Poroelastic modelling of the coupled mechanical moisture behaviour of wood

Σχετικά έγγραφα
Alterazioni del sistema cardiovascolare nel volo spaziale

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Properties of Nikon i-line Glass Series

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Geodesic Equations for the Wormhole Metric

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Computing Gradient. Hung-yi Lee 李宏毅

Lifting Entry (continued)

Local Approximation with Kernels

1ος Θερμοδυναμικός Νόμος

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

m i N 1 F i = j i F ij + F x

AR.Drone, ( ), [1]. [2-4], - [5-8] [9, 10] - . :, [6], - [9], [7], [11, 12]

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Variational Wavefunction for the Helium Atom

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ


TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ

Dark matter from Dark Energy-Baryonic Matter Couplings

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

1 String with massive end-points

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Strain gauge and rosettes

6.4 Superposition of Linear Plane Progressive Waves

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

ect of Modified Wheat Starches on the Textural Properties of Baked Products, such as Cookies

= 0.927rad, t = 1.16ms

Α Ρ Ι Θ Μ Ο Σ : 6.913


E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,

Second Order RLC Filters

E T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit

Higher Derivative Gravity Theories

Multi-GPU numerical simulation of electromagnetic waves

Consommation marchande et contraintes non monétaires au Canada ( )

DuPont Suva 95 Refrigerant

TeSys contactors a.c. coils for 3-pole contactors LC1-D

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

DuPont Suva 95 Refrigerant

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES

Homework 3 Solutions

SPECIAL FUNCTIONS and POLYNOMIALS

Ε.Ε. Παρ. I(II) Αρ. 3887,

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή

rs r r â t át r st tíst Ó P ã t r r r â

Spherical Coordinates

Second Order Partial Differential Equations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

MECHANICAL PROPERTIES OF MATERIALS

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Couplage dans les applications interactives de grande taille

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Space-Time Symmetries

Assessment of otoacoustic emission probe fit at the workfloor

High order interpolation function for surface contact problem

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

ROBOT. Dynamic Model Based Motor Control for Wheeled Mobile Robots

Chapter 7 Transformations of Stress and Strain

Συνοπτική περιγραφή των συνηθέστερων εργαστηριακών δοκιµών Βραχοµηχανικής Εδαφοµηχανικής

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

m 1, m 2 F 12, F 21 F12 = F 21

OPTIMAL OPERATION OF THE SELECTIVE WITHDRAWAL SYSTEM IN TONO DAM RESERVOIR

Comparison of characteristic by Transformer Winding Method of Contactless Power Transfer Systems for Electric Vehicle

cz+d d (ac + cd )z + bc + dd c z + d



Reminders: linear functions

Grey Cast Irons. Technical Data

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1

692.66:

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.


t ts P ALEPlot t t P rt P ts r P ts t r P ts

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Design Method of Ball Mill by Discrete Element Method

Uniform Convergence of Fourier Series Michael Taylor

Math 6 SL Probability Distributions Practice Test Mark Scheme

Transcript:

Ma terias Sci ence & Technoog y Poroeastic modeing of the couped mechanica moisture behaviour of wood M. Dresser, D. Derome, R. Guyer and J. Carmeiet

poroeastic modeing of wood - COST meeting October 00. objective Empa,,

poroeastic modeing of wood - COST meeting October 00 known effects of water - sweing B ϕ( p ) - moduus of easticity - Poisson s ratio - water sorption - stress dependent u Empa,, /6

poroeastic modeing of wood - COST meeting October 00 known effects of water - sweing 0.08 stressed in TT-direction stressed in RR-direction B ϕ( p ) stressed in LL-direction 0.06 - moduus of easticity - Poisson s 0.04 ratio sweing strain 0.0 0.00 - water sorption -0.0 0.0 0. 0. 0. 0.0 0. 0. 0. 0.0 0. 0. 0. moisture content - mechano sorption moisture content moisture content F.-H. Neuhaus, Eastizitätszahen von Fichtenhoz in Abhängigkeit von der Hozfeuchtigkeit (easticity numbers of spruce as a function of wood moisture content), PhD thesis (in German), Institut für konstruktiven Ingenieurbau Ruhr-Universität Bochum (98) Empa,, /6 4

poroeastic modeing of wood - COST meeting October 00 known effects of water - sweing - moduus of easticity - Poisson s ratio u B C u ϕ( p ) - water sorption - stress dependent u Empa,, /6 5

poroeastic modeing of wood - COST meeting October 00 known effects of water - sweing moduus of easticity [MPa] 4000 000 00 - moduus of easticity - Poisson s 000 ratio 800 600 400 - water sorption 00 data from Neuhaus cacuated vaues ue L E R E T B C u 000 ϕ( p 800 600 400 00 ) E TL E LR 0 0.0 0. 0. 0. - stress dependent u moisture content E TR 0 0.0 0. 0. 0. moisture content F.-H. Neuhaus, Eastizitätszahen von Fichtenhoz in Abhängigkeit von der Hozfeuchtigkeit (easticity numbers of spruce as a function of wood moisture content), PhD thesis (in German), Institut für konstruktiven Ingenieurbau Ruhr-Universität Bochum (98) Empa,, /6 6

poroeastic modeing of wood - COST meeting October 00 known effects of water - sweing Poisson's ratio..0 0.8 - moduus of easticity - Poisson s ratio 0.6 0.4 ν TL..0 0.8 0.6 0.4 u B C u ϕ( p ) ν TR ν RT..0 0.8 0.6 0.4 ν RL - water sorption 0. 0. 0. ν LT ν LR 0.0 0.0 0.0 0.0 0. 0. 0. 0.0 0. 0. 0. 0.0 0. 0. 0. moisture content - stress dependent u moisture content moisture content F.-H. Neuhaus, Eastizitätszahen von Fichtenhoz in Abhängigkeit von der Hozfeuchtigkeit (easticity numbers of spruce as a function of wood moisture content), PhD thesis (in German), Institut für konstruktiven Ingenieurbau Ruhr-Universität Bochum (98) Empa,, /6 7

poroeastic modeing of wood - COST meeting October 00 constitutive equations - sweing - moduus of easticity - Poisson s ratio - water sorption - stress dependent u u u u B M B u ϕ( p C ϕ( p Empa,, /6 8 ) ) d = B( ) dϕ d = C( u) d du = M ( ) dϕ du = B( ϕ) d

poroeastic modeing of wood - COST meeting October 00 constitutive equations - sweing - moduus of easticity - Poisson s ratio - water sorption - stress dependent u u u u B M B u ϕ( p C ϕ( p Empa,, /6 9 ) ) d = B( ) dϕ d = C( u) d du = M ( ) dϕ du = B( ϕ) d d = Cd Bdp du = Mdp Bd J. Carmeiet, R. Guyer, D. Derome, 6 th Pant Biomechanics Conference, 009

poroeastic modeing of wood - COST meeting October 00. appication Empa,, 0

poroeastic modeing of wood - COST meeting October 00 resuts 4000 data from Neuhaus cacuated vaues 000 moduus of easticity [MPa] 000 00 000 800 600 400 E L E R 800 600 400 00 E TL E LR 00 E T 0 0.0 0. 0. 0. moisture content 0 0.0 0. 0. 0. moisture content E TR F.-H. Neuhaus, Eastizitätszahen von Fichtenhoz in Abhängigkeit von der Hozfeuchtigkeit (easticity numbers of spruce as a function of wood moisture content), PhD thesis (in German), Institut für konstruktiven Ingenieurbau Ruhr-Universität Bochum (98) Empa,, 5/6

poroeastic modeing of wood - COST meeting October 00 resuts....0 ν TL.0.0 Poisson's ratio 0.8 0.6 0.4 0.8 0.6 0.4 ν TR ν RT 0.8 0.6 0.4 ν RL 0. 0. 0. ν LT ν LR 0.0 0.0 0. 0. 0. 0.0 0.0 0. 0. 0. 0.0 0.0 0. 0. 0. moisture content moisture content moisture content F.-H. Neuhaus, Eastizitätszahen von Fichtenhoz in Abhängigkeit von der Hozfeuchtigkeit (easticity numbers of spruce as a function of wood moisture content), PhD thesis (in German), Institut für konstruktiven Ingenieurbau Ruhr-Universität Bochum (98) Empa,, 6/6

poroeastic modeing of wood - COST meeting October 00 resuts stressed in TT-direction stressed in RR-direction stressed in LL-direction 0.08 0.06 UNstressed stressed data from Neuhaus sweing strain 0.04 0.0 0.00 p kg -0.0 compressive stress 0, 0 MPa compressive stress 0, 0 MPa compressive stress 0, 0 MPa 0.0 0. 0. 0. moisture content 0.0 0. 0. 0. 0.0 0. 0. 0. moisture content moisture content F.-H. Neuhaus, Eastizitätszahen von Fichtenhoz in Abhängigkeit von der Hozfeuchtigkeit (easticity numbers of spruce as a function of wood moisture content), PhD thesis (in German), Institut für konstruktiven Ingenieurbau Ruhr-Universität Bochum (98) Empa,, 7/6

poroeastic modeing of wood - COST meeting October 00 resuts 0.0 0.0 stressed in RR-direction 0.0 stressed in LL-direction 0.5 0.9 0.8 0.9 0.8 moisture content 0.0 0.5 0.0 0.05 0.7 0.990 0.995.000 reative humidity 0.7 0.990 0.995.000 reative humidity compressive stress 0, 0, 0 MPa p kg u 0.00 0.0 0. 0.4 0.6 0.8.0 reative humidity Empa,, 8/6 4

poroeastic modeing of wood - COST meeting October 00 resuts stressed in TT-direction stressed in RR-direction stressed in LL-direction p 0.05 0.04 expeed moisture 0.0 0.0 u(t=0) 5, 0 % u(t=0) 5, 0 % kg u 0.0 u(t=0) 5, 0 % 0.00 0 5 0 5 0 compressive stress [MPa] 0 5 0 5 0 0 5 0 5 0 compressive stress [MPa] compressive stress [MPa] Empa,, 9/6 5

poroeastic modeing of wood - COST meeting October 00 resuts 0 restrained in TT-direction restrained in RR-direction restrained in LL-direction p, start sweing stress [MPa] -0-40 -60 u(t=0) 0, 7.5, 5 % u(t=0) 0, 7.5, 5 % u(t=0) 0, 7.5, 5 % p -80-00 0.0 0. 0. 0. moisture content 0.0 0. 0. 0. 0.0 0. 0. 0. moisture content moisture content Empa,, 0/6 6

poroeastic modeing of wood - COST meeting October 00 resuts 0.4 restrained in TT-direction RR-strain LL-strain 0.4 restrained in RR-direction TT-strain LL-strain 0.4 restrained in LL-direction TT-strain RR-strain p, start 0. 0. 0. sweing strain 0.0 0.08 0.06 0.04 0.0 u(t=0) 0, 7.5, 5 % 0.0 0.08 0.06 0.04 0.0 u(t=0) 0, 7.5, 5 % 0.0 0.08 0.06 0.04 0.0 u(t=0) 0, 7.5, 5 % p 0.00 0.0 0. 0. 0. moisture content 0.00 0.00 0.0 0. 0. 0. 0.0 0. 0. 0. moisture content moisture content Empa,, /6 7

poroeastic modeing of wood - COST meeting October 00. physica background Empa,, 8

poroeastic modeing of wood - COST meeting October 00 couped moisture and mechanica behavior. tota differentia dω(, u) Ω Ω dω(, u) = d du u interna energy Ω(, u) Nm / m dω d d dω dt dt dω du du Empa,, /6 9

poroeastic modeing of wood - COST meeting October 00 couped moisture and mechanica behavior. tota differentia dω(, u) Ω Ω dω(, u) = d du u interna energy Ω(, u) Nm / m dω d d dω dt dt dω du du mode is isotherma Empa,, /6 0

poroeastic modeing of wood - COST meeting October 00 couped moisture and mechanica behavior. tota differentia dω(, u) Ω dω(, u) = d Ω Ω u Ω du u. Legendre transformation w(, p ) = Ω(, u) p u p Ω Ω p u Empa,, /6

poroeastic modeing of wood - COST meeting October 00 couped moisture and mechanica behavior. tota differentia dω(, u) Ω dω(, u) = d Ω Ω u. Legendre transformation w(, p ) = Ω(, u) p u dp p d u d. tota differentia d, du d = Ω du u p du = u p dp Empa,, /6

poroeastic modeing of wood - COST meeting October 00 couped moisture and mechanica behavior. tota differentia dω(, u) Ω dω(, u) = d Ω Ω u. Legendre transformation w(, p ) = Ω(, u) p u dp p d u d. tota differentia d, du d = Ω du u p du = u p dp strain capacity w C : = moisture capacity w M : = p couping coefficient w B : = p d = Bdp Cd du = Mdp Bd Empa,, /6

poroeastic modeing of wood - COST meeting October 00 couped moisture and mechanica behavior. tota differentia dω(, u) Ω dω(, u) = d Ω Ω u. Legendre transformation w(, p ) = Ω(, u) p u dp p d u d. tota differentia d, du d = Ω du u p du = u p dp strain capacity w Cijk = ij k moisture capacity M = w p couping coefficient B ij w = p ij d = C d B ij ijk k ij dp du = Mdp B ij d ij Empa,, /6 4

poroeastic modeing of wood - COST meeting October 00 energy function (D approach) w = w w stress water w couping Empa,, 4/6 5

Empa,, 6 energy function (D approach) 4/6 couping water stress w w w w = w stress = 6 6 5 5 4 4 w stress poroeastic modeing of wood - COST meeting October 00

poroeastic modeing of wood - COST meeting October 00 energy function (D approach) w = w w stress water w couping w stress w stress = 4 4 5 5 6 6 exampe: nd order approach wstress = water = 0 w C = = = const. w B = p = 0 w = 0 w couping w = d = Bdp Cd d = Cd = C Empa,, 4/6 7

poroeastic modeing of wood - COST meeting October 00 energy function (D approach) w = w w stress water w couping w stress w stress w water = 4 4 5 5 6 6 u 0 u 0 = u0, FSP p v p g ρr TA ϕ / n w 0( ) water = u p dp u 0,FSP w = Ω(, u) p u dw = udp ϕ Empa,, 4/6 8

poroeastic modeing of wood - COST meeting October 00 energy function (D approach) w = w w stress water w couping w stress w stress = 4 4 5 5 6 6 w water w water / nϕ p = u p dp u FSP p ρrvta 0 ( ) = 0, ( ϕ ) ρrvta ϕ n ϕ n ϕ Empa,, 4/6 9

Empa,, 0 energy function (D approach) 4/6 couping water stress w w w w = w stress w water w couping ( ) n FSP A u p u / 0, 0 / n ) ( = ϕ ϕ = R T p p Exp v g ρ ϕ = 6 6 6 [0] 6 5 5 5 [0] 5 4 4 4 [0] 4 [0] [0] [0] 0 ) ( γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ couping p u w ϕ ϕ ϕ ϕ ϕ ρ ρ n n R TA p R TA p u dp p u w n v v FSP water = = ) ( ) ( / 0, 0 poroeastic modeing of wood - COST meeting October 00 = 6 6 5 5 4 4 w stress

poroeastic modeing of wood - COST meeting October 00 concusion Thermodynamic approach yieds set of two constitutive equations inking mechanica and moisture behavior d = Bdp Cd du = Mdp Bd Important effects of the couped moisture and mechanica behavior of wood are covered. Orthotropy of wood is taken into account. Empa,, 5/6

poroeastic modeing of wood - COST meeting October 00 Thank you Empa,, 6/6