta chiziq,ne ga parallel va NE ; uchburchakda FM- o rta chiziq va? FM ga parallel va FM F Huddi shunigdek, da EM o rta chiziq va EM, da NF-o rta chiziq va NF Shundan NEMF-parallelogram ekanligi kelib chiqadi. 5. vatar. <O 46 0, <? Yechish: 46 0, < 73; Javob: < 730 O -bilet.,6:0,8+ (-,5) 3 0,8 3,375 0,8,7 0,7;. x x 4,3 y 5,8; 0,043x y 0,058x; 43 000y 53 ; Javob: 000 ta 00 00 3. x+y, x -y, x -(-); x - -; xy -, (-y)y -, y-y +0, y -y-0; y -; y ; Javob: x ; y -; x -; y. 4. K K va kesmalar nuqtada o rtasidan kesishadi. va K uchburchaklarning Tengligini isbotlash kerak. Isbot: va K uchburchaklarda, K, uchidagi burchaklar vertical. Uchburchaklar tengligining TT alomatiga ko ra K. 5. erilgan: romb. 0; << 60 0, he, <E 90 0 ; E va E? E Yechish: E da < 90-60 30; undan E 0 0;E -E 0-00 3-bilet 0,4(,6 ). 0,4 0,6 0,4 0,05; ((,4,6)(,4+,6), 4 8. 30 5 5:03: 40 55 0 Javob: :3 nisbarda olinadi. 3. 5x-8x+4 4x-0; -3x-4x -4; -7x -4; x ; 4. h m, -teng yonli. Isbot: mediana To g ri burchakli uchburchaklar tengligining KK alomatiga ko ra, undan yani uchburchak teng yonli ekanligi kelib chiqadi. 5. aylanaga tashqi chizilgan.8; 30; P? Yechish: + +; 8+30 38 +; P 38 76; 8 30 Javob: P 76 birlik 4-bilet. (3 4 ) 0,5 - -,5+3 3--,5+3 3,5;. 30%+70% 50%; Javob: 50% 3. x-+->x, x>4, x> 3x-<0, 3x<, x<, Javob: 3 4. ; va - mos bissektrisalar. ekankigini isbotlash kerak.

Isbot: ularda berilganga kora ; < < ;. undan kelib chiqadi 5. to rtburchak aylanaga ichki chizilgan. < 48 0, < 38 0 ; Topish kerak.<? Yechish. < ; < 48 96; < ; 38 76; < ; 96 76 0; < 0 0; J: < 00 5-bilet. a+a0,5 a +a0,5 + a+a0,5 +a a+a0,5 a 0,5 +a 0,5 +a 0,5 a0,5 (a 0,5 +)+(a 0,5 )(a 0,5 +) +a 0,5 +a 0,5 +a 0,5 +a 0,5 +a 0,5 (a0,5 + )(a 0,5 + a 0,5 ) ( + a 0,5 a 0,5 ; ). n(+ 5 ) 9 450 000; n(+,) 9 450 000;,n 9 450 000; n 9 450 000:,; n 4 500 000; 00 Javob: 4 500 000 so m. 3. 5+x+90 (5 x)(4 x) 5 x X 0+0 0; 5+x+90 0+5x+4x x 0; -x +0x+750; x -0x-750; (-0) -4 ( 75) 400; 5 x 5; Javob: x 5; 4. erilgan: va kesmalar o rtalarida kesishadi.oo; OO; Isbot qilish kerak parallel O Isbot: O O bunda O uchidagi burchak vertical, OO; OO Uchburchaklar tengligining TT alomatiga ko ra bu uchburchaklar teng. undan < < va < < kelib chiqadi bu degani.ikkita to g ri chiziqni kesuvchi bilan kesganda hosil bo lgan ichki alamashinuvchi burchaklar teng bo lsa, parallel ekanligi kelib chiqadi. 5. erilgan to g ri burchakli trapetsiya.< 45 0 ; 8sm; 4 sm; S? Yechish: E balandlik tushiramiz. E teng tomonli to gri burchakli uchburchak. E unga Pifagor teoremasini qo llasak,e ; E (4 ) E8-E 8- ; S 8 +8 6 4 ; Javob: S 6 4 kv.birlik 6-bilet. m0,5 + 5m0,5 m 0,5 +5 (m 0,5) 5 m0,5 (m 0,5 5)+5m 0,5 m 5 5 : 4 (5 5 75 5) : ( ) 5 4 4 4. 0 000 + 0000 p 00 m 5m0,5 +5m 0,5 m 5 m m 5 ; ( 4 ) ; 4 75 3 3 4600; 0 000+3600p4600; p 4600 0000 3600 3. b b 7; b 7 b 7 b q ; b b q ; b 3 b q ; b 4 b q 3 ; 7 b q q 7 b q q3 ; 7 q 3 3 b ; 7 q 3 7 ; 3 3 7q4 ; q 4 3 8 q b 4 9 ( 3 )3 9 7 3 ; Javob: b 9; b 3; b 3 ; b 4 3. 3 ; b 7 3 6; Javob: 6% 6 ; 9; b 7 9 3; b 3 9 ( 3 ) ; 4. uchburchakda -mediana ni yarmiga teng. ni to g ri burchakli ekanini isbot qiling. Isbot: ekanligidan. U holda va lar teng yonli uchburchaklar.teng yonli uchburchaklarni asosidagi burchaklari teng, demak < 45 0, <45 0. undan < 80-(45+45) 90. to g ri burchakli 5. erilgan parallelogram.< 30 0, < 9 0. <<? Yechish: < 30+959; < 59 0 ; x+x+ 59360; x 360-8; x ; J: << 0

7-bilet. x 4+6+x 8 (x 4) x+4 (x 4) x 4; (x 4)(x+4) x+4. 0 000-5 500 4 500; 0 000 00% 4 500 x %; x 4500 00 45; 0000 J: 45% 3. y x -x-3 ; a, b -, c -3; x 0 - ( ) 0 - -3-4; y (x-) -4-3 x -; x 3 J: -<x<3. 4. teng yonli uchburchak. asos o rtasi.e perpendikulyar, F per-r.. FE ekanligini isbot qilish kerak. Isbot. mediana tushiramiz.u ham bissektrisa ham balandlik bo ladi. F va E lar F E To g ri burchakli uchburchaklar.undan tashqari. F E chunki bularda umumiy uchidagi burchaklar teng.to g ri burchakli uchburchaklar tengligining G alomatiga ko ra.undan FE ekanlgi kelib chiqadi. 5. 5 erilgan trapetsiya.ef, 5, ni toppish kerak. E F Yechish: EF (c+)/; EF- 5 7; JVO: 7. 8-bilet. a + (a ) a ; a a. + x+6+x x x+6 5 x(x+6) 5 x + 6x; 30x+40 x + 6x; x + 6x 30x 40 0; X -4x-400; (-4) -4 ( 40) 96 + 960 56 > 0; X 4 34 0; x 4+34 4; 4+640; Javob: 40 soat 3. x -5x6-5x; x 6; x±4; x -4; x 4; y 6-5 ( 4) 6 + 0 36; y 6-5 4 6 0 4; J: (-4;36); (4;-4) 4. teng yonli uchburchak.o va O < va < larni bissektrisalari. <O < t Isbot:<O 80-( < < ) 80 t 80 0 -<; O 5. E va vatarlar. OE perpendikulyar, OF perpendikulyar ; 8; OE 3,OF4.? O Yechish: E / 8/4; EO to g ri burchakli uchburchakdan O E + OE F 4 + 3 5 5; OO emak, O 5; FO to g ri burchakli uchburchakdan F O OF 5 4 9 3; U holda F 3 6; Javob: 6. 9-bilet. 00 0,5 60+ 9 0 40 40 + 0 0; 5 9. + ; (x+3+x)x(x+3); 4x+6 x x+3 x +3x; x +3x-4x-60; x -x-60; x -; x 3; Javob: 3 soatda 3. y 4x+4; y -x; Javob: y 4x+4 o suvchi 4. ; Isbot qilish kerak ; Isbot: va balandliklar. ; < < ; << ;undan to g ri burchakli uchburchaklar tengligining G alomatiga ko ra.emak, 5. urinma. O markaz. 35 0 ; <O? Yechish: E 80 0 ; E 80 80 35 35 <O (45-35)/ 0/ 55; Javob: <O 55 0 O E

. ( 0-bilet a 4+a ): + a+4 a+a 4 a + (4+a )(4 a ) + + a (a ) ( a)(+a) 4 a a (4 a )(( a) 4+a a (4 a )( a) (4+a ) a (a ) a +a a (a ) ( a) (a ) ; (,5) (,5 ) (,5) 0,5 (,5 0,5 ) ( 3) 9;. 48 x 4 48 x 6 ; 6 48x-6(x-4) 48x(x-4); 88x-88x+5 x -4x; x -4x-50; x -3; x 36; 36-43; Javob: 36km/soat; 3 km/soat 3. -<3x-5<; 5-<3x<+5; 3<3x<7; <x< 3 ; Javob: <x< 3 ; 4. F parallelogram.e va F balandliklar. Isbot qilish kerak: E F Isbot:, EF. To g ri burchakli uchburchaklar tengligining GK alomatiga kora E F E 5. teng yonli uchburchak. < 0 0 ; 4;? Yechish: balandlikni tushiramiz. U holda ham mediana, ham bissektrisa. undan </ 60 0 ; to g ri burchakli uchburchakda < 30 0 ; U holda 4 3; 3 4 3; Javob: 4 3. -bilet. 6x+5 6x+5 6x+5 3 8 0 5 8 5 5 0 3 8 5 8 6 4 8 6 4 x; 3. x+4 + x x+4 6 4 5 ; x+4 6 4 3x+384; 35x-3x 384-336; 3x 48; x 6; 6+4+656; + x 8x+96 ; x+48+3x 8x+96 ; 5x+48 4 Javob: 56 km 3. S 0 + ++ +97 +98+99; a 0; a 90 99, n 90; S 90? Yechish: S 90 0+99 90 09 45 4905; Javob: S 4905. 8x+96 ; 7(5x+48)4(8x+96); 35x+336 4. to g ri to rtburchak. ni va uchburchaklar orqali isbotlang. Isbot: ; ularda ; to g ri burchakli uchburchaklar tengligining KK alomatiga ko ra.undan kelib chiqadi. 5. perpendikulyar. < 55 0 ; <? Yechish: O to g ri burchakli uchburchak.< 90-5535; undan < O 35 70; < ham ga tiralgan. emak, < / 70/35. J: <35 0 -bilet. a 6 + 6 ; b 3 + 7 a va b ni taqqoslang. 5 + 5 + 5 + 5,; 4 + 4 + +,5; 5,+,57,67 6 ; 5 0 4 0 3 9 + 4 9 + 4 3 + 3 ; 6 + 6 + 4 + 4 ; 3 + 4 7 9 9 3 3 6 8 8 3 8 6 0 9 va ; 7 95 va ; 7 4 0 0 < 95 0 0 ; Javob: a<b. x:y3,5:3; 3x3,5y; 3(600000+y) 3,5y; 800000+3y3,5y; 0,5y 800000; y 3600 000 x-y600 000 x 600000+y; x 600 000 +3 600 000 4 00 000; Javob: 4 00 000 KW; 3 600 000 kw. 3. a +a +a 3 0; a +a +a 3 +a 4 ; S 0? Yechish: a +a +d+a +d0; 3a -3d; a -d; (a +3d)/ 4 ; (-d+3d) ; d 0,5; a -0,5 S 0 ( 0,5)+0,5 9 0( -+4,5) 5 3,5 5 7,5; Javob: S 0 7,5. 4. parallelogram. d ga perpendikulyar.-romb ekanligini isbotlang. Isbot: O O. hunki O umumiy.to g ri burchakli uchburchaklar tengligining GK alomatiga ko ra.ya ni, c. emak romb O R 7, 5; S? Yechish: R a h c ; a R h c 7 5 5 34 (5 34) 5 5 34 65 5 5; 5. S ( )/ 5 5: 87,5; Javob: S87,5 kv.birlik 4 ;

. ( 97 43 8 30 ): ( 00 0 9 3-bilet 485 49 ) x: (3, + 0,8,5); : 0 90 00 9 56 x: (3, +,8); : 56 x: 4; 0,5 x:4; 90 45 X4 0,5; Javob: x. I- kuni 5%; II-kuni qolganini 0%.Necha % sotilmay qoldi? Yechish: x-0,5x0,85x; 0,85x 0,0 0,7x ; 0,7x+0,5x 0,3x; x-0,3x 0,64x; Javob: 64% 3. y 3 3; y 4,5; y y 5? Yechish: q y 4 :y 3,5:30,75; y 3 :y 0,75; y 3:0,754; y 5,5 0,75,6875; y y 5 4,6875 6,75; Javob: y y 5 6,75 4. teng yonli trapetsiya.<< ekanini isbotlang. Isbot: EF balandliklar tushiramiz. F F. EF,, EF.To g ri burchakli Uchburchaklar tengligining GK alomatiga ko ra.emak, << E F 5. erilgan: < 0 0 ; -bissektrisa.. <? Yechish:, -umumiy. Uchburchaklar tengligining TT alomatiga ko ra.undan teng yonli. 0+x80; x70; x 85; undan: < 85 70; Javob: <70 0. 4+a 4 : a +4a+4 a +4a 4+6 a (a ) a 4. 4 L 8% li 6 L 8% li x 8 4+8 6 0 4+6 0 3. b >0; b b 7; b 3 b 4 ; b, b,b 3, b 4? 3 b b q 7 ; b 7 q 4-bilet (a )(a+) (a+) a 8a+6 ; Javob: L 8(a+) 8 ; b q b q 3 ; 7 3 q q5 ; 3 q4 : 7 ; q ; b 3 8 3 7 8 9; b 9 3;b 3 3 3 ; b 3 4 ; 3 3 3 Javob: b 9; b 3; b 3 ; b 4. 3 4. trapetsiya. parallel. MN o rta chiziq.ef M N Isbot: MN + ; MEFN + ; EF E F 5. 5, os</3l;? Yechish: os< /; os< 5 48; Javob: 48 3 bo lishini isbotlang. + 5-bilet b. a+b 5++ 5 a(a b) b ab ( 5+)( 5 ) 5. 560 56; 560-56504; 504 68; 504-68 336; 0,6x +0,6x 336; 0,4x336; x 800; 0 3 0,6 800 08; 0,6 800 8. Javob: 08 sr; 8 sr. 3. S ( + ), q ; b? b S(-q) ( + ) ( ) ( + ) b. 4., urinma. ekanligini isbotlash kerak. Isbot: OO aylana radiusini chiqaramiz. ni O bilan tutashtiramiz. O O O ularda O umumiy,oo.to gri burchakli uchburchaklar tengligining KK alomatiga ko ra demak, 5. erilgan: teng yonli trapetsiya.e ga tushirilgan balandlik.e8, E8 MN? M N Yechish: FE8, E+E8+846, EF-E 46-8 0; E F MN + 0+46 8; Javob: MN 8

.( ( a+) ( a ) a + 4 a) a a (a+ a+ a+ a a 6-bilet + 4 a) a a (4 a a + 4 a) 4 a + 4(a ) a a a 4+4a-44a;. I da 40%; 40 3 3x+5x8; x; Javob: 3kg; 5 kg II da 3%; 35% 8kg 35 3 5 3. q ; S6(4+ ) ; b 4 7 3? Yechish: b S(-q) 6(4+ ) ( 7 4 b b q8 ; b 4 3 b q ; 4 Javob: b 3. 6(4+ ) ) ( 4 ) 6(6 ) 8; 7 4 8 4. erilgan: va o zaro perpendikulyar diametrlar. to rtburchak kvadrat ekan- Ligini isbotlash kerak. O Isbot: OO, OO; O + O ; O + O O + O ; O + O 5. a4; d5; S? Yechish: b d a 5 4 (5 4)(5 + 4) 49 7; S ab 4 7 68; J: S 68 kv.bir 7-bilet. 3 7,5 (,5) + ( ) 4 34 0,5 7,5 3 + 3 4 7,5 4 5 64 5 6 8 6 8 6 6 48 6 3;. 60 60 x ; x+3 60(x+3) -60x x(x+3); 60x+80-60xx +3x; x +3x-800; x -5; x ; Javob: km/soat; 5 km/soat 3. x ; x 5; x 3-3 - + - + -3 5 Javob: x<-3; <x<5 4. <-ichki chizilgan burchak. diametr. < to g ri burchak ekanligini isbotlang. Isbot: < / 80/90; emak < 90 0 5. erilgan: to g ri burchakli trapetsiya. 5; ; <45 0 ; S? Yechish: E balandlik tushiramiz.unda <E 45 0 ; emak, E teng yonli to g ri burchakli uchburchak.e-e-56; U holda E 6; S + E 5+ 6 48; E Javob: S 48 kv.bir 8-bilet. (3,4-,3,8): 8 (3,4 4,4) 7 0,9 7 9 7 7 ; 7 8 8 0 8 0. x+y 50; y 50-x; y 50-5000; 0,8x+,y60; 0,8x+, (50-x)60; 0,8x+80-,x60; -0,4x-0; x 50; J: 50 ta; 00 ta 3. sin( 3π α) cosα sinα ( sinα) ( cosα) cosα + sin α cos α + sin α ; 4. erilgan uchburchak. E-o rta chizig i.e uchburchak o xshash ekanligini isbotlang. Isbot: <<, <<E; E /; undan uchburchaklar o xshashligining -alomatiga ko ra E E 5. Kvadrat perimaetri 0 sm. R+? Yechish: a p 0,5; R a,5,5; Javob: R,5 sm 4 4 9-bilet. y 0 y y 3 y 0 y 5 y 0 y 5 y 0+5 y,5 ;

. (x+4)(x+30)-x(x+5)300; x +30x+4x+0-x -5x300; 9x80; x0; 0+44; X+4 X+4 0+3050; S 50 4 00; Javob: S 00 m X+5+5 3. + + +; + - - Javob: - 4. M M bo lsa, ni uchburchakka o xshashligini isbotlang. Isbot: M+M; M +M ; M uchburchak M uchburchakka o xshash.undan ni uchburchakka o xshashligi kelib chiqadi. M M 5. :00 S S ( 00 ) 0000 ; Javob: 0 000 marta 0-bilet. 0,6(- 7 ): 5 + 8 6 ( ) 4 + + 0; 6 4 00 0 6 5 5 5 5. 60 6,5 00; 60-0060; 00 00 60 x ; x 0 4 4 00(x 0) 60 4 x x(x 0); 400x-8000-40xx -0x; x -80x+80000; x 80; x 00; Javob: 00 km/soat; 80 km/soat 3. 3cos(50+30)-sin(80+3 30) + 5tg6 30 + sin30 3 + + 0 + 0,5 + 0; 4. erilgan romb. F,N,M,E tomonlarning o rtalari. FNME-to g ri t rtburchak ekanligini Isbotlash kerak. F N Isbot: da FN c ga parallel, FN/; da EM ga parallel EM /; da FE ga parallel FE /; da NM ga parallel NM/; undan FNEM; E M EFNM kelib chiqadi, demak FNME to g ri to rtburchak. 5. 0 bo lgan. R / 0/0; x 400; x 00; x 0 ; Javob: 0. xy +x y +x y (x y) : x 8y 4 0,9666667. xy(y+xy+x) ) (x y) 4 (x 8y)xy(y+xy+x) x 8y (x y) -bilet ( 8 0,065) 0,5(0,5+ 0,5+) ( 0,5),5,375,5,065,5 + ; 6(x-5) +6xx(x-5) ; 6x-30 +6x x x 5 6 x -5x; x -5x-x+300; x -7x+300; x ; x 5; 5-50; Javob: 5 soat; 0 soat 3. tgα ctg α tg α ctgα tg α tg α tg α tg α ; 4. O erilgan aylana diamter. ga perpendikulyar bolmagan urinma. va urinmaga perpendikulyar. O nuqta kesmani o rtasi ekanligini isbotlash kerak. va larni kesishguncha davom ettirsak burchak hosil O bo ladi.falesga ko ra O nuqta kesmani o rtasi boladi. 5. c-gipotenuza, -o tkir burchak, c5 sm, 30 0 ; X c Ikkinchi o tkir burchak va katetlarni c va orqali ifodalang. Yechish: β 90 α; x csin 4 sin30 0 4 0,5 ; Y Y ccos 4 cos30 0 4 3 ; Javob: ; 3.

-bilet. : 9 0 4 6 ; 5 0 5 9 9 36-7 7 ; 5 3 5 3 8 36 6 6 3 -; 36 Javob: - ; 36-6; 36-36. (x+x+5) 0; x+505; x 90; x 45; 45+560; S 45 60 700; Javob: S 700 m 3. sinccosx sinx+ + cosx sinx sinxcosx+cos x sonx+cosx sinx cosx(sinx + cosx): sinx+cosx sinx cosx(sinx + cosx) cosxsinx; sinx - ( 0,6) 0,36 0,64 0,8; -0,6 ( 0,8) 0,48; 4. -parallelogramm.s sin ekanligini isbotlash kerak. 5. ::3 a+c 7, ;? Yechish: x+x+3x80; x 30; Isbot: S S +S sin + sin sin; sinx sinx+cosx 30 0 ; 60 0 ; 90 0 ; x+x7,; 3x 7,; x,4;,4 4,8; Javob: c 4,8sm. 3-bilet. (,68:,6-,5) ( 5 ) : ( 0,09),05 ( 5 ) : ( 9 ) 05 ( 5 00 ) ( ) 35 3 8 ; 3 3 00 00 3 9 9 9. x+y 8; y 8-x; x-0,4x y-0,5y; 0,6x 0,75y; 0,6x 0,75 (8 x); 0,6x+0,75x3,5;,35x 3,5; x 0; y 8-08; Javob: 0 kg; 8 kg. 3. cos 0,8 0,36 0,6; cos cos π + sinαsin π 0,6 + 0,8 4 4 0 5 4. <O 60 0 ; OO ekanligini isbotlash kerak. Isbot: O teng yonli uchburchak.oo; undan asos demak, < < O 60+x80; x0; x 60; undan O teng tomonli uchburchak.undan O ekanligi kelib chiqadi 5. x+57+x+57360; x 360-4; x 46; x 3; Javob: 3 0 ; 3 0.. (x ) (y ) x y x +(x ) x y 5 5 4; (x +y )(x y ) x y x (+x ) x 4-bilet x + y x y ;. 36 ; x+ x 36(x-) 0(x+); 36x-7 0x +40; 36x-0x 40+7; 6x ; x 7; Javob: 7 km/soat 3. (x- )(x + 3) 0; x + 3x x 3 0; x + ( 3 )x 6 0; 4. M To g ri to rtburchak tomonlari o rtalarini tutashtirishdan hosil bo lgan to rtburchak romb E O F ekanligini isbotlang. N Isbot: EF va MN larni o tkazamiz. MN ; EF; EOM va EON uchburchaklarda EO umumiy OMON bu uchburchaklar KK alomatga ko ra teng. FOM va FON uchburchaklar ham teng, bularda OF umumiy ONOM KK alomatga ko ra teng. undan EMFN-romb ekanligi kelib chiqadi. 5. asos x bo lsin u holda yon tomonlar x- dan bo ladi; x-+x>x-; x>0; x-+x->x; x>4; 5;5;7 5-bilet. 8a6 b 9 0,5a b 4 a8 b 3 b; 7 ; 8a 8 b 8a 8 b 8 8 4 6. x-y4; x 4+y; xy96 (4+y)y96; 4y+y 96; y +4y-960; y -; y 8; 4+8; Javob: ;8. 3. 8x5y; 8x 5(44-6x); 8x0-80x; 8x+80x0; 88x0; x,5; 6x+y44; y 44-6x; y 44-6,5 44-404; Javob: x,5; y 4. 4. uchburchak. M mediana. M/; to g ri burchakli uchburchak ekanini isbotlang. Isbot: MMM. M teng yonli uchburchak.undan <M<M; M ham teng yonli Uchburchak.<M<M.undan < < u holda teng yonli to gri burchakli uchburchak. M 5. a 9sm, b sm; r?

Yechish: c 9 + 8 + 44 5 5; r a+b c 9+ 5 3; Javob: r 3sm. 6-bilet. EKUK(3,36,48) ning EKU(3,36,48) ga nisbatini toping. 3 5 ; 36 3 ; 48 4 3;. EKUK(3,36,48) 5 3 3 9 88; EKU(3,36,48) 3 4 3 ; 88: 4; Javob: 4.. n 70 850 so m; p8%; k 3,5 yil; 70850(+ 8 3,5 ) 70850( + 0,8) 9688; 9688-708500838; 00 Javob: 0838 so m 3. (x-3)(x+) +x (x+3)9(x+5); x +x-3x-3 +4x +x 9x+45; 5x +x-480; x -3,; x 3; Javob: x -3,. 4. sosdagi burchaklar otmas va to g ri burchak bola olmaydi.o tmas burchak bo lsa ta 90 0 dan kata burchaklar yig indisi 80 0 dan kata, bu esa mumkin emas.xuddi shungdek 90 0 dan ham bo la olmaydi.emak asosdagi burchaklar faqat o tlir ya ni 90 0 dan kichik bo ladi. 5. erilgan: trapetsiya; O diagonallar kesishgan nuqta. 9,6 dm96 sm; 4 sm; 5 sm; O? O Yechish: 4 ; 5 ; O 60; 96 4 O O 4 Javob: O 60 sm. 7-bilet. -7,5 43 + ( ) 4 34 0,5-5 + 3 5 + 3 4 3; 3 6 8 6. 60 3 96; 60-9664; 64 7 56; 60-(64+56) 50; Javob: 50 m 5 8 3. sin 0,8 0,36 0,6; -0,6-0,8:(-0,6) - 6 + 4 3 + 4 9+0 ; + 0 3 5 3 5 5 4. teng yonli uchburchak.. E ekanligini isbotlang. Isbot: E; chunki <<; <<; Uchburchaklar tengligining T lomatiga ko ra teng, demak, E. E 5. E O R 4,5 sm; O 9sm; E va urinmalar. <? Yechish: O va OE to g ri burchakli uchburchak.o va OE O radiusga teng O demak bularning har biri O gipotenuzaning yarmiga teng bo lsa </ 30 0 ;. ( a a+b a a ) a+b a a+b a a+b a. 00 00 x undan < 60 0 ; Javob: < 60 0 8-bilet a a+b a a+b a( a+b ) a + b ; 4 + 5 9 3 ; a a+b a a ; 00(x + 5) 00x (x + 5)x; 00x + 000 00x x+5 x + 0x; x +0x-0000; X +5x-5000; x -5; x 0; 0+5 5; 00:58; Javob: 8 kun. 3. -3 x 4; -3- x 4 ; 4 x 3; x,5; Javob:,5 x. 4. erilgan uchburchak. balandlik.< ni teng ikkiga bo ladi. -uchburchakni teng yonli ekanligini isbotlash kerak. Isbot: va to g ri burchakli uchburchaklarda umumiy, ; uchidagi burchaklari teng bo lganligidan to g ri burchakli uchburchaklar tengligining GK alomatiga ko ra bular teng.emak, teng yonli uchburchak. 5. erilgan : aylana va ikki kesuvchi. 50 0 ; E 6 0 ; <? Yechish: <( E) :(50-6): 44; Javob: < 44 0 E. (x 4y )(x +4y ) 3(y x) 3(x 4y ) (y x) (x +4y ) y x 3 ( 4 + ( 3,5)) 3 ( 4 7) 33. 3(x y)(x+y) (x y) 9-bilet 3(x + y);

. x+y,5; x+y 45; x+y45; y 45-x; y 45-5 0; (x-y) ; x-y 3 5 ; x-y 5; x 50; x 5; Javob: 5. 3 3 3 3. 9x 4-37x +40; x y; 9y -37y+40; (-37) -4 9 4 369 44 5; Y, 37±35 ; y 8 37 35 ; y 8 8 9 37+35 7 4; x 8 8, ± ± ; x 9 3 3,4 ± 4±; Javob: 0. 4. erilgan: teng tomonli uchburchak., E va F-balandliklar.EF ekanligini isbotlash kerak. F E Isbot: E F; ularda ; <E<.Togri burchakli uchburchaklar Tengligining KK alomatiga ko ra.undan EF ekanligi kelib chiqadi. 5. erilgan: 37,6 m; 3,8 m; 3,04 m;? Yechish: : 3,8:3,04,5; 37,6,5 47; Javob: 47 m 30-bilet. a -6 b 6 (3a 4 b - ) a -6 b 6 9a 8 b -4 8a b ; 8 ( 3 ) 8 4 4 8; 9. I- x; II-x+ x; 5 III-6 x + ; 5 x+6 x + + 6 x 6,; 0x+x+0+x6; 34x5; x,5; 5 5 I-,5; II-,,5,8; III-,8+,8; Javob:,5;,8;,8. 3. - sin x cos x cos x sin x; -(0,) -0,04,96. 4. erilgan: -aylana diametri. va o zaro parallel vatarlar. ekanligini isbotlash kerak. Isbot: ; -umumiy, <<; < va < diametrga tiralgan va 90 0 dan bo lgani uchun teng. To g ri burchakli uchburchaklar tengligining G alomatiga kora bular teng. emak,. 5. erilgan: trapetsiya; 5sm; 8sm; 3,6sm; 3,9 sm; M? ; M? Yechish: 5:8 x:(3,6+x); 5(3,6+x) 8x; 8+5x8x; 3x 8; x 6; M 5:8 y:(y+3,9); 5(y+3,9) 8y; 5y+9,5 8y; 3y 9,5; y 6,5. X y Javob: M 6 sm; M 6,5 sm.