A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

Σχετικά έγγραφα
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Discriminative Language Modeling Based on Risk Minimization Training

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

Bayesian random effects model for disease mapping of relative risks

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

ΒΕΛΤΙΣΤΟΙ ΣΧΕΔΙΑΣΜΟΙ ΣΕ ΑΝΟΜΟΙΟΓΕΝΕΙΣ ΠΛΗΘΥΣΜΟΥΣ

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Stochastic Finite Element Analysis for Composite Pressure Vessel

Orthogonalization Library with a Numerical Computation Policy Interface

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]

Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

2002 Journal of Software /2002/13(08) Vol.13, No.8. , )

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity


Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Quick algorithm f or computing core attribute

Buried Markov Model Pairwise

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Power allocation under per-antenna power constraints in multiuser MIMO systems

ER-Tree (Extended R*-Tree)

Conjugate Bayesian analysis of the Gaussian distribution

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Japanese Fuzzy String Matching in Cooking Recipes

2002 Journal of Software, );

Detection and Recognition of Traffic Signal Using Machine Learning

Matrices and Determinants

Quantum annealing inversion and its implementation

Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN

{takasu, Conditional Random Field

Downloaded from hakim.hbi.ir at 17:53 IRST on Thursday October 11th : . C.A.MAN AFP. 1 Acute Flaccid Paralysis (AFP)

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

!"#$%&'(!"# ! O == N N !"#$% PROGRESSUS INQUISITIONES DE MUTATIONE CLIMATIS

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Automatic extraction of bibliography with machine learning

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Approximation of distance between locations on earth given by latitude and longitude

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

MICROMASTER Vector MIDIMASTER Vector

Exam Statistics 6 th September 2017 Solution

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Generalized Linear Model [GLM]

Approach to Automatic Translation Template Acquisition Based on Statistical Learning

Estimators when the Correlation Coefficient. is Negative

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΥΠΕΡΕΙΑ ΤΟΜΟΣ ΕΚΤΟΣ. ΠΡΑΚΤΙΚΑ ΣΤ ΙΕΘΝΟΥΣ ΣΥΝΕ ΡΙΟΥ «ΦΕΡΑΙ-ΒΕΛΕΣΤΙΝΟ-ΡΗΓΑΣ» Βελεστίνο, 4-7 Οκτωβρίου 2012 MEΡΟΣ B ΡΗΓΑΣ


Technical Report: A Unified Framework for Analysis of Path Selection Based Decode-and-Forward (DF) Cooperation in Wireless Systems

Arbitrage Analysis of Futures Market with Frictions

Probabilistic Approach to Robust Optimization

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Homework for 1/27 Due 2/5

Stabilization of stock price prediction by cross entropy optimization

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

ΕΞΟΜΑΛΥΝΣΗ ΠΟΣΟΣΤΩΝ ΘΝΗΣΙΜΟΤΗΤΑΣ ΜΕΣΩ ΜΕΤΡΩΝ ΑΠΟΚΛΙΣΗΣ

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Προετοιμάζοντας τον μελλοντικό δάσκαλο για το ψηφιακό σχολείο

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

A High-speed Scheduling Method of Virtual Machine Placement with Search Parameter Estimation by Collaborative Filtering

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

FORMULAS FOR STATISTICS 1

Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΟΡΓΑΝΩΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΔΙΚΕΥΣΗ : LOGISTICS (ΕΦΟΔΙΑΣΜΟΣ ΚΑΙ ΔΙΑΚΙΝΗΣΗ ΠΡΟΪΝΤΩΝ)

Βέλτιστο Χαρτοφυλάκιο μετοχών του δείκτη FTSE/ΧΑΑ20 στο Χρηματιστήριο Αθηνών για τα έτη

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Aerodynamic Design Optimization of Aeroengine Compressor Rotor

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΤΟΠΟΛΟΓΙΑΣ ΚΟΜΒΩΝ ΚΑΙ ΡΑΒ ΩΝ ΣΕ ΙΚΤΥΩΜΑΤΑ

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Nonparametric Bayesian T-Process Algorithm for Heterogeneous Gene Regulatory Network


Υποέργο 2 - Δράση 2.2 Μέθοδοι Χαλάρωσης στις Διεπαφές (ΜΧΔ)

Ασηµακόπουλος Αλέξιος

ΕΠΙΤΑΧΥΝΣΗ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΕΥΡΕΣΗΣ ΤΗΣ ΕΚΤΙΜΗΣΗΣ ΤΗΣ ΔΙΑΣΤΑΣΗΣ ΣΥΣΧΕΤΙΣΗΣ Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

An Efficient Calculation of Set Expansion using Zero-Suppressed Binary Decision Diagrams

Διαχείριση ενεργειακών πόρων & συστημάτων Πρακτικά συνεδρίου(isbn: )

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Research on Real-Time Collision Detection Based on Hybrid Hierarchical Bounding Volume

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Transcript:

Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng and a sequental expermental desgn based on Bayesan statstcs for onlne automatc tunng whch s equvalent to mult-armed bandt problem. From theoretcal consderatons and from experments, we show that the proposed method successfully combnes nformaton from model wth mprecson and that from emprcal data wth varance and realzes effcent automatc tunng... ATLAS 7) FFTW 3) Dpt. of Computer Scence, Grad. Schl. of Informaton Scence and Technology, the Unversty of Tokyo CREST/JST, CREST. Bayes Bayes Bayes

Bayes Bayes Bayes 3 4 Bayes WAPT007 5) () () (3) t () () (3) t Bayes Vuduc 6). Bayes Bayes Bayes Bayes. Bayes Bayes y μ μ 0 ± τ μ μ 0, τ N(μ 0,τ ) μ ( p(μ) = exp (μ μ ) 0) πτ τ y σ N(μ, σ ) μ y =(y,y,...,y n) ( ) (y μ) p(y μ) = exp (πσ ) n/ σ Bayes p(μ y)p(y) =p(y,μ)=p(y μ)p(μ) ( p(μ y) exp ( exp (y μ) (μ μ n) τ n (μ μ ) 0) σ τ ) (σ, τ, y, p(y) ) τn = σ κ n = σ κ n τ + n κ0μ0 + nȳ μ n = ȳ = y () κ 0 + n n p(μ), p(μ y) y n+ p(y n+ y) = p(y n+ μ)p(μ y)dμ μ y n+ y N(μ n,σn) σn = σ κ n+/κ n y N(μ, σ ) y μ, σ Inv-χ p(σ )= (ν ( ) 0/) ν 0/ (σ0) ν 0/ Γ(ν 0/) (σ ) exp ν0σ 0 ν 0/+ σ

μ σ N(μ 0,σ /κ 0) y n+ t μ n Bayes ). Bayes Bayes mult-armed bandt problem ) μ (k) k μ () μ () mn {μ () } w () y y μ () n () μ () = κn μ() + y κ n mn {μ () } w () = μ () + E(mn{μ () }) E(x) x w () k k k w (k) w (k) = μ (k) + E(mn{w (k ) }) () k E(x) () E w (k ) E w (k).3 k w (k) = μ (k) +(k )E(mn{μ (k ),μ (k) }) mn (3) mn k w (k) w (k) k mn y p (y) (3) w (k) = μ (k) +(k ) +(k ) δ δ μ (k ) p (y)dy μ (k) mn p (y)dy δ y = δ μ (k ) = μ (k) mn δ = κ nμ (k) κ mn n μ (k) p t.4 Bayes p (y) p (y) =π ( y μ (k) )

μ (k ) α μ (k ) = α y +( α )μ (k) α, π α >α a π (η)dη > a π (η)dη ( a <0) π = π, α = α 8) μ (k) <μ (k) w (k) < w (k) μ (k) μ (k) w (k) < w (k) μ (k) >μ (k) μ (k) μ (k) w (k) < w (k) μ (k) μ (k) w (k) > w (k) w (k) k μ (k) 0 μ (k) σ =0.0 μ () 0 =0.0, κ 0 =.5 w () 0 w () μ () w () 0, w() 4 n 3,,, w0/w 0.5 0-0.5 - w n=3 w n= w n= -.5 w n=0 w0 n=3 w0 n= w0 n= w0 n=0-0 0. 0.4 0.6 0.8 mu w0/w 0.5 0-0.5 - w n=3 w n= w n= -.5 w n=0 w0 n=3 w0 n= w0 n= w0 n=0-0 0. 0.4 0.6 0.8 mu w (k) 0 w (k) k =, k =3 Fg. Estmated costs w (k) 0 and w (k) ;left: k =, rght: k =3 0 n w () 0 w () w () 0 n μ () = μ () 0 (= 0) w () 0 = w () μ () > 0 w () 0 < w () 0 μ () 0 w () 0 > w () k =3 n n = w () 0 n =0 w () μ () =0.4 k =3 μ (3) =0.7 k = k =3 3.

3. N N B, C A = BC ABC- LbScrpt 4) u, u (u,u ) [, 8] [, ] [, 64] [, ] [, 3] [, 4] [, 6] [, 8] [, 8] [, 6] [, 4] [, 3] [, ] [, 64] [, ] [, 8] 576 N M 576 M N 8 56 5 ( ) M 000 3. Bayes N, u N/u ( ) N mod u ABCLbScrpt 5 ( ) -: - N/u : -(N/u )(N/u ): -(N/u )(N/u )u u : A -(N/u )(N/u )N: -(N/u )(N/u )Nu : B -(N/u )(N/u )Nu : C -(N/u )(N/u )Nu u : -(N/u )(N mod u ): -(N/u )(N mod u )u : A -(N/u )(N mod u )N:, C -(N/u )(N mod u )Nu : B -(N mod u ): -(N mod u )N: A -(N mod u )N : B C 5 N N 5 7 7 3.3 Bayes Bayes Bayes () N Sten

() σ N log σ log N ν 0 N log(ν 0 4) N μ 0 κ 0 τ σ κ 0 = σ /τ log κ 0 log N 3.4 4 M : 576 M : 7 M 3A, M 3B: 7 (3) M 3A M 3B () 000 M, M, M 3B M 3A M 3B M M 7 M 3B M M CoreDuo.3GHz 0 Bayes 5 3 N rr rr =(T M T opt)/t opt T M M T opt rr =0 rl rl =(t M t opt)/t opt t M M t opt rl 0 rl =0 3.5 3 000 4 CPU (GHz) M

selecton (relatve performance) 4.5 M 4 3.5 3.5.5 0 00 00 300 400 500 600 700 800 900000 teraton selecton (relatve performance) 4.5 4 3.5 3.5.5 0 00 00 300 400 500 600 700 800 900000 teraton M selecton (relatve performance) 4.5 M3B 4 3.5 3.5.5 0 00 00 300 400 500 600 700 800 900000 teraton M, M, M 3B Fg. Executons by M, M and M 3B relatve regret.0e+0.0e+00 M M M3A M3B relatve loss.0e+0.0e+00.0e-0 M M M3A M3B.0E-0.0E-0.0E-03.0E-0.0E-04 PentumM.8 CoreDuo.3 Opteron.6 Opteron. Xeon.0 Xeon.4 PentumM.0 MobPen4-.8 MobPen3-. Pentum4-3.4 Xeon3.0 Xeon3.8 CPU Power5-.9 Crusoe0.86 USparc3-.0 CoreDuo.3 PentumM.8 CoreDuo.3 Opteron.6 Opteron. Xeon.0 Xeon.4 PentumM.0 MobPen4-.8 MobPen3-. Pentum4-3.4 Xeon3.0 Xeon3.8 CPU Power5-.9 Crusoe0.86 USparc3-.0 CoreDuo.3 3 000 Fg. 3 Relatve regrets of the methods; 000 teratons 4 000 Fg. 4 Relatve losses of the methods; 000 teratons 3 M 3A M 3B M M M 3A M 3B M 3A M 3B M M M CoreDuo M M 3A, M 3B M 4 3 M, M 3B, M 3A, M M 3B M CoreDuo.3GHz Table Evaluatons wth dfferent numbers of teratons on CoreDuo.3GHz M M M 3A M 3B 00.405.. rr 000.006.358 0.40 0.38 0000 0.0.353 0.9 0.3 00.35 0.83 0.80 rl 000 0.0008.353 0.6 0. 0000 0.0005.353 0.7 0.06 M 00, 000, 0000 0000 CoreDuo.3GHz Pentum4 3.4GHz, 5 M 3A, M 3B rl M, M rl M 00

Pentum4 3.4GHz Table Evaluatons wth dfferent numbers of teratons on Pentum4 3.4GHz M M M 3A M 3B 00.8.8.8 rr 000 7.96 0.6 0.53 0. 0000 0.80 0. 0.04 0.05 00 0.09 0.04 0.03 rl 000 0.007 0.09 0.0 0.0 0000 0.006 0.09 0.0 0.00 3 Table 3 Computatonal tmes of the control methods per teraton M M M 3A M 3B CoreDuo.67e-6.e-4 4.69e-4.90e-3 Pentum4.0e-6.36e-4 5.73e-4.47e-3 4 Table 4 M 3A / M 3B M Matrx szes where M 3A or M 3B s advantageous over M M vs M 3A M vs M 3B 000 0000 000 0000 CoreDuo 65 60 0 00 Pentum4 30 45 30 70 3 Pentum4 3.4GHz 000 M 3A M 0.007 M 3A M 0.06 (0.06 0.007 = 4.e-4 5.73e-4.36e-4) N 30 4 4. Bayes Bayes Bayes Bayes CREST ULP-HPC: ) Berry, D.A., and Frstedt, B.: Bandt Problem, Chapman and Hall (985). ) Carln, B. P. and Lous, T. A.: Bayes and Emprcal Bayes Methods for Data Analyss, nd ed., Chapman and Hall (000). 3) Frgo, M. and Johnson, S.G.: FFTW: an adaptve software archtecture for the FFT, Proc. ICASSP 98, Vol. 3, pp. 38 384 (998). 4) Katagr, T., et. al: ABCLbScrpt: A drectve to support specfcaton of an auto-tunng faclty for numercal software, Parallel Computng, Vol. 3, No., pp. 9 (006). 5) Suda, R.: A Bayesan Method for Onlne Code Selecton: Toward Effcent and Robust Methods of Automatc Tunng, Proc. nd Int l Workshop on Automatc Performance Tunng (WAPT007), pp. 3 3 (007). 6) Vuduc, R., Demmel, J. W., and Blmes, J. A.: Statstcal models for emprcal search-based performance tunng, Int l J. Hgh Perf. Comp. Appl., Vol. 8, No., pp. 65 94 (004). 7) Whaley, R. C. and Dongarra, J. J.: Automatcally Tuned Lnear Algebra Software, Proc. SC98 (CD-ROM), (998). 8) http://olab.s.s.u-tokyo.ac.p/ re/proof.pdf