Relative unitary RZ-spaces and the Arithmetic Fundamental Lemma

Σχετικά έγγραφα
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

rs r r â t át r st tíst Ó P ã t r r r â

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Assessment of otoacoustic emission probe fit at the workfloor

Alterazioni del sistema cardiovascolare nel volo spaziale

Mesh Parameterization: Theory and Practice

Ax = b. 7x = 21. x = 21 7 = 3.

A hybrid PSTD/DG method to solve the linearized Euler equations

Coupling strategies for compressible - low Mach number flows

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Multi-GPU numerical simulation of electromagnetic waves

P r s r r t. tr t. r P

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Jeux d inondation dans les graphes

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

Consommation marchande et contraintes non monétaires au Canada ( )

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

ACI sécurité informatique KAA (Key Authentification Ambient)

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Points de torsion des courbes elliptiques et équations diophantiennes

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles

Couplage dans les applications interactives de grande taille

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371,

Vers un assistant à la preuve en langue naturelle

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

ON THE MEASUREMENT OF

Analysis of a discrete element method and coupling with a compressible fluid flow method

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts

UNIVERSITE DE PERPIGNAN VIA DOMITIA

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle


Langages dédiés au développement de services de communications

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

Ανταλλακτικά για Laptop Lenovo

Ε.Ε. Παρ. I(II) Αρ. 3887,

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Προβολές και Μετασχηματισμοί Παρατήρησης

Approximation de haute précision des problèmes de diffraction.

Déformation et quantification par groupoïde des variétés toriques

m i N 1 F i = j i F ij + F x


Logique et Interaction : une Étude Sémantique de la


La naissance de la cohomologie des groupes

Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels.

❷ s é 2s é í t é Pr 3


9.BbF`2iBbB2`mM; A,.Bz2`2Mx2Mp2`7?`2M 7Ƀ` T `ib2hh2.bz2`2mib H;H2B+?mM;2M 8.BbF`2iBbB2`mM; AA, 6BMBi2 1H2K2Mi2 o2`7?`2m

t ts P ALEPlot t t P rt P ts r P ts t r P ts

M p f(p, q) = (p + q) O(1)



5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

Das Pentagramma Mirificum von Gauß

Ε.Ε. Παρ. 1(H) Αρ. 3496, Ν. 33(IIV2001

VISCOUS FLUID FLOWS Mechanical Engineering

Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

Chapter 1 Fundamentals in Elasticity

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,

Aboa Centre for Economics. Discussion paper No. 122 Turku 2018

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations

934 Ν. 9<Π)/94. Ε.Ε. Παρ. 1(H) Αρ. 2863,43.94

Une Théorie des Constructions Inductives

Pathological synchronization in neuronal populations : a control theoretic perspective

f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z)

TALAR ROSA -. / ',)45$%"67789


AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

". / / / !/!// /!!"/ /! / 1 "&

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

#%" )*& ##+," $ -,!./" %#/%0! %,!


Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <


Ó³ Ÿ , º 3(180).. 313Ä320


Transcript:

Relative unitary RZ-spaces and the Arithmetic Fundamental Lemma Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Andreas Johannes Mihatsch aus Würzburg Bonn 2016

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Gutachter: Prof. Dr. Michael Rapoport 2. Gutachter: Prof. Dr. Gerd Faltings Tag der mündlichen Prüfung: 16.12.2016 Erscheinungsjahr: 2017

s ss r r t st ä s r t t s t s s st r t t t ss tt r t tär rt ä ss 2t s s rü s r s ss ö t r r t s r tr s t t r3 s 33 r n 1 s E/E 0 r3 t q r t s r t r r p s r ör r (V,J) n s r r ts r E t rr s ss detj E 0 r st s t str r r r s N E0,n s r p s r 3 s t P s t3 t 3ü r r t r E/E 0 s st s ür s t rt tär r U E0,n := U(V,J) r rt tür r s N E0,n ÿ r t s ür n 2 tür tt r r r t 3 δ : N E0,n 1 N E0,n, ür s t s r är s g U E0,n r r s tt r t Int(g) :=,(1,g) N E0,n 1 N E0,n ÿ r r r ss 2t s s r O(g) s t r r p s r ür t r s r tt 1t r t ür s r är g U E0,n t s r 3 t O(g) = Int(g) log(q). r 3 q 3 r t st ss ör r E 0 t r t n 3 r 3 rt r r t r s ür s n r s s g s s st st r s rä g s tr s t t r r r t ässt s t r r σ s t E/E 0 r ss σ Qp 2 id ä r3 r ϑ E r rs r t E 0 /Q p t tr E0/Q p (ϑ E ) = 1 r Q p 2/Q p r ts r J Qp 2 := tr E/Qp 2 (ϑ EJ). t t rr V r s t3t 3 t t 1t r r t ür r t r E/E 0 ür r t r Q p 2/Q p ür s g U E0,n 3 r t Z p 2[g] End(V) g r3 t Z p 2 r ÿ r 3 r t d r [E 0 : Q p ] t i s r tär r U E0,n U(J Qp 2) r r p 2

r g U E0,n r är t r s t ss O E Z p 2[g] t st s ür g r ör r E 0 s äq t 3 ür i(g) r ör r Q p s s r t s ür i(g) s n 3 r s t P t s s r s st str t r tt N E0,n N Qp,nd. s str t r t r r t s 2s s r r ü rt t ss t t r str t r s s r O s 2s π s r O s r r rt rst t r t t t t s s s t rt P r s s r s r s s t t s t s Pr t rt r r t r t r r p s r s r t t t s t t

t t r2 s s t r t t t r s ts t r t ts tr t t t r2 s s s t s t r t r s t t r r r 2 s t r2 s s t t t r t t t 2t s t r t t t 2t s t r t t t s ts t 1 str t r O s s r 3 t s s

t r s r s

tr t tr s s s r t t t t r s s t r t t2 t rt r t s r t t r s p s2 tr s s rt t rs t r ts t r2 rt s s s r t s s n 3 s t s s q t r rt rst r 2 t r r tr r2 n s s r ts g t r s t r r 2 r s s t r r tr r2 n t r r str t t s g s t t s r 2 rt r rs r s s r s s r s s t r t rt s s r r s 2 r t P r s r p s r s r str t r O s s r s r s t t r2 s 2 s 2 s r r s s r s r r s s r s t t r rt t r s s r r r s r 3 t s t t st r s s t t r 3 t str t r O s t t s s r 3 t t r 2 p s r tr t t s r t 1 t s r 2 t t rs r t rst t s r t t r t t r ss Pr s t r s s r s r 3 t t r ss r r s r r t t tr t r r r t t s s ts t r s r t r r q r t 1t s t rt s2st t tr t t r r ts t r s t t s r r r s ts r t P rt t t r2 s s 2 r t r r r s s r rs t r t t s t t E/E 0 r q r t 1t s p s t r s t rs O E0 O E s t σ t 2 Ĕ t t 1 r 1t s E t r t rs OĔ r s F t t S s r SpfOĔ r t O E r S s tr (X,ι,λ) r X/S s s rs r str t O E0 ι : O E End(X) t λ : X X r r 3 t t t s t t t s t t s t r t O E (X,ι,λ) r S s s t r (r,s) r a O E charpol(ι(a) Lie(X))(T) = (T a) r (T σ(a)) s O S [T]. t q s s 2 t r s q r t O E (X E0,(r,s),ι,λ) s t r (r,s) r F r t t s r ss p 2 t s OĔ s s t t p s 2 t t O S

t r OĔ s S t 2 S := S F ts s r t N E0,(r,s) t s t t r t t r2 s s r SpfOĔ 2 S ss t t s t s r s ss s q r s (X,ι,λ,ρ) r (X,ι,λ) s r t O E s t r (r,s) r ρ : X S S X E0,(r,s) F S s E r q s s 2 s t t ρ λ = λ Pr s t t r N E0,(r,s) s r r s t 2 r s s 2 r 2 t t2 r 2 s t s rs r SpfOĔ r r s r r r rst E 0 = Q p t t s r s P t2 t s s rt s 2 tr st E 0 Q p t t s r s t r 2 t r s s t t r 3 t λ s r 3 t s str t O E0 N E0,(r,s) r t rt s s t r 2 r s r t str t O E0 s s s t p s r s t r s N Qp,(1,n 1) r 3 s t s rs r s rt t r2 r r t2 s t ss t 2 t s s r t 2 r t s r t t r r t2 t r s r t s s r s t s t r t r s s N E0,(1,n 1) r r s t r r s t t r r s t r P rt st t r t r r 2 r r t r s st t t r r 1 sts s N E0/Q p,(r,s) P t2 t s s t t r t s r s N E0/Q p,(r,s) = N E0,(r,s). s s r s s q r t t r s t t t t r2 r t t s s rt r t s N E0/Q p,(r,s) s s t r SpfOĔ s s r r s t s 2 t s t r t r E 0 /Q p st s r2 s tt t3 t r t r N E0/Q p,(r,s) 2 t tt t3 t s t r t 1 r t r t Q p E0 u E 0 t t ss 2 ψ 0 : E0 u Ĕ s t r t rs s s r t2 t t s t t q t t t t t t r t r t s t 2 r t st t t rs s t s st t t t r r r s r t s r s t t t 2 t s ss t t E = E 0 Q p 2 t d := [E 0 : Q p ] t s s r tt t O E0 t s N E0/Q p,(r,n r) N Qp,(r,nd r). r = 1 t ts t t t t rt 2 2s r t t r s 1 s r

P rt t t t r t t t rst r r t t t r t s r rs t t 1t s s r t t r r t r r t r r t r t s rs t s 1 t r n 2 t W 0 (n 1) s E 0 t r s t W := E W 0 V := W Eu GL(W) t GL(V) s h diag(h,1) t s 2 GL(W) ts 2 t End(V) t γ End(V) s s t r r s s ts st 3 r r t s t s tr ts r t s r s s t S(E 0 ) t t s2 tr s S(E 0 ) := {γ End(V) γγ = 1}. t s st r t t GL(W 0 ) t ts r r s s ts 2 S(E 0 ) rs r t s t t r t q t t [S(E 0 ) rs ] := GL(W 0 )\S(E 0 ) rs. r r r s s t γ S(E 0 ) rs r t st t f Cc (S(E 0 )) r 1 r t r s C t r t t r O γ (f,s) := f(h 1 γh)η(deth) deth s dh, GL(W 0) r η : E 0 {±1} s t q r t r t r ss t t E/E 0 2 ss t r2 r := q v( ) s t r 3 s t s r t s O γ (f) := O γ (f,0) t r r t t r O γ (f) := d ds O γ (f,s). s=0 t t t O γ (f) tr s r s t η det r t t GL(W 0 ) γ tr s r t r Ω(γ) {±1} s s η r t t r t Ω(γ)O γ (f) s s t t q t t [S(E 0 ) rs ] t J0 r s J1 r t r t s r t r s s r t W r i = 0,1 1t Ji t r J i V 2 J i (u,u) = 1 u W t r2 r U(Ji ) ts 2 t t r r s s ts U(J i ) rs r t q t t [U(J i ) rs ] := U(J i)\u(j i ) rs. t ts δ U(J i ) rs γ S(E 0 ) rs r s t t t 2 r t r GL(W) t End(V) t r t s t α : [S(E 0 ) rs ] = [U(J 0 ) rs ] [U(J 1 ) rs ]. t Y E0 r s X E0(1,n 2) r t O E r F s t r (0,1) r s s t r (1,n 2) r X E0,(1,n 1) := X E0,(1,n 2) Y E0 s s t r (1,n 1) s r t ss t s s N E0,(1,n 2) N E0,(1,n 1) t t t t r s q r t Y E0 Y E0 t SpfOĔ 2 Pr s t s s s rs δ : N E0,(1,n 2) N E0,(1,n 1) X X Y E0.

ts t t t rt s r Z(u) ss t t t r s u := 0 id : Y E0 X E0,(1,n 2) Y E0 s t 2 t r Aut(X E0,(1,n 2),λ,ι) t U(J 1) U(J 1) ts N E0,(1,n 2) 2 s t t r g.(x,λ,ι,ρ) = (X,λ,ι,gρ) r 2 2 t 2 Aut(X E0,(1,n 1),λ,ι) t U(J 1 ) s t t t s 2 t t δ s q r t t r s t t t U(J 1) U(J 1 ) t r t g U(J 1 ) t 2 Z(g) N E0,(1,n 1) t s (X,ρ) r ρ 1 gρ End(X) s Pr s t t g U(J 1 ) s rt t t rs t Im(δ) Z(g) s rt s r rt g t t rs t r Int(g) := len OĔO Im(δ) Z(g). t 2 s t rs t r t r r r s s ts g U(J 1 ) rs t s t t rs t Im(δ) Z(g) 2 r s r r t r s r s t t t t t t r s ts t s r 2 2 t t rt s r r 2 t st t t t r r rt ts t Λ 0 W 0 s tt s t Λ := (Λ 0 O E ) O E u S(O E0 ) := S(E 0 ) End(Λ) t ts r t r st t 2 1 S(OE0 ) t r t r r r2 t γ S(E 0 ) rs t t t s rt t g U(J 1 ) rs t r s q t2 Ω(γ) O γ (1 S(OE0 )) = Int(g)log(q). AFL E0,(V,J 1),u,g r t 1 q r (E 0,(V,J 1 ),u,g) s s s 2 t t t s s r str t t t r s t q t (AFL E0,(V,J 1),u,g) st t t r t r r s ts r t s t r t s ss t t σ Qp 2 id t r r s ss t t E = E 0 Q p 2 t d := [E 0 : Q p ] t r t f := [E 0 : Q p ] inert t rt r t 1t s E 0 /Q p t s r t V Qp 2 r t t r s V t r r s Q p 2 t r s t ϑ E r t r t rs r t E 0 /Q p s t t tr E/Qp (ϑ E ) = 1 t J 1,Qp 2 t r t r V Qp 2 J 1,Qp 2 := tr E/Qp 2 (ϑ EJ 1 ). t t t J 1,Qp 2(u,u) = 1 ts s t t s t t t r t 1t s Q p 2/Q p t t r s V Qp 2 t Y Qp r s X Qp,(1,nd 1) r t Z p 2 s t r (0,1) r s s t r (1,nd 1) r F s t t End(V Qp 2) = End(X Qp,(1,nd 1)) t t s q r t r t t t J 1,Qp 2 t t t s t t t r t s s t t U(J 1,Qp 2) = Aut(X Qp,(1,nd 1)) ss t t X Qp,(1,nd 1) t s N Qp,(1,nd 1) r t Z p 2 s s t r (1,nd 1) t t t t t O E X Qp,(1,nd 1)

2 q s r s s t 2 Z(O E ) N Qp,(1,nd 1) t s rs (X,ρ) s t t ρ 1 O E ρ End(X) t t t 2 g U(J 1,Qp 2) ss t 2 Z(g) N Qp,(1,nd 1) 2 t s 2 2 s t Z p 2 r s 2 g End(V) t t g U(J 1 ) rs s t t2 t r s s O E Z p 2[g] r t r t s t s t Z p 2 r s 2 g End(V) t s s r t s i : U(J 1 ) U(J 1,Qp 2) g U(J 1 ) rs s t t2 t t t r t Z(i(g)) Z(O E ). r r s s r s r s s Z(O E ) = f i=1 N E0,(1,n 1). s s r s s t t t r t Z(g) t s s g U(J 1 ) rs s t t2 t Z(i(g)) = f Z(g) Z(O E ). i=1 r t s t r r s r t s st t r r s t t t r s t s tt r t g U(J 1 ) rs r r s s rt t t2 t r s q (AFL E0,V,u,g) (AFL Qp,V Qp 2,u,i(g) ). t s r r n 3 t t r r2 r r2 t g r r s s rt t t2 t n 3 t r g r Q p (AFL Qp,V Qp 2,u,i(g) ) s t t 1t r 2 r ts t s r s t s t r r s t s r ts s r t r rs t t r rs t 2 r s s 2 t r s t r rt r r s r t s ét r E 0 /Q p t s rt t t t t t s s s r r r s t r s s t r s r r t r s ss s t t t r t r rs r rt ts s t

ts t t rt 2 t 2 s r rt r s st t t t t r 2 s ss s r t 2 r r s r r r ts t s r s t t t r s t s O s 2s r s r r s r r rs t 1 s t t t r rr P 3 r s s ss s s r s t t r s P t s s t t rs t2 t t t r t r t r ts s rt r t st t 2 rs

P rt t t r2 s s s t s t s t r r t r P t2 s 2 rt t r 3 s t r r r rt r t s s ss t t t r2 r r r q r t 1t s p s t t p > 2 r t E/E 0 r q r t 1t s p s t d := [E 0 : Q p ] t d = ef r e t s t r t 1 f t rt r t t s t E/E 0 2 σ t r s t rs 2 O E0 O E t s r t E (V,, ) s E t r s t t r t r t t r t Q p r r, : V V Q p s t t a, =,a σ r a E s r s s r t E s (V,, ) (V,, ) s E r s tr2 V = V t 2 U(V) t r t r s s (V,, ) r r2 n t r 1 st t s r s ss s s r t E s (V,, ) s n s 2 t t V s t r 1 sts s O E tt V t r s V s st s s t t s r s ss s t t t (V,, ) s r s 2 t 1 [M : M] s r s r r2 Z p tt M V t r2 s r t E s s t t t t V 1 V 2 r s r t E s t t s s t s r s : Hom E (V 1,V 2 ) = Hom E (V 2,V 1 ) f f : V 2 = V 2 f V 1 = V 1 r t t t s V 1 = V 1 V 2 = V 2 r 2 t s r t r s r r t O E s t q s s 2 s s Qp t s t t 1 r 1t s Q p t 2 E u E t 1 s s r r Q p Ψ := Hom Qp (E u, Q p ) s s t Ψ = Ψ 0 Ψ 1 s t t σ(ψ 0 ) = Ψ 1 1 t ψ 0 Ψ 0 2 Ĕ := E E u,ψ 0 Qp s t t 1 r 1t s E t t r t rs Q p r s Ĕ 2 Z p r s OĔ t F t r r s t x F x t t r s Q p

r s t r t t O E Zp Zp = ψ ΨOĔ s t t t r s 1 F s s ts s 2 tr s t t 1 s t t t S s r Spf Z p s rs r r t O E Z p r S s tr (X, ι, λ) r X/S s s rs r p s r t t r t t ι : O E End(X) r r 3 t λ : X X s t t λ 1 ι(a )λ = ι(a σ ). s r s r s q s s 2 t r t O E Z p s (X,ι,λ) (X,ι,λ ) s O E r s r s r s q s s 2 µ : X X t r 2 p s r s s t t µ λ = λ s 2 t t t r t O E Z p (X,ι,λ) s r n t t X s p s r s 2nd s s dimx = nd t t r2 r t O E Z p s r s S s t t s t t (X 1,ι 1,λ 1 ) (X 2,ι 2,λ 2 ) r t s s t t s s t s r s : Hom OE (X 1,X 2 ) = Hom OE (X 2,X 1 ) f f := λ 1 1 f λ 2. 2 é t r2 t t r2 r t O E Z p s t q s s 2 r Spec F s q t t t t r2 s r t E s r2st s s t t s rs r s r t E s r2st s t (N,,, F, ι) r N s t Q p t r s, : N N Q p s t r t r t r F : N N s F r s r s t s s 1/2 s t t F,F = p F, ι : E End(N,F) s t E s t t a, =,a σ r a E Pr s t r s q t r s {s r t E s (V,, )} = {s r t E s r2st s (N,,, F, ι)}. t t s t t t t t s t s s rt r r r n t r r r s 2 t r t O E Z p s r F t q s s 2 t s r t E s r2st s r s t rr s s t r s s r t E r t q t r s Pr s r t E (V,, ) s r t E s r2st s s rst 1t s rs r Q p t Q p N := V Qp Qp. t t t t s r t E s r2st s s st s t s s r t E s

1t t r, t Q p r 2 t N t t t N s r E Q p r r t N = ψ ΨN ψ. F r r t r α := id V F N s s t s s t t α(n ψ ) = NF ψ rt r r t r s t s s, Nψ N ψ 0 ψ σψ. s rs r r s F = F ψ N { pα ψ ψ Ψ 0 [F ψ : N ψ NF ψ] := α ψ ψ Ψ 1. r α ψ : N ψ NF ψ s t ψ t α t s s t t (N,F) s s rs r s F 2f = p f V rt r t r 1 sts Z p tt M N s t t F 2f M = p f M rt r r t r s 2 r, s r 3 t (N, F) s t s t r (x,y) N ψ N σψ t t Fx,Fy = p αx,αy = p F ( x,y ). r t rst q t2 s t t r s 2 t {ψ,σψ} s Ψ 0 2 N t t E t t rst t r N = V Q p s t s t t, t s t F t s t rs str t s r t E s r2st (N,,, F, ι) t F r r t r α = α ψ s { p 1 F ψ ψ Ψ 0 [α ψ : N ψ NF ψ] := F ψ ψ Ψ 1. V := N α=1 r str t t r, t V t t t α s s s 0 s N s s rs r rt r r α,α = p 1 F,F = F,. V t r, t s s t F r ts Q p r t Q p 2 t E t t s t α t s E ts V s s s t t (V,, ) s s r t E s t t V Q p = N t s r t t t r str t s r t r t t t t t s rt s s t r,s Z 0 s t n := r +s

t r a E t 2 s P (0,1) (a;t) := ψ(charpol E/E u(a;t)) E u [t]. ψ Ψ 1 P (1,0) (a;t) := P (0,1) (a;t)(t a)(t a σ ) 1 P (r,s) (a;t) := P (1,0) (a;t) r P (0,1) (a;t) s E[t]. E[t]. X s r t O E Z p r Spf Z p s S t ts r s Ψ r Lie(X) = ψ ΨLie ψ (X). r Lie ψ (X) s t r t s O E u ts t ψ : O E u Z p t t 2 t OĔ = O E OE u,ψ 0 Zp. s r 2 SpfOĔ s s O E s t rst s Z p s t s r t t t S s r SpfOĔ r t O E Z p r n r S s s t r (r,s) t t t s charpol(ι(a) Lie(X);t) = P (r,s) (a;t) a O E. (ι(a) a)) Lieψ0 (X)= 0 a O E. r P (r,s) (a;t) s t O S [t] t str t r r s t s t t O E ts Lie ψ0 (X) t str t r r s r t s E 0 = Q p r t s t r r s t t r r r 2 t s r 1t s E/Q p t t s t t 2 s t s t t s t 2 r a O E u q t 2 r 2 t r t r s t s s q t r s s 0 ψ Ψ 0 \{ψ 0 } r ψ = ψ 0 rk OS Lie ψ (X) = ne ψ Ψ 1 \{σψ 0 } ne r ψ = σψ 0. 2 s P (0,n) (a;t) ts E u Q p t s s t r (0,n) t r t r s s r Z p t t s s r t q s s 2 ss r t O E Z p r F rr s t s r t E (V,, ) r n r 1 sts r r t O E Z p (X,ι,λ) s t r (r,s) t s ss 2 t r t2 V s t t r t2 r r r t r t s t t t r t r α r q t

t V s r t E t N := V Qp Qp t s rs r s r2st t r s t { s OE tt s Λ V } { } s O E st é tt s =. M N s t r (0,n) s t s 2 Λ Λ Zp Zp M M α=id Pr s s ss t 2 tr t t t Λ s t rr t s t r 2 t F s t t t M s st r α s t s s t r (0,n) Pr rst r t 1 st r t O E Z p s r s t r s t s t s r t s s s t r (0,1) (1,0) r t r ts t s tt t r s s s t r (0,1) s t r 2 s r t t t s (1,0) t (V,, ) 2 s r t E r 1 t (N,F,ι,, ) t ss t s r2st 1 r 3 r π E E O E tt Λ V s t t π E Λ = Λ t M := Λ Z p t ss t O E st Z tt t s s s M = ψ ΨM ψ. M := ψ Ψ M ψ s M ψ := { M ψ ψ { F ψ 0, F2 ψ 0,..., Ff ψ 0 } π 1 E M ψ t r s. s tt s st r O E st r F st r pf 1 rt r r t s s s t r (1, 0) s s s t r 1 st t (X,ι,λ)/F s t r (r,s) t N = ψ Ψ N ψ t s r2st X t t r t t t r t r, 2 λ r 2 OĔ tt L ψ0 N ψ0 t 2 L ψ 0 N σψ0 ts t r s t t t r, t X rr s t t OĔ tt M N t s s t s M ψ 0 = M σψ0 s t r t r M s t t [α f M ψ0 : M ψ 0 ] = r. s r r2 OĔ tt L ψ0 N ψ0 [α f L ψ0 : L ψ 0 ] r 2 2 Pr s t t r r r s 2 t q s s 2 ss s r r t O E Z p s r F rt r r r t O E Z p s X X r F s t r s (r,s) (r,s ) r s t 2 r q s s s 2 r r 2 2 r V t s r t2 r 2 s t r (r,s) 1 r t O E Z p X E0/Q p,(r,s) r F t t s t r t t 1 2 tr (X,ι,λ) q s s s t r t OE Z p s t r (r, s)

t r s t r (r, s) s r t s t t r N E0/Q p,(r,s) s s r SpfOĔ t ss t s t S t s t s r s ss s q r s (X,ι,λ,ρ) r (X,ι,λ) s r t O E Z p s t r (r,s) r S r ρ : X S S X E0/Q p,(r,s) F S s q s s 2 r t O E Z p s r S t s t s r S = S Spf OĔ SpecF q s s 2 ρ s r X E0/Q p,(r,s) s t r t t r N E0/Q p,(r,s) s r r s t 2 r s s 2 r 2 t t2 r SpfOĔ Pr s s r Pr s t r s N E0/Q p,(r,s) s r 2 s t r SpfOĔ r t s rs r s t s r t r t ss r r t X N E0/Q p,(r,s)(s) t 2 D X ts r t r2st t r2st s t S S S s t t D X (S ) s 2 r O S r 2nd ts tr t D X (S ) := D X (S ) OE Zp O S O S. Pr s t t X/S p s r t t r t t 2 O E t 1 r r s ét r E/Q p r t s S S D X (S ) s 2 r r O E Zp O S r r2 r 2 t S S t O S D X (S ) s 2 r r n r O S Pr r ss D X (S ) s r t r s r s t r t t tr ts S s r é t r2 Pr Pr s t s r t tr t F D X (S) t X N E0/Q p,(r,s)(s) s r O E O S s s t r r s t s F = F ψ D X (S) = D X (S) ψ r t s t r t t s t t D X (S) ψ0 /F ψ0 s r t r r r O S F σψ0 D X (S) σψ0 q s Fψ 0 F ψ = D X (S) ψ ψ Ψ 0 \{ψ 0 } F ψ = 0 ψ Ψ 1 \{σψ 0 }. rt r r O E ts t q t t Lie ψ0 (X) = D X (S) ψ0 /F ψ0 t str t r r s O E OĔ O S t r r s Lie ψ0 (X) s q t t D X (S) s r t S S t t tr t F t F D X (S ) s t t F s O E st s tr s t t O E ts F ψ 0 t r 2 s q t t t t q t t D X (S) Lie ψ0 (X) s r t r s r 2 s t r t s rs

t r t t K/Q p t 1t s t r t rs O K r 2 t t r 3 t t s t r s s t r p s r s t str t r O K s r r t t 1 r t t str t r O K s t r r 3 t s t t t r2 t r s 2s r t t s s t 1 r 3 r π K O K r 3 t s str t r O K s r t t r s t t t s r 3 r s r 2 t r s s r t O K (X,ι) 2s t r t t r s r t s t t r2 s s t Q p K E 0 t 1t s s t E/E 0 r q r t 1 t s t s t σ t E u 0 E u t t 1 s s r r r K s s K t s t t 1 r 1t s K s s t s t t σ(ψ 0 ) = Ψ 1 Ψ := Hom K (E u, K) = Ψ 0 Ψ 1 t t S s r SpfO K s rs r r t O E O K r S s tr (X,ι,λ) r X/S s s rs r str t O K t t r t t ι : O E End(X) r r 3 t λ : X X s t t λ 1 ι(a )λ = ι(a σ ). s r s r s q s s 2 t r t O E O K s (X,ι,λ) (X,ι,λ ) s O E r s r s r s q s s 2 µ : X X t r 2 str t O K s s t t µ λ = λ s 2 t t t r t O E O K (X,ι,λ) s r n t t X s str t O K s 2n[E 0 : K] s s dimx = n[e 0 : K] r SpfOĔ s S t t s t r r t O E O K r S s t 2 s t t t s p s r s t r s q r t (X E0/K,(r,s),ι,λ)/F s t r (r,s) t q s s 2 t t N E0/K,(r,s) t t t r t t r2 s s r SpfOĔ t ss t s t S t s t s r s ss s q r s (X,ι,λ,ρ) r (X,ι,λ)/S s r t O E O K s t r (r,s) r ρ s O E r q s s 2 t t r s r s t r 3 t ρ : X S S X E0/K,(r,s) F S t s r t t N E0/K,(r,s) s r r s t 2 r s 2 r 2 t t2 r SpfOĔ s s t t s s X s str t OK r q t 1/2 r r s t t2 r s t s s 2 r 3 r p s r s t OK s 2 t t t t t t O K t ts r t r t t t t t t t t s str t r s t s t s r

r s N E0/K,(r,s) s r 2 s t r t s rs r SpfOĔ Pr r s t ss s r t t s r ts s t s p s r s s Pr s t t t rt t s s s t t K = E 0 s 2 t t t t N E0,(r,s) := N E0/E 0,(r,s) s 2 s 2 r t O E st r t O E Z p t t t N E0,(r,s) s r s 2 t r r r t t r t s tt str t O E0 s t rs t r t t r t t t t r s t t r r r t (V,, ) s r t E s t t K t r t Q p K E 0 s r t r ϑ K t rs r t K/Q p r 1 sts q r t K r t r t r, K : V V K s t t tr K/Qp (ϑ K, K ) =, rt r r t s r s E r t t s s t t a, K =,a σ K, a E. r s E r s tr s,, K r t t s t t t tt Λ V s s t r s t t t t r, K 2 t s s r t r r, r 2 s t r t K 1 r 3 r π K O K r r t t t r 3 t s str t r O K s s r N := (V,, K ) K K t r 3 K s r2st s t r Pr s t rr s q s s 2 ss r t O E O K s r F t s s t r (r,s) 2 r V t s r t2 s r s t s p s r s s Pr s t r V t s r t2 t V s r s t 2 r ts {X E0/K,(r,s)} Qp K E 0 t t 2 q s s s t t r2 r U(V) r r s t t s s t s t t t rr s s s r s r r t (V,, ) s r t E t r t s r t2 s V r 2 t r t Q p K E 0 t r s U(V) q r t s r s c : N E0/K,(r,s) = N E0,(r,s). rt r t r s N E0/K,(r,s) s t t t s t Ψ = Ψ 0 Ψ 1 r r s t q t r s s r t t r2 /SpfOĔ 2 t r s s r SpfOĔ t t r t t r s t 2

t t 2 O E O K r t st r t O E O K s (X,ι,λ) t t s t r r /SpfOĔ 2 t t t t 2 r t r s t 2 t r t O E O K s s t r (r,s) r s t rs r,s Z 0 r s s t s t r2 r t O E r r s s p s r s r t t t r t O E r r t st r t O E s r r s s r s st s /SpfOĔ C : O E O K r = O E r t t s t s s t r rt s t s q r t r t s t t t s s ts s t r (r,s) t ts s t r (r,s) s s t s t t t r t s t t r s r s Pr s t s r t r t Q p K E 0 t E u 0 E 0 t 1 s s r r K t r s s r s st s C : O E O K r = O E O E u 0 r t t s q r t r t s t t s s s ts s t r (r,s) t ts s t r (r, s) Pr str t t t r C ts q s rs t S = SpecR s r SpfOĔ t (X,ι,λ) r t O E O K s t r (r,s) r R s t t t r t t (P,Q,F, F) t O K s 2 (X,ι,λ) t 2, : P P W OK (R) t t r t r 2 t r 3 t λ t t Ψ = Hom K (E u, K) t t t t r 1 sts t r r s O E u W OK (R) O K r s t t ts t r s O E u R s s r s s r s P = ψ Ψ P ψ, Q = ψ ΨQ ψ with Q ψ = Q P ψ. r ψ / {ψ 0,σψ 0 } t r s r s r s { F ψ ψ Ψ 0 \{ψ 0 } [F ψ : P ψ PF ψ] := F ψ ψ Ψ 1 \{σψ 0 }. r s t t (X,ι,λ) s s t r s Q ψ = P ψ r ψ Ψ 0 \{ψ 0 } s t P := P ψ0 P σψ0 t s Q := Q ψ0 Q σψ0 t Ff r r t rs F, F P Q s F := F f 1 F, F := F f 1 F.

P := (P,Q,F, F ) s f O K s 2 t s s s r r s O E t W OK (R) t r t r, :=, P P t t t f O K s 2s r t s s s r t O E u 0 r A OE u 0 /O K (R) := (W OK (R),I OK (R), Ff, Ff 1 V 1 ). r s t r, t s s A OE u 0 /O K (R) t s s t t F, F = Ff 1 V 1, s t 2 r t t t s F, F = F,F = F, r t r, P t r r s t r s r r 3 t t f O K s 2 P s Pr s t s 1 t 1 s t t r str t r s r s A OE u 0 /O K (R) (W OE u 0 (R),I OE u 0 (R), F, V 1 ) s r 2 r 3 str t r O E u 0 C(X) t t r t t O E t s s s t r (r,s) t O E O E u 0 r (S) str t q s rs C t P := (P,Q,F, F ) t f O K s 2 ss t t r t O E O E u 0 (X,ι,λ) r S 2 t r t2 t s t O E t t r r 3 t str t t ss t r t O E O K 2 s t 2 rs t str t r t r Pr s t t t t t O E t s r P = P 0 P 1 Q = Q 0 Q 1 s t r i = 1,...,f 1 P ψ0 := P 0 P σψ0 := P 1, Q ψ0 := Q 0 Q σψ0 := Q 1. P F i+1 ψ 0 := P (F) F i ψ 0, P F i+1 σψ 0 := P (F) F i σψ 0. s t r t r s s t s t r ψ / {ψ 0,σψ 0 } { P ψ ψ Ψ 0 \{ψ 0 } Q ψ = I OK (R)P ψ ψ Ψ 1 \{σψ 0 }. s 2 str t r s 2 r s t t (P = L T,φ) r s t P r s t (P = L T,Φ) s L = L ψ0 L σψ0 P ψ, t F r r t r T = T ψ0 T σψ0 1 Φ = 1 1 ψ Ψ 0\{ψ 0} ψ Ψ 1\{σψ 0} φ F P ψ

t r s t t t s t P = (P ψ0 P σψ0 ) (P ψ0 P σψ0 ) (F)... (P ψ0 P σψ0 ) (Ff 1) s r 2 s f O K s 2 P := (P,Q,F, F) q t O E t t rr t s t r str t t r 3 t s O K s 2 P t t r t r, ψ0 : P ψ0 P σψ0 W OK (R). r s t st 2 t 1t t s r t r, P s t t t r t s r 3 t r s t s t s 1 t s r t r t s PF ψ 0 PF σψ 0 l+t L ψ0 T ψ0 l +t L σψ0 T σψ0 t t s t Φ(l+t),Φ(l +t ) := F(l)+F(t), F(l )+F(t ) = V 1 l,l ψ0 + F l,t ψ0 + F t,l ψ0 +π F t,t ψ0. Φ s r s r s r s t s s 1t s q 2 t PF ψ 0 PF σψ 0 2 t s r s t, P F i+1 ψ 0 P F i+1 σψ 0 r i = 1,...,f 2 t t t t t s r t r s t t t s s t, PF i+1 ψ0 P F i+1 σψ0 =, (F) P F i ψ0 P F i σψ0. t t t r r t t t t s s r r 3 t P s s t r r t t t t s t ss t R t r 2 t s ss t t r s t t t t 2 r s Pr s t t Q p K E 0 t r t s t t E 0 /K s t t 2 r r s s r s st s r /SpfOĔ C : O E O K r = O E r t t s q r t r t s t t t t s s ts s t r (r, s) t ts s t r (r, s) r s sts t r st s rst str t t t r C Pr r t t C s q r OĔ s s r t r st p 2 r t t C t s t r t t r s X C(X) t r t t r str t t t r s s t s 2 t st t t rst st str t t t r C t S = SpecR s r SpfOĔ r t str t C s t t r rt s t O K s 2 r t O E O K (X,ι,λ) s t r (r,s) r S s t t t r t r t t s t 2 Ψ t {0,1} s t t ψ 0 rr s s t 0 t P := (P,Q,F, F) t O K s 2 X t ι O E X s t O E t s 2 s s P Q t O E W OK (R) s t F F r O E r t t r rt s r s P = P 0 P 1 Q = Q 0 Q 1 s t t t F F r s r 1

s t r t s t t P 0 /Q 0 s r t r r r R t t P 1 /Q 1 s r t r ne r r R rt r r O E ts P 0 /Q 0 t str t r r s t r r s J OE0 (R)P 0 Q 0. t t 2 Pr t P s r t r 2n r O E0 OK W OK (R) r 3 t s r t t r t r, : P P W OK (R) s t s s a, =,a σ r a O E rt r P 0 P 1 r 1 s tr s s s P r t t t2 2, rt r r Q,Q I OK (R) t r s t s s F, F = V 1, t r r s t r t s s t tt O K r r t W OK (R) = (W OK (R),I OK (R),R, F, V 1 ). str t C(X) t (X,ι,λ)/S P s s t r t st str t r 3 P = (P,Q,F, F ) r t r L OE0 /O K (R) t t r t O E t s t s t P := P t ts O E t t ϑ K r t r t rs r t E 0 /K s r t W OK (R) r 1t s t tr tr : O E0 OK W OK (R) W OK (R) a w tr E0/K(ϑ K a)w., s O E0 q r t t r s q t t s r t r t O E0 W OK (R) r t r t r (, ) : P P O E0 W OK (R) s t t, = tr (, ). P s r s t Q 0 := Q 0 r (, ) t t 2 s t s s (a, ) = (,a σ ) Q 0 s t t 2 s tr Q 1 := {p 1 P 1 (p 1,Q 0 ) J OE0 (R)}. t t t (, ) s r t r (P/J OE0 (R)P) (P/J OE0 (R)P) R 2 s Q 1 s t rs (Q 0 /J OE0 (R)P 0 ) r t r t P 1 P 1 /J OE0 (R)P 1 rt r t s s t t P 1 /Q 1 s r t R r s = n r t θ O E0 OK W OK (O E0 ) t s r s t r t θq 1 Q 1. Pr 2 t Q 1 = {p 1 P 1 p 1,Q 0 I OK (R)}. q 1 Q 1 t r 2 t t θq 1,Q 0 = tr((θq 1,Q 0 )) = tr(θ(q 1,Q 0 )) I OK (R).

r t s q t2 s t t (, ) s O E0 W OK (R) r t s t s tr(θj OE0 (R)) I OK (R) s r t t t t θj OE0 (R) I OK (R). rt r F 1 : Q 1 P 0 s F 1(q 1 ) := F 1 (θq 1 ). F 1 s r s r r s t s ts S t L OE0 /O K,κ(R) t t O E0 r r 1 t s L OE0 /O K,κ(R) = (O E0 OK W OK (R),J OE0 (R),R,σ, σ) r σ(ξ) = V 1 (θξ). t κ O E0 OK W OK (R) s t t σ(π E 1 1 [π E ]) r π E O E0 s r 1 r 3 r t r s F : P P t r t r t F (x) = κ 1 F ((π E 1 1 [π E ])x). r r 2 t t t s s t str t r L OE0 /O K,κ(R) P = (P,Q,F, F ) r (, ) s r r 3 t t L OE0 /O K,κ(R) P Pr 2 t Q t r s t s s (Q,Q ) J OE0 (R) q 0 Q 0,q 1 Q 1 t t ( F q 0, F q 1 ) = ( Fq 0, F(θq 1 )) = V 1 (q 0,θq 1 ) = V 1 (θ(q 0,q 1 )) = σ(q 0,q 1 ). r 2 r r t s q t2 s s t s r t r, st q t2 s t O E0 r t2 t r (, ) 2 Pr s t t r s str t r s O E0 r s L OE0 /O K,κ(R) L OE0 /O E0,κ(R). s t s r s s s rs r str t O E0 t O E t r r 3 t t s t O E0 r L OE0 /O E0,κ(R) t t2 W OE0 (R) s κ/u s r s t t tt O E0 r L OE0 /O E0,κ(R) W OE0 (R) r u s t t u = V 1 π E (π E [π E ]) r 1 sts t ε W OE0 (OĔ) s t t σ(ε)ε 1 = κ/u.

2 t t t ss t r 2 r 3 O E0 s 2 P = (P,Q,F, F ) t O E t rr s str t r O E0 s t t r t O E C(X) t t str t t s s t t C s t r 2 t t t s t t s st C s q r r s s r t r st p str t q s rs t R r SpfOĔ s t P = (P,Q,F, F ) t L OE0 /O K,κ(R) r q t O E t ι r r 3 t λ ss t t r t O E r R ss t t P s s t r (r,s) r κ s t t V 1 (θ(π E 1 1 [π E ])) r t r s r r O E t s r s P = P 0 P 1 Q = Q 0 Q 1 s t P := P t t r t ts O E t r 3 t λ s r t r (, ) : P 0 P 1 O E0 OK W OK (R) s t t s t Q 0 := Q 0 Q 1 = {p 1 P 1 (p 1,Q 0) J OE0 (R)}. Q 1 := {p 1 P 1 (p 1,Q 0 ) O E0 OK I OK (R)}. Q 1 = θq 1 +I OK (R)P 1 r t s r s 2 t t t Q 1 θq 1 I OK (R)P 1 t s t 2 P 0 Q 0 t t q t ts t r s s 2 I OK (R)P t r (, ) s r t r P 0 P 1 O E0 OK R = O E0 /π k OK /π k R. r s t t π K = 0 R π E P 0 Q 0 P 0 π E P 1 Q 1 P 1. 2 t Q 1 s t rt t Q 0 rt r t s r t r r r R 2 r t s P 1 t θ t θ O E0 OK O K /π K = OE0 /π K θ 0 π E θ = 0 t t 2 θ s s r s O E0 /π E R = (π e 1 E )/π K R. s θq 1 s s r r r R 2 r t s P 1 s r t r t θq 1 Q 1 R s r W OK (R) s π K t rs r s t r 1 sts s R i I k i t r t r t s σ(θ) s t 3 r s r O E0 W OK (R). t s r t t t F Q1 s s 2 σ(θ) s σ r r s F : Q 0 Q 1 P 0 P 1 s F = F Q0 σ(θ) 1 F Q1. t t t r r t t t (P,Q,F, F) s O K s 2 t O E t s t r (r,s) t t, := tr (, ) s r r 3 t t t t O E t s s s t str t t q s rs

r st t 2 t r t t r s X C(X) t X r t O E O K r S t 2 D r s 2 D t O K r2st X r s t O E0 r2st C(X) t t r2 O K t s S r s t t r2 O E0 t s S t t t t r2st s r r 2 t O E t t t t t t t D(S) = P/I OK (R)P D (S) = P /I OE0 (R)P rt r r t tr t F D(S) s 2 Q/I OK (R)P t 2 D t tr t s t r2st D D( S) := D( S) OE0 OK O S O S, r 2 O K t S S t J t r t r t O E0 OK O S O S t r r s s JD(S) F D(S) D(S) = D(S)/JD(S) t tr t F/JD(S) D(S) t tr t D(S) t S S sq r 3 r t r s O E r t t t tr t D t r2st X t 0 t t r2st C(X) t t S D( S) = D 0( S). s t t s t r X t s S = S t tr t s t s s r r r2 t S S sq r 3 r t t X r t O E O K r S t r s t r t t r t s X t S r t s C(X) t S rt r r Y s t r O E O K r S X, Ỹ r r t t t s t S t O E r r s f : X Y ts t X Ỹ 2 C(f) ts t C( X) C(Ỹ) Pr s r r S = S 2 t (P,Q,F, F) t O K s 2 X t (P,Q,F, F ) t O E0 s 2 C(X) 2 str t D(S) = (P 0 /J OE0 (R)P 0 ) = (P 0/J OE0 (R)P 0) = P 0 /I OE0 (R)P 0 = D 0(S). s Q 0 P 0 s t rs t tr t (Q 0 +J OE0 (R)P 0 )/I OK (R)P 0 P 0 /I OK (R)P 0 t tr t s t s s r r tr sq r 3 r t S S r s s 2 S r X t r t O E O K X s t r (r,s) S C( X) s r t C(X) s D( S) D ( S) t t r t s 2s X C( X) t r ts 2 r r2 s t t r t ss r t t r2 2 s 1 t r Pr s t r t s X r s C(X) r t t t s t tr t D(S) r s t tr t D 0(S) s r r s t s r r s s Pr t R t r t n := ker(r (R/p) red ) R s n 2 t 2 r r2 t t s ss q t ts R/n i+1 R/n i t t t ss t s r t t2 2 t ss C R ts s s s t r t r s t r

Pr r 1 q s s 2 r ts α : C(X E0/K,(r,s)) = X E0,(r,s). t r t 2 s C(X E0/K,(r,s)) s t r t t t N E0,(r,s) t r t C t s s r s c : N E0/K,(r,s) N E0,(r,s) s s s r s 2 r rt r r c s q r t t r s t t t s r s C : U(X E0/K,(r,s)) U(C(X E0/K,(r,s))) g αgα 1. 2 s t r2 s s t Q p K E 0 t 1t s s t E/E 0 r q r t 1 t s s r 3 rs π K O K π E O E0 r r t s s r 3 t s str t O K s r s str t O E0 s tx E0/K,(r,s) rf t r t r N E0/K,(r,s) t tend 0 E(X E0/K,(r,s)) = M n (E) s s r t tr 1 r r E s Pr s t t r q s r s x End 0 E(X E0/K,(r,s)) t 2 Z(x) N E0/K,(r,s) t s r s s ts (X,ρ) s t t t q s r s ρ 1 xρ s t r s s Pr s t r s r R End 0 E(X E0/K,(r,s)) t 2 Z(R) N E0/K,(1,n 1) t s r s s ts (X,ρ) s t t ρ 1 Rρ End(X) t r r s Z(R) = Z(x). x R r t t t Z(x) = Z(x ) r t s t s t t s t s Z(x) 2 s t O E r O E [x] s 2 x rt r t r r q t s Z(x) = Z(O E [x,x ]) Z(R) = Z(O E [R,R ]). s 2 t t s r s s s t Y E0/K,(0,1) r t O E O K r F s t r (0,1) t s q t s r s t Y E0/K,(0,1) r t t t SpfOĔ r t s q t s r s r t Pr s t s Y E0/K,(0,1) s 2 SpfOĔ s t r 2 q s r s j Hom 0 E(Y E0/K,(0,1),X E0/K,(r,s)) t 2 Z(j) N E0/K,(r,s) t s r s s rs (X,ρ) s t t t q s r s ρ 1 j : Y E0/K,(0,1) X s t r s s t é t r2

t 1 st s s r s s s r Pr s t s Z(j) = Z(j ) r j : X E0/K,(r,s) Y E0/K,(0,1) s t s t t j r Z(j ) t s t s (X,ρ) s t t j ρ : X Y E0/K,(r,s) s r s s Z(j) 2 s t s O E j s t r st r t 2 s Z(j) s t t s t r (1,n 1) t s s Z(j) N E0/K,(1,n 1) s s r r j 0 s s rs r rst s r 2 rt s r t C t t r r r t s s q s s 2 E r r s r t r 3 t α : C(X E0/K,(r,s)) = X E0,(r,s) s r s E r r s r t r 3 t β : C(Y E0/K,(0,1)) = Y E0,(0,1). t t s r r t str t c r t t c : Z(x) = Z(αc(x)α 1 ) c : Z(j) = Z(αc(j)β 1 ). r r str t t t s s t r (1,n 1) r r t s 2 t 1 s t 2s ss K = Q p r 3 t t str t r O K s s t t t r r 2 Z(O E ) ss t t d s n s 2 n = dn s ss t t σ s tr Q p 2 E t r r s t rt r f E 0 r Q p s t X Qp,(1,n 1) t r t r N Qp,(1,n 1) s t t 1 E End 0 Q p 2 (X Q p,(1,n 1)) s t t t s t t r s r s E r s t σ 1 sts s d n ss t t t 2 Z(O E ) N Qp,(1,n 1) t Ψ = Hom Qp (E u, Q p ) = Ψ 0 Ψ 1 t q 1t s t s t {0,1} = {0} {1} r Q p 2 t r t t t O E X Qp,(1,n 1) s r t r N E0/Q p,(1,n 1) t t t t t s t r t s t s t ψ 0 Ψ 0 t s t t ss t s 2 N ψ0 E 0/Q p,(1,n 1) r tt t E t s r s N ψ0 E 0/Q p,(1,n 1) N Q p,(1,n 1) s s rs r r t s s r s = Z(O E ). ψ 0 Ψ 0 N ψ0 E 0/Q p,(1,n 1)

Pr t s s t t t rr s r s t t Z(O E ) 2 t s Z(O E ) N ψ0 E 0/Q p,(1,n 1) t s S ts t S t t (X,ι,λ,ρ) Z(O E )(S) t r s s s Lie(X) = ψ ΨLie(X) ψ t s s t 1t s t r r t Z p 2 t t ψ 0 Ψ 0 t q 1 st t s Ψ 0 s t t Lie(X) ψ0 0 s s s t S O E t Lie(X) ψ0 s r s S SpfO E OE u,ψ 0 O Zp 2 = SpfO Ĕ. s 1 s 2 r str t rs s t t s s t r (1,n 1) 2 t X s S t N ψ0 E 0/Q p,(1,n 1) r t t t t s str t s t t t r t t 2 Z(R) t s s ss t t R End 0 Q p 2 (X Q p,(1,n 1)) s s t t O E R Z(R) Z(O E ) c : ψ 0 Ψ 0 Z(R) ψ0 = Z(R). r t s r r t 2 s t s s N ψ0 E 0/Q p,(1,n 1) rt r r t Z(R) ψ0 r s r s s 2 t 2 t N ψ0 E 0/Q p,(1,n 1) t N E0,(1,n 1) s r 1 r t r ϑ E t rs r t E 0 /Q p s O E0 r s r s φ : O E0 Hom Zp (O E0,Z p ), a φ(a)( ) := tr E0/Q p (ϑ E a ). t 2 r t Z p 2 (Y,ι,λ) ss t r t O E Z p (O E0 Y,ι,λ ) s s p s r O E0 Y s 2 t rr t s r str t O E = O E0 Z p 2 t ι s s 2 2 t t r O E0 t t rst t r λ s s λ (a y) := φ(a) λ(y). tj Hom 0 Q p 2 (Y Q p,(0,1),x Qp,(1,n 1)) q s r s t ss t s r Z(j) N Qp,(1,n 1) r s s r s r t O E Z p s r F r 2 r t r r t s t SpfOĔ O E0 Y Qp,(0,1) = Y E0/Q p,(0,1). O E0 Y Qp,(0,1) = Y E0/Q p,(0,1).

Pr t s r s t r s q O E Z p s t r (0,1) r F t st t t r s t t t t t O E0 Y Qp,(0,1) s s t r (0,1) s r t N ψ0 E 0/Q p,(1,n 1) N Q p,(1,n 1) t r r id OE0 j s t r s Z(j) N ψ0 E 0/Q p,(1,n 1) = Z(id O E0 j) Y E0/Q p,(0,1) = O E0 Y Qp,(0,1) id j X Qp,(1,n 1). Pr rs p s r r N ψ0 E 0/Q p,(1,n 1) s O E 0 t s t r t rs 2 id j : O E0 Y Qp,(0,1) X Qp,(1,n 1) ts t s s ts s t t Y Qp,(0,1) 1 id O E0 Y Qp,(0,1). r t r ét r s rst r t N E0/Q p,(0,n) r s t q r t 1t s E = E 0 E 0 s t Ĕ := Ĕ0 s t s t s s s t Ψ := Hom(E u,ĕ) = Ψ 0 Ψ 1 s t t σ(ψ 0 ) = Ψ 1 t s rs r r t O E Z p (X,ι,λ) s t r (0,n) r SpfOĔ s S s t t 2 s t t t t s t s t t t t t X s rs r s s s r str t s r r s 2 s r t O E Z p s 1 st 2 f s 1 t 2 t ts Ψ 0 t r r t rst t E E 0 0 r ss t t t s t s s t s 1 r t O E Z p (X E/E0/Q p,ι,λ) s t r (0,n) r F s s q t q s s 2 t t r N E/E0/Q p,(0,n) s s r SpfOĔ ss t s t S t s t s r s ss s q r s (X,ι,λ,ρ) r (X,ι,λ) s s rs r r t O E Z p s t r (0,n) r ρ : X S S X E/E0/Q p,(0,n) F S s O E r q s s 2 r s r s t r 3 t s s t s t s s t t N E/E0/Q p,(0,n) s r s s ét r SpfOĔ Pr s t t E/E 0 q r t ét r t U := U(X E/E0/Q p,(0,n)) r s K t t r E r q s s s r s t r s s t r t t t r s r t r 3 t s r s s N E/E0/Q p,(0,n) = t r s U q r t s r SpfOĔ. U/K

Pr r U ts N E/E0/Q p,(0,n) 2 s t t r g.(x,ρ) = (X,gρ). st 3 r (X E/E0/Q p,(0,n),id) s t s r K U t U s tr s t F ts s s s r t s t q r t 1t s E = E 0 E 0 N E/E0/Q p,(0,n) s ét r SpfOĔ t r s t s t E 0 /Q p 2 t ét r s t E := E 0 Q p 2 t s t σ = σ id t E 0 := i IE 0,i ts s t t s s t E i := E 0,i Q p 2 1 E End 0 Q p 2 (X Q p,(1,n 1)) t t s q r t r σ t s t t s t s t s r2st N := N(X Qp,(1,n 1)) X Qp,(1,n 1) t E Q p t N = i IN i ts s t t E i Q p s s s t s r s r 2 t r s s rt t r s t t t s r t Q p r N t r N i s s r t E i /E 0,i s r2st s t n i := rk Ei Q p (N i ) t 1 i I s E i /E 0,i s 1t s N i s s r t E i s Pr s t t r s t r 1 sts s r s st O Ei Z p tt s t r (0,n i ) N i i q t 2 t t r t2 1 s s s t α t r t r r t V := N α=1 V s s r t E t r s s t V = i I V i s t t V i s s r t E i 1 i s r s t r 1 sts r s s t 1 st s O Ei tt V i N ts s t r s r s t t Z(O E ) N Qp,(1,n 1) t s t s t t O E t ts t r s r t 1 t Z(O E ) = Pr s t t ts O E = i I O E i 2 t (X,ι,λ) Z(O E )(S) s rt s t (X,ι,λ) = i I(X i,ι,λ) r t r (X i,ι,λ) s s rs r r t O Ei Z p s ss t t S s t t r s s t r (r i,s i ) t s s t r s t (1,n 1) rt r t r s 1 t 2 1 i 0 I t r i0 = 1 r i = 0 r i i 0 N i0 s t r s r 2

r ss t t t r s q 1 i 0 t 2 U Ei (N i ) t r E i r t r s s N i r s r t r 3 t r 2 U E (N) = i I U E i (N i ) t s t r E r t r s s N r s r t r 3 t r i s 1 s s O Ei st é tt M i N i s t r (0,n i ) t 2 K i U Ei (N i ) ts st 3 r t t 1 i 0 s t s t Ψ := Hom(E u i 0,Ĕi 0 ) = Ψ 0 Ψ 1 1t s t s t r Q p 2 r s t t s s2 t r t Pr s t r s U E (N) q r t s r s r s s r SpfOĔ Z(O E ) = ( N ψ0 E 0,i0 /Q p,(1,n i0 1) ) U Ei (N i )/K i. ψ 0 Ψ 0 i i 0 rs rt r r t 2 t t t N E0,i0,(1,n i0 1)

P rt t t t r t t t t t s t s r t q t s t t r t t t t t r t r rs t r t s r t t r s r t t r s t r s tt s r s t s r s ts t r r t t t 2 r r r s t s r s t t r t t r r r s 2t s t 2 tr s s t p > 2 r t E/E 0 r q r t 1t s p s t t r r s t rs 2 O E0 O E t q t r t2 t r s O E0 t σ r a a t t s t E t v t r 3 t E 0 t = q v( ) t ss t s t t η : E 0 {±1},a ( 1)v(a) t q r t r t r ss t t E/E 0 2 ss t r2 1 E 0 t r s W 0 s n 1 t n 2 s t W := E W 0 s r V 0 := W 0 E 0 u V := E V 0 r u s s t t r t GL(W) GL(V), g ( g 1 ), GL(W) ts 2 t End(V) t t γ End(V) s r r s s t r s t t t s t V = W Eu ts st 3 r GL(W) s tr ts r t s r s s r 2 s s t X End(V) t 2 X rs t r r s s ts X t γ End(V) s r r s s 2 {γ i u} i 0 {u γ i } i 0 r t V r s V r u : W Eu E s t r r (w,λu) λ t S(E 0 ) t s2 tr s S(E 0 ) := {γ GL(V) γγ = 1}. t s st r t t GL(W 0 ) r t s t t r t q t t r t t t [S(E 0 ) rs ] := GL(W 0 )\S(E 0 ) rs. t s 1 s O E0 tt Λ 0 W 0 s t Λ := (O E Λ 0 ) O E u r 3 t r s r GL(W 0 ) s t t t GL(Λ 0 ) s 1

r r r s s t γ S(E 0 ) rs r t st t f Cc (S(E 0 )) r 1 r t r s C t r t t r O γ (f,s) := f(h 1 γh)η(deth) deth s dh, GL(W 0) t s O γ (f) := O γ (f,0) r t O γ (f) := d ds O γ (f,s). s=0 s t r s r s t 2 t t t O γ (f) tr s r s t η det r t t GL(W 0 ) γ t r γ End(V) rs l(γ) := [span{γ i u} n 1 i=0 r t 1 t t O E tt s span{γ i u} Λ : Λ] Z t t tr s r t r t r s t t Λ 0 Ω : End(V) rs {±1} s t t Ω(γ) := ( 1) l(γ). t t t Ω s s η det r t t r t Ω(γ)O γ (f) s s t t q t t [S(E 0 ) rs ] s tr t t s rs t t s s r t s(e 0 ) := {y End(V) y +y = 0} t t t s t 1 S(E 0 ) r t q t t 2 t GL(W 0 ) t [s(e 0 ) rs ] := GL(W 0 )\s(e 0 ) rs. r y s(e 0 ) rs r t st t f C c (s(e 0 )) r 1 r t r s C t r t t r s O y (f,s),o y (f) O y (f) 2 t s r s s y Ω(y)O y (f) s s t t q t t [s(e 0 ) rs ] t r2 r t t t J 0 J 1 t r t r s W s t t J 0 s s t t J 1 s 2 t s t t t r 1 sts s tt r J 0 r s s tt r J 1 q t 2 ss t t η(det(j 0)) = 1 η(det(j 1)) = 1 r i = 0,1 1t t r J i t r J i V 2 s tt J i (u,u) = 1 u W t U(J i ) r s U(J i ) t ss t t r2 r s U(J i ) r s s ts End(V) r t r r s s s t t t t r U(J i ) 2 u(j i ) r U(Ji ) ts 2 t t U(J i ) u(j i ) r t q t ts [U(J i ) rs ] := U(J i)\u(j i ) rs [u(j i ) rs ] := U(J i)\u(j i ) rs. t ts γ S(E 0 ) rs g U(J i ) rs r s t t t 2 r t r GL(W) t End(V) r 2 t ts y s(e 0 ) rs x u(j i ) rs r s t t t 2 r t r GL(W)

t r t s t s α : [S(E 0 ) rs ] = [U(J 0 ) rs ] [U(J 1 ) rs ] α : [s(e 0 ) rs ] = [u(j 0 ) rs ] [u(j 1 ) rs ]. r 3 t r s r U(J 0) 1 s tt L (W,J 0) 1 t ts st 3 r K 0 U(J 0) r 3 t t r s r U(J 1) s t rt t r s r t st t f Cc (U(J i )) r s f Cc (u(j i )) r r s s t g U(J i ) rs r s x u(j i ) rs t r t t r ( ) O g (f ) := f (h 1 gh)dh, r s O x (f ) := f (h 1 xh)dh. U(Ji ) U(Ji ) r 1 f t s t s r t r t t t U(Ji ) g r s x s s t t q t t [U(J i ) rs ] r s [u(j i ) rs ] t t f Cc (S(E 0 )) r t s (f 0,f 1) Cc (U(J 0 )) Cc (U(J 1 )) r s t tr s rs t r r γ S(E 0 ) rs t r s q t2 { O g (f Ω(γ)O γ (f) = 0) γ t s g U(J 0 ) rs O g (f 1) γ t s g U(J 1 ) rs. r 2 t f Cc (s(e 0 )) r t s (f 0,f 1) Cc (u(j 0 )) Cc (u(j 1 )) r s t tr s rs t r r y s(e 0 ) rs t r s q t2 { O x (f Ω(y)O y (f) = 0) y t s x u(j 0 ) rs O x (f 1) y t s x u(j 1 ) rs. q t s t t t r t t t tr s r t r t 1 s O E0 tt Λ 0 W 0 r t tt Λ V S(O E0 ) := S(E 0 ) End(Λ) s(o E0 ) := s(e 0 ) End(Λ) s t K 0 U(J 0 ) t t st 3 r L O E u r L s s s tt (W,J 0) r 2 u(j 0 )(O E0 ) := u(j 0 ) End(L O E u) t r q t s t t 1 S(OE0 ) t r (1 K0,0) r tr s rs t r q t 2 r γ S(E 0 ) rs { O g (1 K0 )) γ t s g U(J 0 ) Ω(γ)O γ (1 S(OE0 )) = E0,(V,J 0 γ t s g U(J 1 ). 0),u,g r t t t t t s s t t t tt Λ 0 2 r t 2 hλ 0 h GL(W 0 ) t Ω s 2 t s ( 1) v(deth) t s O γ (1 hs(oe0 )h 1) = O h 1 γh(1 S(OE0 )) = ( 1) v(deth) O γ (1 S(OE0 )).

q r (E 0,(V,J 0 ),u,g) s s t t r t t t q t 2 W := u t r J 0 := J 0 W r J 1 s r tr r 2 s t s t 2 r t t r 2 t t s (JR E0,(V,J 0),u,g) s t t s E 0 str t r W 0 W r r r2 q r t r st t s t r s r 2 t s p > n r t p s r p s t 2 r r t s rt t s g U(J 1 ) t t r s 2 r r2 t r q t s t r rs t 1 s(oe0 ) t r (1 u(j0)(o E0 ),0) r tr s rs t r q t 2 r y s(e 0 ) rs { O x (1 u(j0)(o Ω(y)O y (1 s(oe0 )) = E0 )) y t s x u(j 0 ) jr E0,(V,J 0 y t s x u(j 1 ). 0),u,x s t r rs t t s s t t Λ 0 s r r 2 t q r (E 0,(V,J 0 ),u,x) s t r t q t (jr E0,(V,J 0),u,x) t t s tt r p > n t r rs s s r 2 r t t r r p r t p s t r t t r s r t q t s t 1 r ss t r s tt s r t t s r t t r2 s r t s2 tr s s s r r s t 2 Λ t J 0 tt Λ V t g U(J 0 ) rs r r s s t L = O E [g]u V t g st tt s 2 u O g (1 K0 ) = {Λ V L Λ L,gΛ = Λ,Λ = Λ}. t x u(j 0 ) rs r r s s t L = O E [x]u V t x st tt s 2 u O x (1 u(j0)(o E0 )) = {Λ V L Λ L,xΛ Λ,Λ = Λ}. Pr P rt s r s 2 rt s r t s 2 r t t t t rs t rs t n 2 t N E0,(1,n 2) t s r t t t r t X E0,(1,n 2) t Y E0 = Y E0,(0,1) t r t O E s t r (0,1) r F s q t s r s s X E0,(1,n 1) := X E0,(1,n 2) Y E0 s t r t r N E0,(1,n 1) t s Hom 0 (Y E0,X E0,(1,n 2)) t r t E t r s t r h 2 h(x,y)id YE0 = λ 1 Y E0 x λ XE0,(1,n 2) y,

s t s r t r s 2 1 s tr2 (Hom 0 (Y E0,X E0,(1,n 2)),h) = (W,J 1). 1t t s t s tr2 Hom 0 (Y E0,X E0,(1,n 1)) = Hom 0 (Y E0,X E0,(1,n 2)) E id YE0 = W Eu = V 2 s 0 id YE0 t u t s s r s End 0 (X E0,(1,n 1)) ts V s t t End 0 (X E0,(1,n 1)) = End(V) t t s q r t r t s t t t t t t t J 1 t r t r t s t s X E0,(1,n 1) = X E0,(1,n 2) Y E0 V = W Eu r s t r t r s s r t rs t r s r t t r s s End 0 (X E0,(1,n 2)) Hom(Y E0,X E0,(1,n 2)) t End(W),Hom(Eu,W) t t t s t t t s r s s 2 t s r s t s t t r2 r U(J1) r s U(J 1 ) t t r q s s s X E0,(1,n 2) r s X E0,(1,n 1) r t t t t r s s t 2 Pr s t t r s q r t Y E0 t r t O E Y E0 t SpfOĔ Y E0 r2 SpfOĔ s 2 s s s s rs δ : N E0,(1,n 2) N E0,(1,n 1), X X Y E0 s q r t t r s t t t s U(J 1) U(J 1 ) r t r s t t s s 2 s t t r g.(x,ρ) := (X,gρ). t s s r t r δ : N E0,(1,n 2) N E0,(1,n 2) Spf OĔ N E0,(1,n 1). 2 s t t t ts s 2 t t t t s r s r r s n 1 t t r t s r r s 2(n 1) s 2 s r g U(J 1 ) t 2 ts tr s t r g g := (1,g) ss t t E 0 = Q p r r r s s g U(J 1 ) rs t s t t rs t g s r t s r SpfOĔ t t E 0 = Q p t g U(J 1 ) r r s s Int(g) := χ(o L O g ). s r s t 2 t r s r r t t U(J 1 ) rs g Int(g) s s t t q t t [U(J 1 ) rs ]

r s 1 t t r s s E 0 t st t s t t s r t2 t t t t s r s s p r 3 t t r t st t t t r s ts rt s t t r 3 t t r s t r t r r s s E 0 r s s rr t t Int(g) r r r s t t rs t g s 0 s t t r s q t2 Int(g) = len OĔO g, t s Pr s t r r t s t t rs t g s t t r t t r r t t δ(n E0,(1,n 2)) N E0,(1,n 1) t t t s r Z(u) r t t s r t g t t t t r s Z(u) Z(g) r Z(g) s t s r r s s t Int(g) s t s E 0 Q p t st r rt g t q s r s x End 0 E(X E0,(1,n 1)) s rt t r s t t t q s r s u Hom 0 (Y E0,X E0,(1,n 1)) t t rs t Z(x) Z(u) s rt s r rt x Int(x) := len OĔO Z(x) Z(u). r r s r t r t r t r 3 t t rt ts U(J 1 ) rs t s s ss t s r t Z(x) Z(u) t s r s Z(u) = δ(n E0,(1,n 2)) x s t r t x = ( ) x v w d End 0 E (X E0,(1,n 2) Y E0 ), Z(x) Z(u) = { d / O E Z(x ) Z(v) Z(w ) t r s r w : Y E0 X E0,(1,n 2) s t s t t w s t r x u(j 1 ) End 0 E(X (1,n 1) ) t x s t r ( ) x = x j j d t x u(j1) d = d t s s { x d / O E = Z(x ) Z(j) t r s t r s q t s t s 1 r ss t r t t r t O γ (1 S(OE0 )) t t r2 s 2 tr st t r t t t t r 2 1 r ss s t r t O γ (1 S(OE0 )) t t r2 s r γ t s t g U(J 1 ) rs t t t r s γ t r t t r O γ (1 S(OE0 )) s s t s O γ (1 S(OE0 )) s η det r t

t r r t t t r rs t γ S(E 0 ) rs r r s s t t t t s t g U(J 1 ) ss t t t r E 0 = Q p r t t g s rt t r s q t2 Ω(γ) O γ (1 S(OE0 )) = Int(g)log(q). AFL E0,(V,J 1),u,g r t r rs t r str t t rt ts s t t rs t r t 2 t s s s t t r r t t t r rs r 2 y s(e 0 ) rs t rt t x u(j 1 ) t r s q t2 Ω(y) O y (1 s(oe0 )) = Int(x)log(q). afl E0,(V,J 1),u,x r st s t s t q t s t s r t t s t t t s s t t s tt Λ 0 s t s t t s E 0 str t r W 0 W r t r r s t q r (E 0,(V,J 1 ),u,g) r s (E 0,(V,J 1 ),u,x) s t r t t t t2 (AFL E0,V,u,g) r s (afl E0,V,u,x) st s r t t r t r rs t r r t 2 t r s t Pr s t ss t t q n + 2 t r rt ts g U(J 1 ) rs s q t t t t r r t r rt x u(j 1 ) rs t r s r r n 3 t t t n 3 t 2 r r s s t g U(J 1 ) rs s rt r 1 sts s t s t t s t t r s Pr s t r s s t r 2 n t r r str t t s g r 2 rt rst t t t t s s s g s s rt t t r r r s ts r r t t rs t s r t s dim g 1 tr t t r t s s r t r s s t q t s rs s r s2st t r r t r t t r r t r r t t rt rt t t r t rs s tr r t t r r q r t 1t s E/E 0 r 2 t r n 3 r t t 2 t r r s s t 2 2 t y s(e 0 ) rs t x u(j 1 ) t r ( ) x =. x j j d d s s t r r t tr2 t tr 1 y d / O E t t s s2 t s t t t s s afl E0,V,u,x s st d O E t r y 2 y d id V x 2 x d id V t t t r s afl E0,V,u,x rt r r y d id V s s(e 0 ) rs t s x d id V u(j 1 ) rs t s s r x s (AFlE0,V,u,x) t t (AFL E0,V,u,g) rs 2 rt r t s t s s

t {( s(e 0 ) 0 := {( u(j) 0 := ) y w v d x j j d t t r t s t } s(e 0 ) d = 0 } ) u(j) d = 0 [s(e 0 ) 0 rs] = [u(j 0 ) 0 rs] [u(j 1 ) 0 rs] t s t s r t r r t t r x u(j 1 ) 0. 2t s t t s s t r t 1 r ss t r t t r s O γ (1 K ) O γ (1 K ) t r s tt s r t s r s ts r t r r t r t t r s r rs t γ S(E 0 ) rs t t t g U(J 0 ) rs U(J 1 ) rs r s r V t t r t r J {J 0,J 1 } t r 2 g t t V = W Eu t (u,u) = 1 t t t u,gu,...,g n 1 u s s s V s g s r r s s σ r t τ : V V 2 τ(g i u) = g i u r i = 0,...,n 1 r t τ s s s t r u s s r s E[g] s E[g] = E[g]u = V r t s s r s τ rr s s t t t t t r s t t t r t r J E[g] End(V) t L := O E [g]u t g st tt s 2 u t 2 L ts t r s t t J t r i Z M := {Λ V L Λ L, gλ Λ, Λ τ = Λ} Pr r r2 M i := {Λ M len(λ/l) = i}. Ω(γ)O γ (1 S(OE0 ),s) = i Z( 1) i M i q (i+l(γ))s. r l(γ) s t t t s = 0 r s t t r t t s = 0 2 s r r2 r r2 Ω(γ)O γ (1 S(OE0 )) = i Z( 1) i M i t s J = J 1 Ω(γ) O γ (1 S(OE0 )) = log(q) i Z( 1) i i M i.

r t t r s r rs t y s(e 0 ) 0 rs t t t ( x = ) x j j u(j 0 ) 0 rs u(j 1 ) 0 rs. t J {J 0,J 1 } t r t r t r 2 x τ : V V s t t t V = E[x]u End(V) τx i u = ( 1) i x i u r i = 0,...,n 1 t L := O E [x]u t x st tt s 2 u t 2 L ts t r i Z M := {Λ V L Λ L, xλ Λ, Λ τ = Λ} M i := {Λ M len(λ/l) = i}. t s r r t r t t r s ts r s t 2 s t t r t r rs r s q t2 Ω(y)O y (1 s(oe0 ),s) = i Z( 1) i M i q (i+l(y))s. r r2 t r s t r t t s = 0 2 s t r s Ω(y)O y (1 S(OE0 )) = i Z( 1) i M i t s J = J 1 Ω(y) O y (1 S(OE0 )) = log(q) i Z( 1) i i M i. t s L := O E [x ]j W t t rt r t V W 2 pr t 2 pr u t r t t Eu Pr s t r s q t2 tt s V = W Eu M = {Λ O E u L Λ L,, x Λ Λ, (Λ ) τ = Λ }. rst t t r r v V xv = x v +(v,u)j (j,v)u. t Λ V 2 tt s t t u Λ pr u (Λ) = O E u Λ = (Λ W) O E u Λ W = pr(λ) r r pr(λ ) = pr(λ) Pr s s t s L L s 2 L L, L = pr(l) L, = pr(l ) t s s

Pr rst ss t t L L L = pr(l) O E u pr(l) = pr(l ) 2 t r s t s t s t t L = pr(l) rst t t t pr(l) s st r pr x pr = x s j pr(l) t L pr(l) r t s t s r pr(x i u) L 2 t s i = 0 s r s r pr(x i+1 u) = x x i u+j(x i u,u). rst s s L 2 t 2 t t t t L s x st s s s L s j L (x i u,u) O E 2 t ss t L L rs 2 t s ss t t L L, t s t t (x i u,x j u) O E r i,j x s r t t r2 r t s t r (x i u,u) O E r i r t s 2 t t s s i = 0 1 r t (x i+1 u,u) = (x i u,j) = (x x i 1 u,j)+((x i 1 u,u)j,j) ((j,x i 1 u)u,j). rst s s t r 2 ss t L t s s t r (x i 1 u,u) s t r 2 t t s s s t r 2 ss t L t r s s s Pr Pr s t t Λ M 2 t s r t s Λ = Λ O E u r Λ = pr(λ) λ Λ t x λ = xλ +(j,λ )u Λ Λ s x st rt r r L Λ L, s t s s st t r t t r t L Λ L 2 t t t τ t s t t r t pr Λ s t r rt s r rs 2 t s ss t t Λ s t s s r rt s r t t s t t Λ := Λ O E u M 2 L Λ L rt r r Λ s τ st s t s s r t s s2 t r t t Λ s s st r x s t r r t t t r s ts t r s s t s t tr t t r s t r r s r r s t t s t t s s t V s t t r t t r t r s s 2 J {J 0,J 1 } rt r t t t End(V) x x t tt Λ Λ r t t r s t t t s r t r (x,j) End E (V) V s r r s s E[x]j = V r r s t t x s t st O E [x] = O E [x ] r t t t 2 t x u(j) s t st t g U(J 1 ) s t st 2 g = g 1 O E [g] s q t t g t r r t r st 2 t x End E (V) s t t E[x] = E[x ] t (x,j) r r s s s E[x] (,j) = V rt r x u(j) r x U(J) t x s r r s s t s s 2 (x,u) s r r s s r

t t (x, j) r r s s t st r t 2 L(x,j) := O E [x]j t x st tt r t 2 j t σ r t τ(x,j) : V V s s t j s s r s φ : E[x] = E[x]j = V s t τ(x,j)(v) = φ(φ 1 (v) ) s s ss s E[x] = E[x] 2 ss t t s ts M(x,j) := {Λ V L(x,j) Λ L(x,j),xΛ Λ,τ(x,j)Λ = Λ}, M(x,j) i := {Λ M len OE (Λ/L(x,j)) = i}, i Z. r s C t rs O(x,j;s) := i Z ( 1) i M(x,j) i q is O(x,j) := O(x,j;0) = i Z( 1) i M(x,j) i O(x,j) := log(q) 1 d ds O(x,j;s) = s=0 i Z( 1) i i M(x,j) i. s r t t ss t s r J s r t 2 q t s t t s s t J = J 0 s t r t t (x, j) r r s s t st r I(x,j) := {Λ V L(x,j) Λ L(x,j),xΛ Λ,Λ = Λ} r tr st t t s t t r s s t s t t s t t r r t s 1 s s W V t r t t(x,j) End E (V) r r s s t st r I(x,j) = O(x,j). x,j t r st t s s s t 1 t r t t s t r t t q t s t t r t (x,j) s t r t x u(j 0 ) s t V := V Eu t r J 0 1 ( ) x := x j j u(j 0 1) 0. (x,j) s r r s s 2 x s r r s s t r s t t V = V Eu t s s t t r r s s s (FL(x,j)) s q t t (jr E0,V,u,x ) Pr s s r r r2

t (g,j) s t r t g U(J 0 ) J 0 (j,j) O E 0 (g,j) s r r s s 2 g s r r s s t r s t t V = j Ej t s s t t r r s s s (FL(g,j)) s q t t (JR E0,V,j,g) Pr s s r r r2 t (g,j) r r s s s t r s t t J 0 (j,j) / O E0 t s s (FL(g,j)) s Pr J 0 (j,j) / O E0 t L(x,j) L(x,j) str t t (g,j) s t r t g U(J 0 ) v(j 0 (j,j)) 1 s ss t t q +1 > n V := V Eũ u := ũ+j 1t J 0 t J 0 V 2 s tt ũ V J 0(u,u ) = 1 W := (u ) s r t s t P(t) O E [t] t r t r st 2 g t t t q +1 s t r r s ss s π E E 1 := {a E Nm E/E0 (a) = 1} 2 ss t t s r s r t deg(p) t r 1 sts a E 1 s t t P(a) 0 π E g := ( g a) U(J 0) r t tr 1 s t s t r s t t V = W Eũ t (g,j) s t r t g U(J 0 ) v(j 0 (j,j)) 1 s ss t t q + 1 > n t V,u g s (g,j) s r r s s 2 g s r r s s t r s t t V = W Eu t s s t t r r s s s (FL(g, j)) s q t t (JR E0,V,u,g ) Pr s 1 (g,u ) s r r s s 2 g s r r s s t r s t t V = W Eu t s s t t s s (JR E0,V,u,g ) s q t t (g,u ) t r t t (g,u ) s r r s s 2 (g,j) s t t t s s (g,u ) s q t t (g, j) t r s a t r s s t O E [g ] = O E [g] O E ts t V = V Eũ s t t r s t s r 2 r s t t t r r s s ss t t t r r t t t t r s t M(g,j) = M(g,u ), Λ Λ O E ũ. rs len(λ/l(g,j)) = len((λ O E ũ)/l(g,u )) O(g,u ) = O(g,j) r 2 ts t t I(g,u ) = I(g,j) t t n = dime (V)

r t t t ss t t J = J 1 s t r t r rt r x x t tt Λ Λ M r t r s t t t s r r r r s s s t rs (x, j) t r s q t2 O(x,j) = 0. Pr r t s t r r r2 t s ss t t L(x, j) L(x,j) s t r s M(x,j) = O(x,j) = 0 t s s l := [L(x,j) : L(x,j)] s s J 1 s t r Λ Λ s t t s t M(x,j) s 1 t r s t t r s M(x,j) i M(x,j) l i s M(x,j) i = M(x,j) l i t t s s ( 1) i M(x,j) i ( 1) l i M(x,j) l i t t O(x,j) t r (x, j) s rt t s t t rs t Z(x) Z(j) N E0,(1,n 1) s rt s t s s Int(x,j) := len OĔ(O Z(x) Z(j) ). t r r t t t t (x, j) r r s s s t rt r O(x, j) = Int(x, j). (x, j) 1 t r t t s t r t t r t s r2 s r t t 1 t s r t s J = J 0 t (x,j) s t r t x u(j 1 ) s t V := V Eu t r J 1 1 ( ) x := x j j u(j 1 1) 0. (x,j) s r r s s rt 2 x s r r s s t r s t t V = V Eu t s s t rt t r s t t u t s s t t r r s s rt s (AFL(x, j)) s q t t (afl E0,V,u,x ) Pr s s r r r r2 t (g,j) s t r t g U(J 1 ) J 1 (j,j) O E 0 (g, j) s r r s s rt 2 g s r r s s t r s t t V = j Ej t s s t rt t r s t t j t s s t t r r s s rt s (AFL(g, j)) s q t t (AFL E0,V,j,g) Pr s s r r r r2 t (g, j) r r s s s t rt r s t t J 1 (j,j) / O E0 t s s (x,j) s

Pr J 1 (j,j) / O E0 t Z(u) = 2 X N E0,(1,n 1) s s t t j : Y E0 X E0,(1,n 1) ts t r s Y E0 X t s t s t j j End 0 E(Y E0 ) ts t Y E0 t t t t End(Y E0 ) = E t t j j = J 1 (j,j) s J 1 (j,j) / O E0 t L(g,j) L(g,j) t s M = str t t (g,j) s t r t g U(J 1 ) v(j 1 (j,j)) 1 s ss t t q + 1 > n V := V Eũ u := ũ + j 1t J 1 t J 1 V 2 s tt ũ V J 1(u,u ) = 1 W := (u ) s r t s s 1 t r 1 sts a E 1 s t t P(a) 0 π E g := ( g a) U(J 1) r t tr 1 s t s t r s t t V = W Eũ t (g,j) s t r t g U(J 1 ) v(j 1 (j,j)) 1 s ss t t q +1 > n t V,u g s (g,j) s r r s s rt 2 g s r r s s t r s t t V = W Eu t s s t rt t r s t t u t s s t t r r s s rt s t t t2 (AFL(g, j)) s q t t (AFL E0,V,u,g ) Pr s 1 (g,u ) s r r s s rt 2 g s r r s s t r s t t V = W Eu rt t r s t t u t s s (AFL E0,V,u,g ) s q t t (AFL(g,u )) t r t t (g,u ) s r r s s rt 2 (g,j) s s t t t t s (AFL(g,u )) (AFL(g,j)) r q t t r s a t r s s t O E [g ] = O E [g] O E ts t V = V Eũ s t t r s t s r 2 r s t t t r r s s ss t t t J 1(ũ,ũ) O E 0 t t t r r t t t t r s t M(g,j) = M(g,u ), Λ Λ O E ũ. rs len(λ/l(g,j)) = len((λ O E ũ)/l(g,u )) O(g,u ) = O(g,j) st t s Int(g,u ) = Int(g,j) s s r t t r s s Z(g) Z(u) = Z(g ) Z(u ) rst t t t s t s t O E [g ] = O E [g] O E t r s s Z(g ) Z(ũ). tt r t 2 Z(g ) Z(ũ) = N E0,(1,n 1) t t Z(g) r r Z(ũ) Z(u ) = Z(ũ) Z(j) s t t rs t 2 s t s O E ũ+o E u Hom 0 (Y E0,X E0,(1,n 1) Y E0 ). s Z(g ) Z(u ) = Z(g ) Z(ũ) Z(u ) = Z(g) Z(j).

s ts t t s s t s 3 t t s E 0 = Q p s s 2 t s 2 t 1 s t r ts r t r s V s n s Q p 2 t r s t r t r J 1 t A 0 /Q p 1t s r d s t t A := A 0 Q p 2 s s A/A 0 s r q r t 1t s t ts s t s 2 σ t A End Qp 2(V) t t s q r t r t s t σ A t t t J 1 End(V) t r r s J 1 (a, ) = J 1 (,σ(a) ), a A. t ϑ A r t r t rs r t A 0 t J A 1 : V V A t A/A 0 r t r r t r 3 2 t r rt2 t t tr A/Qp 2 ϑ AJ A 1 = J 1. t t t r 2 O A tt Λ V t tt Λ t r s t t t r J 1 s s t Λ t r s t t J A 1 rt r (V,J A 1 ) s r t s t X Qp,(1,n 1) t r t r N Qp,(1,n 1) s t n := n/d t A 2 q s r s s X Qp,(1,n 1) s t t r t X A0/Q p,(1,n 1) r N A0/Q p,(1,n 1) s X A0,(1,n 1) := C(X A0/Q p,(1,n 1)) r C s t t r r r r 2 t Y Qp,(0,1) t r t Z p 2 s t r (0,1) r F s q t s r s Y A0/Q p,(0,1) := O A0 Y Qp,(0,1) t r s t t ϑ A s t s t Y A0,(0,1) := C(Y A0/Q p,(0,1)) r s s r s Hom 0 Q p 2 (Y Q p,(0,1),x Qp,(1,n 1)) = Hom 0 A(Y A0/Q p,(0,1),x Qp,(1,n 1)), j id A0 Qp j s s tr2 t r s t t J A 1 t t t t r r t r t C t s t r s s r s s tr t Hom 0 A(Y A0,(0,1),X A0,(1,n 1)) t s t t 2 r r s s s t rt r (x, j) End Qp 2(V) V s t t x s A r s r s t t t t s r t s Q p r A 0 t 2 (x,j) Qp t r N Qp,(1,n 1) r t A t s t 2 r t 2 (AFL(x,j) A0 ) := (AFL(C(x),C(id A0 j))) t r N A0,(1,n 1) r r s t s t t r ts r r s r t (x,j) End Qp 2(V) V r r s s s t rt r s t t O A Z p 2[x] (x,j) s s r r s s s t rt r A 0 t t t t s (AFL(x,j) Qp ) (AFL(x,j) A0 ) r q t Pr t s t t t L(x,j) τ(x,j) M(x,j) O(x,j),Int(x,j) t r t s tt r Q p t 2 L(x,j) A τ(x,j) A M(x,j) A O(x,j) A,Int(x,j) A t t r s t t s r t s tt r A 0 t s r t t (x,j) s s r r s s s t r A 0 s O A [x]j = Z p 2[x]j 2 ss t r s t 2t s s (AFL(x,j) Qp ) (AFL(x,j) A0 ) t t t s s t t t r s s O A tt V r s r r 1 s tr2 V = Hom 0 Q p 2 (Y Q p,(0,1),x Qp,(1,n 1))

rst t t t x st Z p 2 tt Λ V s t t 2 O A [x] tt s Z p 2[x] = O A [x] rt r L(x,j) = L(x,j) A r 2 t t s τ(x,j) τ(x,j) A r s t 2 2 t st r Q p 2[x] = A[x] j s s t t M(x,j) = M(x,j) A. t f t rt r A 0 /Q p M(x,j) i = f i M(x,j) fi = M(x,j) A i t t t f s s ss t t A 0 Q p 2 s rt r ( 1) i = ( 1) fi O(x,j) = i Z ( 1) i i M(x,j) i = f i Z( 1) i i M(x,j) A i = f O(x,j) A. r s t tr s s (AFL(x,j) Qp ) (AFL(x,j) A0 ) 2 r t 2 Z(x) N Qp,(1,n 1) t t f s Z(x) A r Z(x) A := Z(C(x)) s t rr s 2 N A0,(1,n 1) 2 r t s t t s t t t r t s rs Z(x) Z(j) = f Z(x) A Z(j) A i=1 r Z(j) A = Z(C(id A0 j)) s t r s t 2 N A0,(1,n 1) t s t t (x,j) s s rt r A 0 Int(x,j) = fint(x,j) A. t r s t s tr s t t s t st t ts t t t r r t r t s r r2 t x u(j 1 ) 0 rs r r s s rt t r ( ) x x = j. j t A 0 /Q p 1t s s t t A := A 0 Q p 2 s t t r t O A Z p 2[x ] t t s q r t r t s t σ O A t t t Z p [x ] t V A := W Au A t r t A t r s t r J,A 1 1 x s s t u(j,a 1 1) 0 rs t r s q (afl Qp,V,u,x) (afl A0,V A,u A,x). rt r dim A (W) 2 t (afl Qp,V,u,x) s Pr P rt s t r s t s r r n 3 P rt s r 2 t r t r t s t