JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering . MUSIC MUSIC TN (2010)

Σχετικά έγγραφα
JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering. Cyclic MUSIC DOA TN (2012)

High order interpolation function for surface contact problem

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Maximum power dynamic acoustic source direction-of-arrival tracking algorithm based on acoustic vector sensor

ER-Tree (Extended R*-Tree)

Research on Economics and Management

Quick algorithm f or computing core attribute

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

NOB= Dickey=Fuller Engle-Granger., P. ( ). NVAR=Engle-Granger/Dickey-Fuller. 1( ), 6. CONSTANT/NOCONST (C) Dickey-Fuller. NOCONST NVAR=1. TREND/NOTREN

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

Empirical best prediction under area-level Poisson mixed models

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

40 3 Journal of South China University of Technology Vol. 40 No Natural Science Edition March


Feasible Regions Defined by Stability Constraints Based on the Argument Principle

CorV CVAC. CorV TU317. 1

CAP A CAP

ADT

Congruence Classes of Invertible Matrices of Order 3 over F 2

ST5224: Advanced Statistical Theory II

Adaptive grouping difference variation wolf pack algorithm

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Exercises to Statistics of Material Fatigue No. 5

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Prey-Taxis Holling-Tanner

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

DOI /J. 1SSN

Single-value extension property for anti-diagonal operator matrices and their square

Journal of Beijing University of Posts and Telecommunications. Blind CFR Estimation for SC2FDE Systems

14.5mm 14.5mm

Motion analysis and simulation of a stratospheric airship

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems


A method of seeking eigen-rays in shallow water with an irregular seabed

Probabilistic Approach to Robust Optimization

Simplex Crossover for Real-coded Genetic Algolithms

A ne w method for spectral analysis of the potential field and conversion of derivative of gravity-anomalies : cosine transform

Research on real-time inverse kinematics algorithms for 6R robots

STUDY ON 3D FRACTAL DISTRIBUTION LAW OF THE SURFACE NUMBER IN ROCK MASS

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

6.3 Forecasting ARMA processes

,,, (, ) , ;,,, ; -

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Inhomogeneous spatial point pattern analysis of moso bamboo Phyllostachys edulis

Fundamentals of Array Antennas

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.


Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Other Test Constructions: Likelihood Ratio & Bayes Tests

Supplementary Appendix

4.6 Autoregressive Moving Average Model ARMA(1,1)

Gain self-tuning of PI controller and parameter optimum for PMSM drives

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Bayesian modeling of inseparable space-time variation in disease risk

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Probability and Random Processes (Part II)

Research on model of early2warning of enterprise crisis based on entropy

[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Homework 3 Solutions

Areas and Lengths in Polar Coordinates

2 Composition. Invertible Mappings

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A


Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Vol. 30 No Journal of Jilin University Information Science Edition Sept. 2012

Numerical Analysis FMN011

Application of a novel immune network learn ing algorithm to fault diagnosis

Spectrum Representation (5A) Young Won Lim 11/3/16

Transcript:

28 3 5 JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering Vol. 28 No. 3 May DOI:.3969/j.issn.255-8297..3. MUSIC 2. MUSIC Taylor MUSIC MUSIC Taylor TN9.7 255-8297()3-289-8 Success Probability of Direction-Finding of MUSIC Algorithm with Modeling Errors WANG Ding, WU Ying Institute of Information Engineering, PLA Information Engineering University, Zhengzhou 2, China Abstract: The direction-finding (DF) success probability is an important specification of the eigen-structure algorithm. We derive the DF success probability of the MUSIC algorithm in the presence of modeling errors. A closed-form expression of DF error and its statistical properties are obtained from the first-order Taylor expansion of the spatial spectrum function. Two classes of DF success definitions are given for single-source DF and holistic DF based on these definitions and statistical characteristics of the modeling errors. The calculation formulas of the DF success probability are derived. The theoretical analysis is validated through simulation using a uniform circular array (UCA) and a uniform linear array (ULA). Keywords: direction-finding, modeling errors, MUSIC algorithm, direction-finding success probability, Taylor expansion, quadratic form of Gaussian vector MUSIC [] MUSIC [2-5] [2] MUSIC [3] MUSIC Taylor [4-5] MUSIC MUSIC 9--2-3-4 (No.BSLWCX) E-mail: wang_ding84@yahoo.com.cn DSP E-mail: hnwuying22@63.com

2 28 [6-7] MUSIC () [6] Taylor [7] MUSIC [8-] MUSIC. [8-9] [] [] MUSIC. MUSIC Taylor MUSIC ) ( )ẋ(θ) ẍ(θ) ( )x(θ) θ 2) [ ] Moore-Penrose 3) I n n i e (n) i ; 4) O n m n m O n n n n 5) δ kl delta k = l, δ kl =, δ kl = MUSIC M D(D < M) k θ k, X(t) = Âs(t) + n(t) () s(t) n(t) ÂÂ = A + Ã, A = [a(θ ) a(θ 2 ) a(θ D )] a(θ k ) Ã = [ã(θ ) ã(θ 2 ) ã(θ D )] ã(θ k ) [ ] E ã(θ k )ã H (θ l ) = δ kl σai 2 M [ ] (2) E ã(θ k )ã T (θ l ) = O M [2,7,-] () ] R = E[ X(t) XH (t) = ÂP ÂH + σni 2 M (3) P = E[s(t)s H (t)] σ 2 n R [] λ λ 2 λ D > λ D+ = λ D+2 = = λ M = σ 2 n (4) û, û 2,, û M, [] span{û, û 2,, û D } = range{â} (5) span{û D+, û D+2,, û M } range{â} 2 ÛN = [û D+ û D+2 û M ], P N = ÛNÛ H N = I M ÂÂ = P A (6) MUSIC D(θ) = a H (θ) P N a(θ) = a H (θ) P A a(θ) (7) (7) P N ( P A ) MUSIC MUSIC 2 MUSIC MUSIC J(θ, Ã) = 2 D(θ) θ = Re{ȧ H (θ) P A a(θ)} (8)

3 MUSIC 29 θ k θ k J( θ k, Ã) = J(θ k, O M D ) = (9) J( θ k, Ã) J(θ k, O M D ) + J(θ, O M D) ( θ k θ k ) + θ θ=θk M m= n= θ k θ k à Taylor M m= n= J(θ k, Ã) Ã=OM D ã (r) + J(θ k, Ã) Ã=OM D ã (i) () ã à m n ã(r) ã (i) (9) () θ k = θ k θ k = M m= n= J(θ k, Ã) Ã=OM D ã (r) + M J(θ, O M D ) θ m= n= J(θ k, Ã) Ã=OM D ã (i) () θ=θk (2) P A η = P A  ( η  P  ) H A η   = e m (M) e (D)T n, { Re { Re J(θ k, Ã) ȧ H (θ k ) P A  = ie (M) m e (D)T n Ã=OM D = } Ã=OM D a(θ k ) = (2) Re{f H (θ k )e (M) m δ nk } (3) J(θ k, Ã) ȧ H (θ k ) P A Ã=OM D = } Ã=OM D a(θ k ) Im{f H (θ k )e (M) m δ nk } (4) f(θ k ) = PA ȧ(θ k). (3) (4) A a(θ k ) = e (D) k PA a(θ k) = M, J(θ, O M D ) = ȧ H (θ k )PA θ ȧ(θ k) = h(θ k ) θ=θk (5) (3) (5) () θ k = θ k θ k = f (r)t (θ k )ã (r) (θ k ) + f (i)t (θ k )ã (i) (θ k ) h(θ k ) = (6) f (r) (θ k ) f (i) (θ k ) f(θ k ) ã (r) (θ k ) ã (i) (θ k ) ã(θ k ) MUSIC. θ k ã (r) (θ k ) ã (i) (θ k ) ã (r) (θ k ) ã (i) (θ k ) θ k E[ θ k ] = var[ θ k ] = σa f(θ 2 k ) 2 2h 2 (θ k )/2 = σah 2 (θ k )/2, k =, 2,, D (7) (7)h(θ k ) = f(θ k ) 2 2 (6) k l E[ θ k θ l ] = θ k θ l 3 MUSIC 3. MUSIC k θ k θ,. θ. 2 θ k

292 28 k Pr{ θ k θ} = Φ( θ/ var[ θ k ]) Φ( θ/ var[ θ k ]) = 2Φ( θ/ var[ θ k ]) (8) Φ(u) = 2π u e x2 /2 dx, [2] 3.2 (8).. 2 max { θ k } θ, k D 2 k l θ k θ l Pr{ max k D { θ k } θ} = Pr{ θ k θ} = [2Φ( θ/ var[ θ k ] ) ] (9) (8) (9). 2. 3 D ( θ k ) 2 θ, 2. 2 θ = [ θ θ 2 θ D ] T, 2 Pr{ θ 2 2 D( θ) 2 }, 2 θ 2 2 (6) θ = F T F T 2... F T D ã ã 2 = F ã (). ã D F k = [f (r)t (θ k )/h(θ k ) f (i)t (θ k )/h(θ k )] T ã k = [ã (r)t (θ k ) ã (i)t (θ k )] T. θ 2 2 = ã T F T F ã = ã T Gã (2) G = F T F. (2) (2) ã σai 2 2MD /2 (2) θ 2 2 θ 2 2 [3-4] 2 π Pr{ θ 2 2 c} = + t Im{e itc ϕ θ 2 2 (t)}dt (22) ϕ θ 2 2 (t) θ 2 2 ϕ θ 2 2 (t), θ 2 2 G D, G G = λ k g k gk T (23) λ k G g k (23) (2) θ 2 2 = ã T Gã = 2 σaλ 2 k (gk T ã) 2 d = λ k χ 2 k() (24) λ k = σaλ 2 k /2, ã = 2ã/σ a χ 2 k () = d k l χ 2 k () χ2 l () E[gk T ãã T g l ] = gk T, k = l g l = δ kl = (25), k l χ 2 k () ϕ χ 2 k ()(t) = ( 2it) /2 [5] θ 2 2 ϕ θ 2 2 (t) = ( 2iλ k t) /2 = ( + 4λ 2 kt 2 ) /4 exp{i arctan(2λ k t)/2} (26)

3 MUSIC 293 (26) (22) Pr{ θ 2 2 c}= 2 π + { t (+4λ 2 kt 2 ) /4 sin{ arctan(2λ k t)/2 tc}}dt = 2 π + t sin{α(t)} dt (27) β(t) α(t) = D arctan(2λ k t)/2 tc, β(t) = D (+ 4λ 2 k t2 ) /4 (27) t t + lim t sin{α(t)} cos{α(t)} α(t) = lim t β(t) t β(t) + t β(t) = λ k c (28) t + 2 () F ; 2 G = F T F ; 3 G D λ k, k =, 2,, D; 4 λ k = σaλ 2 k /2, k =, 2,, D; 5 (27). 2 2 4 ) (3) 2) 5 Monte Carlo 3) 2 Lobatto [6] db θ =. r/λ =.5, σ a =.3, θ =.3 ( ) 2 2 θ 2 =, σ a =.3, θ =.3 3 2 θ 2 =, r/λ =.5, θ =.3 4 2 θ 2 =, r/λ =.5, σ a =.3 2 2 3 3 /( ) Figure Direction-finding success probability versus the azimuth separation of the two sources 3.2.3.4.5.6.7.8.9...2 2 Figure 2 Direction-finding success probability versus the ratio of radius and wavelength

294 28 3..2.3.4.5.6.7.8 3 Figure 3 Direction-finding success probability versus the standard deviation of the modeling errors 3..2.3.4.5.6.7.8.9. /( ) 4 Figure 4 Direction-finding success probability versus the angle error tolerance 3 3 3 /( ) 5 Figure 5 Direction-finding success probability versus the azimuth separation of the two sources 3..25.3.35..45. 6 Figure 6 Direction-finding success probability versus the ratio of element spacing and wavelength db () θ =. 5.5 σ a =.3, θ =.3 6 2 θ 2 =, σ a =.3, θ =.3 (.5) 7 2 θ 2 =,.5 θ =.3 8 2 θ 2 =,.5 σ a =.3 3..2.3.4.5.6.7.8 7 Figure 7 Direction-finding success probability versus the standard deviation of the modeling errors 8 ). 2) 2

3 MUSIC 295. 3) 2. 4). 5). 6). 7) 3..2.3.4.5.6.7.8.9. /( ) 8 Figure 8 Direction-finding success probability 5 versus the angle error tolerance MUSIC Taylor MUSIC.. : [] Schmidt R O. Multiple emitter location and signal parameter estimation[j]. IEEE Transactions on Antennas and Propagation, 986, 34(3): 267-2. [2] Swindlehurst A, Kailath T. A performance analysis of subspace-based methods in the presence of model error part I the MUSIC algorithm[j]. IEEE Transactions on Signal Processing, 992, (7): 758-774. [3] Friedlander B. A sensitivity analysis of the MU- SIC algorithm[j]. IEEE Transactions on Acoustics, Speech and Signal Processing, 9, 38(): 7-75. [4]. MUSIC [J]. 5, 27(): 4-43. Dong Xiaohui, Ke Hengyu, Dong Zhifei. An analysis of FO-MUSIC algorithm in the presence of sensor perturbations[j]. Modern Radar, 5, 27(): 4-43. (in Chinese) [5]. MUSIC [J]. 8, 36(2): 5-7. Liu Jian, Yu Hongqi, Huang Zhitao, Zhou Yiyu. Performance analysis of the MUSIC algorithm for noncircular signals with modeling errors[j]. Acta Electronica Sinica, 8, 36(2): 5-7. (in Chinese) [6] Hamza R, Buckley K. An analysis of weighted eigenspace methods in the presence of sensor errors[j]. IEEE Transactions on Signal Processing, 995, 43(5): -. [7] Ferr ol A, Larzabal P, Viberg M. On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: case of MUSIC[J]. IEEE Transactions on Signal Processing, 6, 54(3): 7-9. [8]. MUSIC[J]., 28(6): 5-7. Su Weimin, Gu Hong, Ni Jinlin, Liu Guosui, Zhang Guangyi. A statistical performance analysis of the MUSIC algorithm in the presence of amplitude and phase perturbation[j]. Acta Electronica Sinica,, 28(6): 5-7. (in Chinese) [9]. [J]., (5): 557-5. Su Weimin, Gu Hong, Ni Jinlin, Liu Guosui. An analysis of the effects of multi-channel amplitude and phase errors on the spatial spectrum and resolving performance[j]. Progress in Natural Science,, (5): 557-5. (in Chinese) [] Weiss A J, Friedlander B. Effects of modeling errors on the resolution threshold of the MUSIC al-

296 28 gorithm[j]. IEEE Transactions on Signal Processing, 994, 42(6): 59-526. [] Ferr ol A, Larzabal P, Viberg M. On the resolution probability of MUSIC in presence of modeling errors[j]. IEEE Transactions on Signal Processing, 8, 56(5): 945-953. [2]. [M]. 2: 37-37. Sheng Zhou, Xie Shiqian, Pan Chengyi. Probability theory and mathematical statistics[m]. Beijing: Higher Education Press, 2: 37-37. (in Chinese) [3] Imhof J P. Computing the distribution of quadratic forms in normal variables[j]. Biometrika, 96, 48(2): 49-426. [4] Dugina T N, Martynov G V. Computing the distribution function of the ratio of quadratic forms in normal variables[j]. Journal of Mathematical Sciences, 99, 53(6): 628-63. [5]. [M]. :, 6: 32-33. Zhang Runchu. Multivariate statistical analysis[m]. Beijing: Science Press, 6: 32-33. (in Chinese) [6]. MATLAB[M]. :, 6: 29-3. Zhang Zhiyong. Proficient in MATLAB[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 6: 29-3. (in Chinese) ( : )