A Study on Segmentation of Artificial Grayscale Image for Vector Conversion

Σχετικά έγγραφα
Detection and Recognition of Traffic Signal Using Machine Learning

Buried Markov Model Pairwise

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

ER-Tree (Extended R*-Tree)

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

; +302 ; +313; +320,.

/ Function Image Compression FIC FIC

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Electrolyzed-Reduced Water as Artificial Hot Spring Water

CorV CVAC. CorV TU317. 1

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

ECE 468: Digital Image Processing. Lecture 8

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων

Reading Order Detection for Text Layout Excluded by Image

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Molecular evolutionary dynamics of respiratory syncytial virus group A in

Arbitrage Analysis of Futures Market with Frictions

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

Area Location and Recognition of Video Text Based on Depth Learning Method

Gaze Estimation from Low Resolution Images Insensitive to Segmentation Error

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters

Τελική Εξέταση =1 = 0. a b c. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας

Stabilization of stock price prediction by cross entropy optimization

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

A Method for Detection of Occlusal Position Using a Robust Estimator

Elements of Information Theory

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

/MAC DoS. A Coding Scheme Using Matched Filter Resistant against DoS Attack to PHY/MAC Layer in Wireless Communications

Automatic extraction of bibliography with machine learning

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Applying Markov Decision Processes to Role-playing Game

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Random Forests Leo. Hitoshi Habe 1

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Homomorphism in Intuitionistic Fuzzy Automata

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Simplex Crossover for Real-coded Genetic Algolithms

CRASH COURSE IN PRECALCULUS

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Congruence Classes of Invertible Matrices of Order 3 over F 2

Adaptive grouping difference variation wolf pack algorithm

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΥΠΟΒΑΘΜΙΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΥΠΟΓΕΙΩΝ ΝΕΡΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΣΣΗΝΗΣ, Ν.ΜΕΣΣΗΝΙΑΣ

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Study of urban housing development projects: The general planning of Alexandria City

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Μαθηματικών Π.Μ.Σ. Θεωρητικής Πληροφορικής και Θεωρίας Συστημάτων και Ελέγχου

w o = R 1 p. (1) R = p =. = 1

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

High order interpolation function for surface contact problem

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2014-MUS-104 No /8/26 1,a) Music Structure and Composition with Sound Directivity in 3D Space

Probabilistic Approach to Robust Optimization

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ

5-1. Industrial Vision. Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation

The Study of Evolutionary Change of Shogi

Real time mobile robot control with a multiresolution map representation

Transcript:

367 35 111 A31 E-mail kawamura@suou.waseda.jp TV A Study on Segmentation of Artificial Grayscale Image for Vector Conversion Kei KAWAMURA, Daisuke ISHII, and Hiroshi WATANABE Graduate School of Global Information and Telecommunication Studies, Waseda University, A31, 111 Nishi-Tomida, Honjo-shi, Saitama 367 35, Japan. E-mail kawamura@suou.waseda.jp Abstract Object oriented coding segment an image into regions, which characteristics are coherent. Vector representation is suitable to describe contours of regions in object oriented coding. On the other hand, we have proposed border extraction using sub pixel binarization for the low resolution grayscale image. This image which is originally binary image is obtained as grayscale image by a scanner. In this paper, a target is an image which originally consists of homogeneous regions is obtained as grayscale image containing anti aliasing. This image is named the artificial image. The research object is the image coding based on vector representation. We propose the segmentation method considering characteristics of the artificial image. An inverse norm is introduced to achieve the segmentation. Then the segmentation problem is converted to the minimization problem of an object function with the inverse norm. An algorithm to solve the minimization problem is designed. Total variation image decomposition is recently remarkable technique as preprocess of segmentation. The validity of the proposed method is confirmed by comparative experiments, which are proposed method and total variation. Key words coding. Image segmentation, homogeneous region, anti aliasing, vector representation, image - 1 -

1. MRC JPEG DCT Discrete Cosine Transform JPEG DWT Discrete Wavelet Transform H.64 4 4 DCT SIC SIC MRC SIC [1] []. SIC Segmented Image Coding MRC Mixed Raster Content [] MPEG 4 Part 3 MRC Mixed Raster Content Compound Image [3] JPEG Part 6 [7] TV. 1 MRC [4 7] Ricardo [3] {x n(i, j)} {m n(i, j)} CG 64 [] J n = R n + λd n (1) JPEG λ - -

SSE Sum of Squared Error SSE m n (i, j) = u(t n x n (i, j) 1) () SSE SSE t n u(k) k < = 1 64 64. 3 Edgmentation [11] 64 Edgmentation [9] 4 MRC Steepest Path Growing Algorithm [7]. SIC SIC Segmented Image Coding RSST Recursive Shortest Spanning Tree [1] Edgmentation [11] Edgmentation [] SIC Christlpoulos 5%. 4 Edgmentation [] Edgmentation [] CF (i, j) CF (i, j) j i SIC G(i, j) S(j) CF (i, j) = D(i, j) (3) L(i, j) L(i, j) G(i, j) i j.. 1 RSST [1] L(i, j) i j RSST S(j) j D(i, j) 4 i j RSST SSE - 3 -

Edgmentation. 5 Total Variation Chambolle Total Variation Minimization [1] 3. N N X R N N I(u) = X ( u) i,j 1 (9) u X u ( u) i,j = `( u) 1 i,j, ( u) i,j < u ( u) 1 i+1,j u i,j (i < N), i,j = (i = N), < u ( u) i,j+1 u i,j (i < N), i,j = (i = N) i, j = 1,..., N (4) (5) (6) u Total Variation J(u) = X ( u) i,j (7) 1< = i,j< = N 1< = i,j< = N < 1/ p y y 1 1 = + y = y 1, y, Other y = p y1 + y u g min + J(u) () u X λ < g + (g g s) k g g s > th, ROF g X < λ usm(g) = (1) g Other X Total Variation u u g «min min u usm(g)), + I(u)(13) u X λ λ g s X g k th u 3. 3. 1 SIC (1) u g min + I(u) (11) u X λ g X < λ λ - 4 -

3. 3 5. SIC 4. QVGA 3 4 1 3 1 λ = 64 λ = 57 19 363 th = λ/16 k = 4/λ 1 1 [1] F. Marques, A. Gasull, T.R. Reed, M. Kunt, Coding-Oriented Segmentation based on Gibbs- Markov Random Fields and Human Visual System Knowledge, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICCASP- 91) Apr. 1991. [] C.A. Christopoulos, W. Philips, A.N. Skodras, and J. Cornelis, Segmented image coding Techniques and experimental results, Signal Processing Image Communication 11, pp.63, 1997. 3 1 16 4 4 [3] R.L. de Queiroz, Compressing Compound Documents, in The Document and Image Compression Handbook, edited by M. Barni, Marcel-Dekker, 5. Total Variation ROF [4] K. Kawamura, H. Watanabe, and H. Tominaga, Vector representation of binary images containing ROF halftone dots, 4 IEEE ICME Proceedings., Jun. 4. 5 [5] ROF FIT6 J 3 Sep. 6 [6] 6 AVM 54 no.6 Sep. 6 [7] 7 6 Lenna 1 AVM 56 no.11 Mar. 6 ROF [] 4 4 [9] R. de Queiroz, Z. Fan, and T. Tran, Optimizing - 5 -

.4.35.3 Cost I(u) D(u) 4 3.5.4 Cost I(u) D(u).5.5..15.3. 1.5 1.1.5 1.1.5 5 1 15 Iterations [times] 5 1 15 Iterations [times] 1 1 Fig. 1 Transition of object function and norm (Image 1). Fig. Transition of object function and norm. 4 1 16 14 1 1 6 5 1 15 5 3 6 4 1 16 14 1 1 6 1 3 4 5 6 7 9 3 1 16 4 Fig. 3 A relation of row 16 in Image 1. 4 Fig. 4 A relation of row 4 in Image. 19 3 5 1 17 16 15 15 1 14 5 13 14 145 15 155 16 165 17 1 3 4 5 5 1 16 6 Lenna 1 Fig. 5 A part of the relation of row 16 in Image 1. Fig. 6 A relation of row 1 in Lenna. block-thresholding segmentation for multi-layer compression of compound images, IEEE Trans. on Image Processing, Vol. 9, pp. 1461 1471, Oct.. [1] M.J. Biggar, O.J. Morris, A.G. Constantinides, Segmented image coding performance comparison with the discrete cosine transform, Radar and Signal Processing, IEE Proceeding F, Vol. 135, Issue, pp.11 13, Apr. 19. [11] J. Cornelis, J.D. Becker, M. Bister, C. Vanhove, G. Demonceau, and A. Cornelis, Techniques for Cardiac Image Segmentation, IEEE International Conference of Engineering in Medicine and Biology Society, 199. [1] A. Chambolle, An Algorithm for Total Variation Minimization and Applications. Journal of Mathematical Imaging and Vision 9-97, 4. - 6 - E