20 6 2016 6 Electri c Machines and Control Vol. 20 No. 6 Jun. 2016 1 2 1 3 2 1. 518060 2. 610031 3. 410083 dspace DOI 10. 15938 /j. emc. 2016. 06. 001 TM 352 A 1007-449X 2016 06-0001- 08 Position control of the planar switched reluctance motor based on model reference adaptive regulator CAO Guang-zhong 1 HUANG Su-dan 2 WANG Ji-huan 1 DUAN Ji-an 3 QIAN Qing-quan 2 1. Shenzhen Key Laboratory of Electromagnetic Control Shenzhen University Shenzhen 518060 China 2. College of Electrical Engineering Southwest Jiaotong University Chengdu 610031 China 3. State Key Laboratory of High Performance Complex Manufactory Central South University Changsha 410083 China Abstract To improve the positioning accuracy of the planar switched reluctance motor PSRM a position control method of the PSRM based on model reference adaptive control MRAC theory was proposed. The parameters of the linear model were identified for the PSRM by using the recursive least square algorithm. Taking the force command as the control quantity the MRAC position controller was designed with the input and output on the basis of the Lyapunov stability theory. A real-time experimental platform is established based on dspace and the position control of the PSRM was carried out. Experimental results demonstrate that the position control system of the PSRM with the MRAC tracks the reference position smoothly and accurately the positioning accuracy is improved the feasibility and effectiveness of the proposed control method is verified. Keywords planar switched reluctance motor positioning accuracy model reference adaptive control Lyapunov stability theory position control 2015-01 - 14 51275312 JSGG20141015153303491 1968 1986 1988 1969 1936
2 20 0 14 1-4 1 5 6 1. 1 X Y IC X Y 7-9 15-1 17 10 9 11 12 13 1 Fig. 1 Prototype of the PSRM 3 PD X Y - - 2 a 4 5 μm 2 b PD PD 2 c 11 6 3 X Y 1 3 Y X 6 X Y
6 3 1 2 Fig. 2 Structure of the stator of the PSRM Table 1 1 Parameters of the prototype /mm 3. 6 /mm 7. 2 X /kg 5. 9 Y /kg 13. 9 /kg 55. 4 /mm 0. 3 600 mm X 600 mm Y /Ω 0. 8 150 Fig. 3 3 Induced voltages of the phase windings of the mover 1. 2 YA 3 V 50 Hz 3 3 YA 0. 67% X Y 4 X Fig. 4 Position control block diagram for the X-axis of the PRSM U lk t = R lk i lk t + dψ lk s l t i lk t dt 1 X 4 l = X Y k = A B C y r u ψ lk i lk t s l t = L s l t i lk t i lk t 2 f xa f xb f xc i xa i xb i xc 9 1. 3 2 1 U lk t = R lk i lk t + L lk s l t i lk t di lk t + dt i lk t ds l t dl lk s l t i lk t dt ds l l = X Y k = A B C l U lk i lk R lk L lk ψ lk l k k 3
4 20 s l l 1 2 3 l f l d 2 s l t ds l t = M l + B dt 2 l + f dt lp t l = X Y 4 M l l B l f l f lp 4 P s = k pn p s M p s = 1 /M l s 2 + B l /M l s 5 M p N p k p = 1 M l l k W lo = ψ lk di lk = i lk dψ lk 6 Fig. 5 Three-dimensional curve of the current position and force l 9 f l = C 1 dl lk i 2 k = A 2 ds lk t l 7 y k = φ T k - 1 θ^ + ζ k 11 7 φ k - 1 θ^ i lk = 2f lk dl -1 φ k = - y k - 1 - y k - 2 } lk 8 槡 ds u k - 1 u k - 2 l 12 5 - - θ^ = a 1 a 2 b 0 b 1 R 4 1 - - 18 11 ^θ 7 θ^ k = θ^ k - 1 + K k y k φ k θ^ k - 1 u k y k ζ k P k - 1 φ k K k = 1 + 4 φ T k P k - 1 φ k P k = I - K k φ T k P k - 1 13 A z -1 y k = B z -1 u k + ζ k A z -1 = 1 + a 1 z -1 + a 2 z -2 B z -1 = b 0 + b 1 z } -1 9 10 2 5 5 - - 2. 1 Lyapunov 6 P k P k θ^ k P 0 = 10 4 I I 4 θ^ 0 = ε ε 2. 2 2
6 5 W p W m k m N m s M m s = W m s = k mn m s M m s = s 2 k m + a m1 s + a m2 14 N m s = 1 M m s 6 k * 0 c * d * 0 d * 1 Fig. 6 Model reference adaptive control system of the PSRM k 0 c 1 d 0 d 1 21 22 23 k * 0 c * d * 0 d * 1 2 W m L s L s W m s 22 F s = N m s L s L s L s = s + a0 < a < a m1 a 0 < a < a m1 15 F 1 F 2 Lyapunov v 1 = Λv 1 + bu } w 1 = c T v 1 W 1 s = c T Is - Λ -1 b = C s /F s v 2 = Λv 2 + bu w 2 = d T v 2 + d 0 W 2 s = d 0 + d T Is - Λ -1 b = d 0 + D s F s c T = c 1 d T 16 17 = d 1 d 0 Λ = - l 1 l 1 > 0 b = 1 I 26 6 k k p k 0 L s + 0 L -1 s F s N k p s 0 M p s F s - C' s - d 0 + d 0 L -1 s F s + D' s k p N p s C' s = c 1 + c 1 L -1 s D' s = d 1 + d 1 L -1 s } 18 19 k 0 = 0 c i = 0 d 0 = 0 d i = 0 20 18 20 k * 0 = k m k p L -1 s F s = N m s 21 22 M p s F s - c * 1 - d * 0 F s + d * 1 k p N p s = L s N p s M m s ω T = y r v T 1 y p v T 2 } ξ = L -1 s ω 23 24 θ = - Γξem 25 θ = k 0 c T d 0 d T Γ e m = y p - y m θ = θ 26 k 0 c 1 = d 0 d 1 k 0 dt + k 0 0 c 1 dt + c 1 0 = d 0 dt + d 0 0 d 1 dt + d 1 0 k 0 dt + k * 0 t c 1 dt + c * 1 0 t d 0 dt + d * 0 0 d dt + d * 1 1 u = θ T ω + θ Tξ = θ T ω - Γe m ξ T ξ 27
6 20 3 9 7 8 dspace PC dspace 1GHz DS1005 PPC 24 5 DS3001 14 32 DS2103 D /A AMC 25A 50A 50A20 Renishaw Tonic 100 nm 9 Fig. 9 Model parameters of the PSRM Fig. 7 7 Structure diagram of the control system Fig. 8 8 Experimental platform dspace 2kg X Y a m1 =21 k m = 100 a m2 = 100 X Y 15 mm 3 s 0 15 15 X Y 10 10 X Y X 1. 74 sy 1. 89 s X Y X Y 11 X ± 200 nm Y X ± 500 nm X Y - ± 4. 7 μm Y ± 4. 3 μm X Y 12
6 7 X Y 13 12 Fig. 12 Detected current of the PSRM 10 Fig. 10 Position response of the PSRM 11 Fig. 11 13 Fig. 13 Position error of the PSRM Adjustable parameters of the model reference adaptive regulator of the PSRM
8 20 4 7. J. 2005 25 19 116-121. 6 2011. 10ZHAO Shiwei CHEUNG N C GAN Waichuen ± 500 nm ± 4. 7μm self-tuning regulatorj rejection controller for novel planar switched reluctance motor 1. J. IEE Proceedings-Electric Power Applications 2006 153 J. 2013 33 979-87. 2 307-316. KOU Baoquan ZHANG Lu XING Feng et al. Development of the high-performance synchronous permanent magnet planar motor and J. 2008 28 30 104-108. its key technologies J. Proceedings of the CSEE 2013 33 9 YANG JinmingWANG Xiaoping ZHAO Shiwei et al. Robust 79-87. control of planar switched reluctance motors J. Proceedings of 2. J. the CSEE 2008 28 30 104-108. 2011 22 10 1247-1259. 13PAN Jianfei CHEUNG N C. An adaptive controller for the novel WANG Taiyong QIAO Zhifeng HAN Zhiguo et al. Development trends of high-end NC equipmentj. China Mechanical Engineering 2011 22 10 1247-1259. 3PAN Jianfei CHEUNG N C YANG Jinming. High-precision position control of a novel planar switched reluctance motor J. IEEE Transactions on Industrial Electronics 2005 52 6 1644-1652. 4ZHANG Lu KOU Baoquan LI Liyi et al. Modeling and design of an integrated winding synchronous permanent magnet planar motor J. IEEE Transactions on Plasma Science 2013 41 5 1214-1219. 5 J. 2013 33 6144-152. ZHANG Xinhua SUN Yukun XIANG Qianwen et al. Analysis of real-time current distribution for magnetically levitated permanentmagnet planar motors with moving-coils J. Proceedings of the CSEE 2013 33 6 144-152. 6. J. 2005 20 4 1-8. CAO Jiayong ZHU YuWANG Jinsong et al. Survey of the state of the art in planar motor technology J. Transactions of China Electrotechnical Society 2005 20 4 1-8. YANG Jinming ZHANG Zhou PAN Jianfei. The control of the switched reluctance planar machine J. Proceedings of the CSEE 2005 25 19 116-121. 8PANJianfei CHEUNG N C GAN Waichuen et al. A novel planar switched reluctance motor for industrial applicationsj. IEEE Transactions on Magnetics 2006 42 10 2836-2839. 9. M. et al. High-precision position control of a linear-switched reluctance motor using a. IEEE Transactions on Power Electronics 2010 25 11 2820-2827. 11PAN Jianfei CHEUNG N C YANG Jinming. Auto-disturbance 12. planar switched reluctance motor J. IET Electric Power Applications 2011 5 9 677-683. 14. M. 2013. 15FANG Jilin HUANG Sudan CAO Guangzhong et al. Optimization design of planar switched reluctance motors based on electromagnetic force characteristicsc/ /IEEE International Power E- lectronics Systems and Applications Conference Hongkong China 2013. 16CAO Guangzhong FANG Jilin HUANG Sudan et al. Optimiza-. tion design of the planar switched reluctance motor on electromagnetic force ripple minimizationj. IEEE Transactions on Magnetics 2014 50 11. 17HUANG Sudan CAO Guangzhong QIAN Qingquan et al. Inverse force function for phase current estimation of the planar switched reluctance motor using sparse least squares support vector machinesc/ /IEEE International Magnetics Conference Dresden Germany 2014. 18LJUNG L. System identification-theory for the userm. Prentice-Hall 1999.