J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Σχετικά έγγραφα
Prey-Taxis Holling-Tanner

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Congruence Classes of Invertible Matrices of Order 3 over F 2

L p approach to free boundary problems of the Navier-Stokes equation

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

High order interpolation function for surface contact problem

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Statistical Inference I Locally most powerful tests

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

Approximation Expressions for the Temperature Integral

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

On a four-dimensional hyperbolic manifold with finite volume

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Quick algorithm f or computing core attribute

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Second Order Partial Differential Equations

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

Heisenberg Uniqueness pairs

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homework 3 Solutions

Approximation of distance between locations on earth given by latitude and longitude

Σύνθεση και Χαρακτηρισµός Χαµηλοδιάστατων Ηµιαγωγών Αλογονιδίων του Μολύβδου και Χαλκογενιδίων.

arxiv: v1 [math-ph] 21 Apr 2015

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Homework 8 Model Solution Section

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

The Pohozaev identity for the fractional Laplacian

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Exercises to Statistics of Material Fatigue No. 5

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

A General Note on δ-quasi Monotone and Increasing Sequence

Electronic Supplementary Information (ESI)

PACS: Ox, Cw, a, TP

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

Computer No.53 (1992) IBM 650. Bacon TSS JRR-2.[1] free inductin decay IBM 7044 FACOM

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Homomorphism in Intuitionistic Fuzzy Automata

Strain gauge and rosettes

Higher spin gauge theories and their CFT duals

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

IMES DISCUSSION PAPER SERIES

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Research on Economics and Management

ST5224: Advanced Statistical Theory II

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

. O 2 + 2H 2 O + 4e 4OH -


SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

A Laplace Type Problem for a Lattice with Cell Composed by Three Triangles with Obstacles

Supplementary Information for

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Homomorphism of Intuitionistic Fuzzy Groups

6.3 Forecasting ARMA processes

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Math221: HW# 1 solutions

ACTA CHIMICA SINICA . :AAO. H 3 PO 4 AAO AAO. Unstable Growth of Anodic Aluminum Oxide Investigated by AFM

GLOBAL WEAK SOLUTIONS TO COMPRESSIBLE QUANTUM NAVIER-STOKES EQUATIONS WITH DAMPING

New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

On Inclusion Relation of Absolute Summability

D Alembert s Solution to the Wave Equation

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Αξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα Νικελίου Για Φωτοβολταϊκές Εφαρμογές

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

GREECE BULGARIA 6 th JOINT MONITORING

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

1 String with massive end-points

Πανεπιζηήμιο Πειπαιώρ Τμήμα Πληποθοπικήρ

Table of Contents 1 Supplementary Data MCD


Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

the total number of electrons passing through the lamp.

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΟΧΙΑΚΗΣ ΠΑΡΑΚΤΙΑΣ ΑΝΑΒΛΥΣΗΣ ΣΤΟ Β.Α. ΑΙΓΑΙΟ. Τμήμα Επιστημών της Θάλασσας, Πανεπιστήμιο Αιγαίου 2

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Transcript:

Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n τ (T L(x) T ), (1.2) λ 2 V = n C(x), (1.3) n, T V ; C(x) T L (x) ; ε >, τ > λ >. (1.1) (1.3) [1]. [1] (1.1) (1.3), [2]. [3] (1.1) (1.3),, : ( ) ( 6 n n)xx (nt ) x + nv x = J, (1.4) n x (nt x ) x = n τ (T L(x) T ), (1.5) λ 2 V xx = n C(x) in (, 1), (1.6) n() = n(1) = 1, n x () = n x (1) =, T () = T, T x () = T x (1) =, (1.7) V () = V = ε2 6 ( n) xx () + T, (1.8) : 213-1-26 : 214-1-6 (12A11); 213 (2131111); 213 (132341373); (213ZD556) (213GGJS-142). : (198 ),,,, :.

16 Vol. 35 J, : 1.1 ( [3]) C(x), T L (x) L (, 1), C(x) >, < m L T L (x) M L, x (, 1), (1.4) (1.8) (n, T, V ) n(x) e M >, x (, 1), M M = e 2M τm 2 L (M L m L )M L + 2(e 1 + C(x) log C(x) L (,1)) λ 2 m L (1.9). (1.4) (1.8), 1.2 1.1, m L J, (1.4) (1.8). 1.1 (1.1) (1.3),, [4 6]. 1.2 T L (x) T, (1.1) (1.3) -, [7 19]. 2 1.2 [3] n = e u (1.4) (1.8) ( ) u xx + u2 x T xx (u x T ) x + eu C(x) = J 12 2 λ xx 2 (e u ) x, (2.1) (e u T x ) x = eu τ (T L(x) T ), (2.2) ( ) V (x) = ε2 u xx + u2 x (x) + T (x) + u x (s)t (s)ds + J e u(s) ds, (2.3) 12 2 u() = u(1) =, u x () = u x (1) =, T () = T, T x () = T x (1) =, (2.4) V () = V = ε2 12 u xx() + T, (2.5) (u, T, V ) H 4 (, 1) H 2 (, 1) H 2 (, 1), 1.2, (2.1), (2.2), (2.4). 2.1 1.1, m L J, m L εm 2 6mL J e M e2m ( 2ε + 4 6m L M)( 2e 2M + 1)(M L m L ) 2 2 >, (2.6) 2ε τ (2.1), (2.2), (2.4) (u, T ) H 4 (, 1) H 2 (, 1). 2.1 (1.9), m L M, m L J (2.6).

No. 5 : 17 [3] 2.1 12 u xx 2 L 2 (,1) +m L 2 u x 2 L 2 (,1) e2m (M L m L )M L + λ 2 (e 1 + C(x) log C(x) L (,1)), 2τm L (2.7) u L (,1) M, (2.8) < m L T M L, (2.9) (2.9) [3] 2.1. 2.1, 2.1 (u, T ) H 4 (, 1) H 2 (, 1) (2.1), (2.2), (2.4), u x L (,1) 4 6mL M ε, (2.1) T x L (,1) e2m τ (M L m L ). (2.11) (2.7), ml 6 ε u xx L2 (,1) u x L2 (,1) ε2 12 u xx 2 L 2 (,1) +m L 2 u x 2 L 2 (,1) e2m 2τm L (M L m L )M L + λ 2 (e 1 + C(x) log C(x) L (,1)), Hölder (1.9), u 2 x(x) = 2 u xx (s)u x (s)ds 2 u xx L (,1) u 2 x L 2 (,1) 2 [ ] 6 e 2M (M L m L )M L + λ 2 (e 1 + C(x) log C(x) L (,1)) ml τm L = 2 6 ml ε M 2 ml 2 = 6mL M 2, ε (2.1). (2.2) (, x), T x = e u τ e u (T L (x) T )dx, (2.8) (2.9) (2.11). 2.1 (u 1, T 1 ), (u 2, T 2 ) H 4 (, 1) H 2 (, 1) (2.1), (2.2), (2.4). T 1 T 2 (e u1 T 1x ) x = eu1 τ (T L(x) T 1 ) (e u2 T 2x ) x = eu2 τ (T L(x) T 2 )

18 Vol. 35, + 1 τ + 1 τ (2.8) e u1 (T 1 T 2 ) 2 xdx = (T L (x) T 2 )(e u1 e u2 )(T 1 T 2 )dx T 2x (e u1 e u2 )(T 1 T 2 ) x dx T 2x (e u1 e u2 )(T 1 T 2 ) x dx 1 τ e u1 (T 1 T 2 ) 2 dx (T L (x) T 2 )(e u1 e u2 )(T 1 T 2 )dx. (2.12) (2.8) e u1 (T 1 T 2 ) 2 xdx e M (T 1 T 2 ) 2 xdx. (2.13) e u1 e u2 e M u 1 u 2, (2.11), Hölder Poincaré, T 2x (e u1 e u2 )(T 1 T 2 ) x dx e2m τ (M L m L ) e M u 1 u 2 (T 1 T 2 ) x dx [ ] 1 [ e3m 2 1 τ (M L m L ) (u 1 u 2 ) 2 dx (T 1 T 2 ) 2 xdx [ ] 1 [ e3m 2 1 (M L m L ) (u 1 u 2 ) 2 xdx (T 1 T 2 ) 2 xdx. (2.14) 2τ (2.9),, 1 τ (2.12) (2.15) [ (T 1 T 2 ) 2 xdx u 1 u 2 12 (T L (x) T 2 )(e u1 e u2 )(T 1 T 2 )dx em 2τ (M L m L ) ( u 1xx + u2 1x 2 [ ] 1 [ 2 1 (u 1 u 2 ) 2 xdx e2m ( 2e 2M + 1)(M L m L ) 2τ ) xx [ T 1xx (u 1x T 1 ) x + eu1 C(x) λ 2 (T 1 T 2 ) 2 xdx. (2.15) (u 1 u 2 ) 2 xdx. (2.16) = J (e u1 ) x ( ) u 2xx + u2 2x C(x) T 2xx (u 2x T 2 ) x + eu2 = J 12 2 λ xx 2 (e u2 ) x

No. 5 : 19, 1 12 + (u 1 u 2 ) 2 xxdx + ε2 T 1 (u 1 u 2 ) 2 xdx + (u 2 1x u 2 2x)(u 1 u 2 ) xx dx + (T 1 T 2 ) x (u 1 u 2 ) x dx u 2x (T 1 T 2 )(u 1 u 2 ) x dx + 1 (e u1 e u2 )(u λ 2 1 u 2 )dx = J (e u1 e u2 )(u 1 u 2 ) x dx. (2.17) (2.1) Young, (u 2 1x u 2 2x)(u 1 u 2 ) xx dx = ε2 (u 1x + u 2x )(u 1 u 2 ) x (u 1 u 2 ) xx dx ε 3 2 4 6m L M (u 1 u 2 ) x (u 1 u 2 ) xx dx 12 ε2 (u 1 u 2 ) 2 xxdx εm 2 1 6mL (u 1 u 2 ) 2 xdx. (2.18) Hölder (2.16), [ ] 1 [ 2 1 (T 1 T 2 ) x (u 1 u 2 ) x dx (T 1 T 2 ) 2 xdx (u 1 u 2 ) 2 xdx (2.9) e2m ( 2e 2M + 1)(M L m L ) 2τ (u 1 u 2 ) 2 xdx. (2.19) T 1 (u 1 u 2 ) 2 xdx m L (u 1 u 2 ) 2 xdx. (2.2) (2.1), Hölder, Poincaré (2.16), 4 6mL M 1 u 2x (T 1 T 2 )(u 1 u 2 ) x dx T 1 T 2 (u 1 u 2 ) x dx ε 4 [ 6mL M 1 ] 1 [ 2 1 (T 1 T 2 ) 2 xdx (u 1 u 2 ) 2 xdx 2ε 4 6mL M e 2M ( 2e 2M + 1)(M L m L ) 2 2ε τ e x 1 λ 2, Hölder Poincaré, (u 1 u 2 ) 2 xdx. (2.21) (e u1 e u2 )(u 1 u 2 )dx. (2.22) J (e u1 e u2 )(u 1 u 2 ) x dx J e M u 1 u 2 (u 1 u 2 ) x dx J e M 1 (u 1 u 2 ) 2 xdx. (2.23) 2

125 Vol. 35 (2.17) (2.23) (u 1 u 2 ) 2 xxdx + C (u 1 u 2 ) 2 xdx, (2.) C = m L εm 2 6mL J e M e2m ( 2ε + 4 6m L M)( 2e 2M + 1)(M L m L ) 2 2. 2ε τ (2.) (2.6) u 1 = u 2, (2.16) T 1 = T 2. [1] Jüngel A, Mili sić J P. A simplified quantum energy-transport model for semiconductors [J]. Nonlinear Analysis: Real World Applications, 211, 12: 133 146. [2] Chen L, Chen X Q, Jüngel A. Semiclassical limit in a simplified quantum energy-transport model for semiconductors [J]. Kinetic and Related Models, 211, 4: 149 162. [3] Dong J W, Zhang Y L, Cheng S H. Existence of classical solutions to a stationary simplified quantum energy-transport model in 1-dimensional space [J]. Chin. Ann. Math., 213, 34(5): 691 696. [4] Grubin H, Kreskovsky J. Quantum moment balance equations and resonant tunnelling structures [J]. Solid-State Electr., 1989, 32: 171. [5] Degond P, Gallego S and Méhats F. On quantum hydrodynamic and quantum energy transport models [J]. Commun. Math. Sci., 27, 5: 887 98. [6] Chen R C and Liu J L. A quantum corrected energy-transport model for nanoscale semiconductor devices [J]. J. Comput. Phys., 25, : 131 156. [7] Ju Q C, Chen L. Semiclassical limit for bipolar quantum drift-diffusion model [J]. Acta Mathematica Scientia, 29, 29B(2): 285 293. [8] Chen X Q, Chen L, Jian H Y. Existence, semiclassical limit and long-time behavior of weak solution to quantum drift-diffusion model [J]. Nonlinear Analysis: Real World Applications, 29, 1(3), 1(3): 1321 1342. [9] Jüngel A, Violet I. The quasineutral limit in the quantum drift-diffusion equations [J]. Asymptotic Analysis, 27, 53(3): 139 157. [1] Chen L, Ju Q C. Existence of weak solution and semiclassical limit for quantum drift-diffusion model [J]. Z. Angew. Math. Phys., 27, 58: 1 15. [11] Chen X Q, Chen L, Jian H Y. The Dirichlet problem of the quantum drift-diffusion model [J]. Nonlinear Analysis, 28, 69: 384 392. [12] Chen X Q, Chen L. The bipolar quantum drift-diffusion model [J]. Acta Mathematica Sinica, 29, 25(4): 617 638. [13] Chen X Q. The global existence and semiclassical limit of weak solutions to multidimensional quantum drift-diffusion model [J]. Advanced Nonlinear Studies, 27, 7: 651 67. [14] Chen X Q, Chen L. Initial time layer problem for quantum drift-diffusion model [J]. J. Math. Anal. Appl., 28, 343: 64 8. [15] Chen X Q. The isentropic quantum drift-diffusion model in two or three space dimensions [J]. Z. angew. Math. Phys., 29, 6(3): 416 437.

No. 5 : 1251 [16] Chen X Q, Chen L, Jian H Y. The existence and long-time behavior of weak solution to bipolar quantum drift-diffusion model [J]. Chin. Ann. Math., 27, 28B(6): 651 664. [17] Chen L, Ju Q C. The semiclassical limit in the quantum drift-diffusion equations with isentropic pressure [J]. Chin. Ann. Math., 28, 29B(4): 369 384. [18] Abdallah N B, Unterreiter A. On the stationary quantum drift-diffusion model [J]. Z. Angew. Math. Phys., 1998, 49: 251 275. [19] Nishibata S, Shigeta N, Suzuki M. Asymptotic behaviors and classical limits of solutions to a quantum drift-diffusion model for semiconductors [J]. Math. Models Methods Appl. Sciences, 21, 2(6): 99 936. UNIQUENESS OF STATIONARY SOLUTIONS TO ONE-DIMENSIONAL QUANTUM ENERGY-TRANSPORT MODEL FOR SEMICONDUCTORS DONG Jian-wei a, ZHANG You-lin b, CHENG Shao-hua a (a. Department of Mathematics and Physics; b. Library, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 4515, China) Abstract: In this paper, we study the classical solutions to the stationary quantum energytransport model for semiconductors in one space dimension. The uniqueness of the solutions is proved when the lattice temperature is sufficiently large and the current density is relatively small by using some inequality techniques, which is not obtained in [3]. Keywords: quantum energy-transport model; stationary solutions; uniqueness 21 MR Subject Classification: 35Q4