Sampling Basics (1B) Young Won Lim 9/21/13

Σχετικά έγγραφα
Spectrum Representation (5A) Young Won Lim 11/3/16

Digital Signal Octave Codes (0B)

CORDIC Background (4A)

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

CORDIC Background (2A)

Trigonometry Functions (5B) Young Won Lim 7/24/14

BandPass (4A) Young Won Lim 1/11/14

CT Correlation (2B) Young Won Lim 8/15/14

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

LTI Systems (1A) Young Won Lim 3/21/15

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Section 8.3 Trigonometric Equations

Ψηφιακή Επεξεργασία Φωνής

Assignment 1 Solutions Complex Sinusoids

is like multiplying by the conversion factor of. Dividing by 2π gives you the

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

Εγχειρίδιο Ψαριού i. Εγχειρίδιο Ψαριού

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Chapter 6 BLM Answers

Areas and Lengths in Polar Coordinates

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

Areas and Lengths in Polar Coordinates

6.003: Signals and Systems. Modulation

Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Σήματα και Συστήματα ΙΙ

Example Sheet 3 Solutions

Introduction to Time Series Analysis. Lecture 16.

Lecture 12 Modulation and Sampling

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Σήματα διακριτού χρόνου

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

MathCity.org Merging man and maths

Trigonometric Formula Sheet

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

derivation of the Laplacian from rectangular to spherical coordinates

HMY 220: Σήματα και Συστήματα Ι

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Homework 8 Model Solution Section

ECE 468: Digital Image Processing. Lecture 8

Επεξερασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #09

Μεταπτυχιακό Μάθημα: Ποιότητα Ισχύος. Μεταπτυχιακό Μάθημα Ποιότητα Ισχύος

D Alembert s Solution to the Wave Equation

2 Composition. Invertible Mappings

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

High Frequency Chip Inductor / CF TYPE

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Power Inductor LVS Series

Section 8.2 Graphs of Polar Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Design Method of Ball Mill by Discrete Element Method

Lifting Entry (continued)

Matrices and Determinants

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS

Numerical Analysis FMN011

ω = radians per sec, t = 3 sec

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Strain gauge and rosettes

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Σήματα και Συστήματα στο Πεδίο της Συχνότητας

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Fundamentals of Signals, Systems and Filtering

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ

If we restrict the domain of y = sin x to [ π 2, π 2

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

6.003: Signals and Systems

CRASH COURSE IN PRECALCULUS

NMBTC.COM /

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ST5224: Advanced Statistical Theory II

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

C.S. 430 Assignment 6, Sample Solutions

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Second Order RLC Filters

Παρουσίαση 5 η : Εισαγωγή στα σήματα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Chilisin Electronics Singapore Pte Ltd

PARTIAL NOTES for 6.1 Trigonometric Identities

Partial Trace and Partial Transpose

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

Inverse trigonometric functions & General Solution of Trigonometric Equations

Thin Film Chip Resistors

From the finite to the transfinite: Λµ-terms and streams

38BXCS STANDARD RACK MODEL. DCS Input/Output Relay Card Series MODEL & SUFFIX CODE SELECTION 38BXCS INSTALLATION ORDERING INFORMATION RELATED PRODUCTS

Σήματα και Συστήματα ΙΙ

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

YJM-L Series Chip Varistor

Transcript:

Sampling Basics (1B)

Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave.

Measuring Rotation Rate Angular Speed (Frequency) RPM = 2 T = 2 f rpm = revolutions / minute 1 rpm = 2 rad / 1 min = 2 rad / 60 sec = 30 rad / sec 0 rad / 1 sec 0 rad / 1 sec 0 rad / sec 0 rad / sec Negative Angles 1B Sampling Basics 3

Complex Exponential I I R R t t e + j ω 0t = cos (ω 0 t) + j sin (ω 0 t) e j ω t = cos (ω 0 t) j sin (ω 0 t) e + jt = cos (t) + j sin (t) (ω 0 = 1) e jt = cos (t) j sin (t) (ω 0 = 1) 1B Sampling Basics 4

Cos(ω 0 t) Spectrum e + jt = cos (t) + j sin (t) (e + jt + e j t ) = 2cos (t) e jt = cos (t) j sin (t) I R t + A 2 e jω 0 t A 2 A 2 + A 2 e+ jω 0 t x(t) = A cos (ω 0 t) = A 2 e+ j ω 0t + A 2 e j ω 0t ω 0 +ω 0 spectrum 1B Sampling Basics 5

Sin(ω 0 t) Spectrum e + jt = cos (t) + j sin (t) (e + jt e j t ) = 2 j sin (t) I e j t = cos (t) + j sin (t ) R t ω 0 + A 2 +ω 0 + A 2 e+ jω 0 t x(t) = A sin (ω 0 t) = A 2 j e+ j ω 0 t A 2 j e j ω 0 t A 2 e jω 0 t A 2 spectrum 1B Sampling Basics 6

Angular Frequency and Sinusoid Time Domain Frequency Domain x(t) t ω 0 +ω 0 + T 0 ω 0 = 2π T 0 For 1 second For 1 second x(t) = A cos (ω 0 t) = A 2 e j ω 0t + A 2 e j ω 0t 0 rad / sec 0 rad / sec 1B Sampling Basics 7

Co-terminal Angles +ω 0 (rad / sec) 2 0 rad / sec 3 0 rad / sec 4 0 rad / sec +5 ω 0 (rad / sec) +2π/3 Negative Angles +4 π/3 +2 π +8 π/3 +10 π/3 Co-terminal Angles 0 rad / sec 2 0 rad / sec 3 0 rad / sec 4 0 rad / sec 5 ω 0 (rad / sec) 2π/3 4 π/3 2 π 8 π/3 10 π/3 π π 5ω 0 4 ω 0 3 ω 0 2ω 0 ω 0 +ω 0 +2ω 0 +3 ω 0 +4 ω 0 +5ω 0 + 1B Sampling Basics 8

Angular Speed and Frequency = 2 T = 2 f 1 T = f T (sec) 0.01 sec 0.1 sec 1 sec 10 sec 100 sec f (Hz) 100 Hz 10 Hz 1 Hz 0.1 Hz 0.01 Hz Frequency rad / sec 200 rad / sec 20 rad / sec 2 rad / sec 0.2 rad / sec 0.02 rad / sec Angular Speed / Radian Frequency (rad / sec) = 628 = 62.8 = 6.28 = 0.628 =0.0628 1B Sampling Basics 9

Sampling Continuous Time Signal continuous-time signals x(t) = A cos (ω 0 t) Sampling Time T s (= τ) T 0 0.5sec 1sec t Sequence Time Length T = N T s 0.125sec Sampling Frequency T s (= τ) f s = 1 T s (samples / sec) For 1 second 1 T 0 (cycles / sec) For 1 second 1 T s (samples / sec) Signal's Frequency For 1 cycle For 1 sample f 0 = 1 T 0 (cycles / sec) 1 (cycles) / T 0 (sec) 1 (samples) / T s (sec) 1B Sampling Basics 10

Discrete Time Sequence continuous-time signals x(t) = A cos (ω 0 t) Sampling Time T s (= τ) T 0 1sec 2 cycles t Sequence Time Length T = N T s Sampling Frequency T s (= τ) f s = 1 T s (samples/sec) discrete-time sequence x [0 ] x [4] x [1] x [2] x [3 ] x [5] x [6 ] x [7 ] x [8] Signal's Frequency f 0 = 1 T 0 (cycles/sec) 1sec 8 samples 1B Sampling Basics 11

Angular Frequencies in Sampling For 1 second For 1 revolution ω 0 = 2π f 0 (rad / sec) 2 π (rad ) / T 0 (sec) continuous-time signals x(t) = A cos (ω 0 t) 4 π 2 cycles, 2 revolutions 0.5sec T 0 0.5sec 1 revolution t 1sec sampling sequence For 1 second For 1 revolution ω s = 2π f s (rad /sec) 2 π (rad ) / T s (sec) 0.125sec T s (= τ) 1 revolution 16π 8 cycles, 8 revolutions, 8 samples 0.125sec 1B Sampling Basics 12

Dimensionless Sequence x [n], x [0], x [1 ], x [2], x [3], x [4], x [5], x [6 ], x [7 ], x [8 ], x [0 ] x [1] x [2] x [3 ] x [4] x [5] x [6 ] x [7 ] x [8] x [0 ] x [2] x [4] x [6 ] x [8] x [1] x [3 ] x [5] x [7 ] 0.5sec 1sec 0.25 cycle / sample the same normalized frequency the same sequence 0.5sec 0.25 cycle / sample Infinite number of continuous time signals Sampling The same discrete-time sequence 1B Sampling Basics 13

Sampling of Sinusoid Functions x t = A cos t t n T s x [n ] = x n T s = A cos n T s = A cos T s n = A cos n ω = ω T s = ω 1/T s ω = ω f s = 2π f f s Normalized to f s x t 0.25 cycle / sample Normalized Radian Frequency 0.125sec T s 0.5sec 1sec t 1B Sampling Basics 14

Normalized Radian Frequency continuous-time signals x t Sampling t n T s discrete-time sequence x [n ] = x nt s Angular Frequency ω (rad / sec) Sampling T s Normalized Radian Frequency ω = ω T s (rad / sample) Angular Speed X Sampling Time Normalized Radian Frequency can be viewed as the angular displacement of a signal during the period of its sample time T s Negative Angles folding Co-terminal Angles periodic 1B Sampling Basics 15

Normalized Radian Frequency Example x(t) = A cos (ω 0 t) 0.5sec 1sec t ω 0 = 2 π f 0 f 0 = 1 T 0 T 0 T s (= τ) 0.125sec sampling sequence continuous-time signals For 1 sample For T s second ω s = 2 π f s f s = 1 T s ω = ω T s 2 π (rad ) / T s (sec) 0.125sec ω = ω 0 T s (rad /sample) π 2 (rad ) 0.25 cycle / sample ω = ω f s Signal's relative angle position after each of T s second 1B Sampling Basics 16

Normalized Frequency Normalized Radian Frequency 2 π (rad) (cycle) f 0 f s (cycle/ sec) (sample /sec) ω 0 f s (rad / sample) ω = ω f s = 2π f f s ω = ω T s = ω 1/T s Normalized Frequency f 0 f s (cycle / sec) (sample / sec) f 0 f s (cycle / sample) 1B Sampling Basics 17

Normalized Radian Frequency (4) Consider f f s 2, + f s 2 f f s 1 2, +1 2 ω π, +π Linear Frequency f ( Hz) f s 2 0 + f s 2 + f s + ω = +π (rad /sample) Normalized Radian Frequency ω (rad / sample) ω = π (rad /sample) π 0 +π 1B Sampling Basics 18

Negative Angular Speed Example ω s = 2 π f s (rad / sec) A cos (ω 1 t) = A cos (+ ω s 2 t ) A cos (+π n) ω 1 = +π (rad ) 2 π (rad ) / T s (sec) ω i = ω i T s (rad /sample) Negative Angles A cos (ω 2 t) = A cos ( ω s 2 t) A cos ( π n) A cos (ω 3 t) = A cos (+ ω s 4 t ) A cos (+ π 2 n) A cos (ω 4 t) = A cos ( 3ω s 4 t) A cos ( 3 π 2 n) ω 2 = π (rad ) ω 3 = + π 2 (rad ) ω 4 = 3π 4 (rad ) ω 1 = +π (rad ) ω 4 = 3π 4 (rad ) ω 3 = + π 2 (rad ) ω 2 = π (rad ) 1B Sampling Basics 19

Co-terminal Angular Speed Example ω s = 2 π f s (rad / sec) A cos (ω 1 t) = A cos (+ ω s 2 t ) A cos (+π n) ω 1 = +π (rad ) 2 π (rad ) / T s (sec) ω i = ω i T s (rad /sample) Co-terminal Angles A cos (ω 2 t) = A cos (+ 3ω s 2 t) A cos (+π n) A cos (ω 3 t) = A cos (+ ω s 4 t ) A cos (+ π 2 n) A cos (ω 4 t) = A cos (+ 5ω s 4 t) A cos (+ π 2 n) ω 2 = +π (rad ) ω 3 = + π 2 (rad ) ω 4 = + π 2 (rad ) +π (rad ) +3π (rad ) + 3ω s 2 = + ω s 2 + ω s + 5ω s 4 = + ω s 4 + ω s + π 2 (rad ) + 5π 2 (rad ) 1B Sampling Basics 20

Co-terminal Angles (1) For 1 sample For T s second 2 π (rad ) / T s (sec) ω = ω T s (rad / sample) ω = ω T s (rad / sample) = ω / f s (rad / sample) f 0 f 0 + f s f 0 +2 f s ω 0 = 2 π f 0 ω 1 = 2 π( f 0 + f s ) ω 2 = 2 π( f 0 +2 f s ) ω 0 (rad / sample) ω 0 +2π (rad / sample) ω 0 +4 π (rad / sample) cos(ω 0 t) cos(ω 1 t ) cos(ω 2 t) ω (rad / sec) 3 ω s 2ω s ω s +ω s +2ω s +3 ω s + cos( ω 0 n) = cos( ω 1 n) = cos( ω 2 n) ω (rad / sample) 6 π 4 π 2π +2π +4 π +6 π 1B Sampling Basics 21

Co-terminal Angles (2) For 1 sample For T s second 2 π (rad ) / T s (sec) ω = ω T s (rad / sample) ω = ω T s (rad / sample) = ω / f s (rad / sample) f 0 f 0 + f s f 0 +2 f s ω 0 = 2 π f 0 ω 1 = 2 π( f 0 + f s ) ω 2 = 2 π( f 0 +2 f s ) ω 0 (rad / sample) ω 0 +2π (rad / sample) ω 0 +4 π (rad / sample) Co-terminal Angles The same angular positions after each sample time. 1B Sampling Basics 22

Positive & Negative Angles (1) + Positive Normalized Rad Freq ω p ω n ω p ω n = 2 π ω p = 2 π + ω n + Negative Normalized Rad Freq ω n = ω p 2 π + f s 2 < f 1 < f s Normalized Radian Frequency Positive Angle +π < ω 1 < 2 π ω 1 2 π ω (rad / sample) ω 1 Negative Angle π < ω 1 2π < 0 π 0 +π +2 π ω 1 1B Sampling Basics 23

Positive & Negative Angles (2) Positive Normalized Rad Freq + ω n ω p ω p ω n = 2 π ω p = 2 π + ω n + Negative Normalized Rad Freq ω n = ω p 2 π + f s < f 2 < f s 2 Normalized Radian Frequency ω 2 Negative Angle 2π < ω 2 < π ω 2 ω 2 +2 π ω (rad / sample) Positive Angle 0 < 2π + ω 2 < π π 0 +π +2 π 1B Sampling Basics 24

Periodic and Folding Co-terminal Angles Periodic ω (rad / sample) 6 π 4 π 2π +2π +4 π +6 π ω (rad / sample) 5π 3 π π +π +3 π +5π +7 π Negative Angles Folding ω (rad / sample) 6 π 4 π 2π +2π +4 π +6 π ω (rad / sample) 6 π 4 π 2π +2π +4 π +6 π 1B Sampling Basics 25

1B Sampling Basics 26

1B Sampling Basics 27

References [1] http://en.wikipedia.org/ [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003 [3] A graphical interpretation of the DFT and FFT, by Steve Mann