Mechanism of Energy Generation of Microbial Fuel Cells

Σχετικά έγγραφα
Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Electrolyzed-Reduced Water as Artificial Hot Spring Water

Industrial Water Treatment. Study status and development trends in the wastewater treatment by electro-fenton method

Γέφυρα μεταξύ της έρευνας στη σύγχρονη φυσική και της επιχειρηματικότητας στον τομέα της νανοτεχνολογίας. Κβαντική Φυσική

Progress of Gas Diff usion Layer for Proton Exchage Membrane Fuel Cells

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

Fenton. COD ρ NH N TP ENVIRONMENTAL PROTECTION OF CHEMICAL INDUSTRY

Approximation Expressions for the Temperature Integral

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Mechanism of the Inactivation of Microorganisms by Non-thermal Process

Optimization of fermentation process for achieving high product concentration high yield and high productivity

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Degradation of Dichlorvos by Rhodobacter sphaeroides

Antibacterial property of fabric treated with a fiber-reactive chitosan derivative

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

College of Life Science, Dalian Nationalities University, Dalian , PR China.

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Γαλακτοκομία. Ενότητα6: Παράγοντες που Επηρεάζουν την Ανάπτυξη των Μικροβίων μέσα στο Γάλα (2/3), 2ΔΩ

Air Drying Process of Granules and Characteristics of Their Structure

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Σπανό Ιωάννη Α.Μ. 148

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

The pathway of the ozonation of 2,4,62trichlorophenol in aqueous solution

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Supplementary Information for

Inhibition of mushroom tyrosinase by flavonoid from Sorbus tianschanica Ruper in Xinjiang

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Supporting Information

Vol. 5 No. 1 Feb EL ECTROCHEMISTR Y ( ) ( ) ( EHD), ( FDN) ( TEA- PTS), Tri2 tonx-100 ,FDN. EHD. EHD. RH. RH 2. Guidelli, 1.

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Assessment Method of the Pathogenic Microbial Exposure Caused by Aerosolization of Reclaimed Water

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

(Biomass utilization for electric energy production)

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Escherichia coli. Escherichia coli Proteus mirabilis Klebsiella pneumoniae

ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΑΠΟ ΤΗΝ ΟΙΚΙΑΚΗ ΧΡΗΣΗ ΙΑΦΟΡΩΝ ΜΟΡΦΩΝ ΕΝΕΡΓΕΙΑΣ

,,, (, ) , ;,,, ; -

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

c Key words: cultivation of blood, two-sets blood culture, detection rate of germ Vol. 18 No

ΜΕΛΕΤΗ ΑΠΟΤΙΜΗΣΗΣ ΠΑΡΑΓΟΜΕΝΗΣ ΕΝΕΡΓΕΙΑΣ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΕΓΚΑΤΕΣΤΗΜΕΝΩΝ ΣΕ ΕΛΛΑ Α ΚΑΙ ΤΣΕΧΙΑ

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Supporting Information

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

Electronic Supplementary Information

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Toward the Quantitative Study of Hydrothermal Systems An Approach to Understand Hydrothermal Systems

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

Τμήμα Ψηφιακών Συστημάτων. Διπλωματική Εργασία

Prey-Taxis Holling-Tanner

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

Fe II aq Fe III oxide electron transfer and Fe exchange: effect of organic carbon

EPS. DOI / j. issn EXTRACTION OF EXTRACELLULAR POLYMERIC SUBSTANCES FROM ACTIVATED SLUDGE IN MEMBRANE BIOREACTOR

A research on the influence of dummy activity on float in an AOA network and its amendments

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Polymer-Based Composites with High Dielectric Constant and Low Dielectric Loss

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

Supporting Information

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Προετοιμάζοντας τον μελλοντικό δάσκαλο για το ψηφιακό σχολείο

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Διερεύνηση των συστημάτων εκτροφής μικρών μηρυκαστικών στην Επαρχία Λαγκαδά Θεσσαλονίκης

. O 2 + 2H 2 O + 4e 4OH -

ACTA CHIMICA SINICA. Cu/ ZnO ; XRD, BET N 2 O. . In2situ XPS, Ni Cu/ Zn/ Ni. . Ni, Cu/ ZnO

Trace gas emissions from soil ecosystems and their implications in the atmospheric environment

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

[11].,, , 316 6, ,., 15.5%, 9.8%, 2006., IDF,, ,500, 2,830.,, ,200.,,, β, [12]. 90% 2,,,,, [13-15].,, [13,

Αρχές Βιοτεχνολογίας Τροφίμων

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

,35 , 96 %, China Academic Journal Electronic Publishing House. All rights reserved. CHINA BIOTECHNOLOGY ( )

JOURNAL OF THE CHINESE CERAMIC SOCIETY. TiO 2 X

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Conductivity Logging for Thermal Spring Well

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΒΙΟΛΟΓΙΚΗ ΑΝΑΓΩΓΗ ΕΞΑΣΘΕΝΟΥΣ ΧΡΩΜΙΟΥ ΜΙΧΑΗΛ Κ. ΜΙΧΑΗΛΙΔΗ

þÿ¹º±½ À Ã Â Ä Å ½ ûµÅĹº þÿàá ÃÉÀ¹º Í Ä Å µ½¹º Í þÿ à º ¼µ Å Æ Å

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

Transcript:

20 7Π8 2008 8 PROGRESS IN CHEMISTRY Vol. 20 No. 7Π8 Aug., 2008 3 1,2 2 1 3 3 (11 100871 ; 21 510650) (MFC),, MFC MFC MFC 5,,, : TM911145 : A : 10052281X(2008) 07Π821233208 Mechanism of Energy Generation of Microbial Fuel Cells Lu Na 1,2 Zhou Shungui 2 Ni Jinren 1 3 3 (11Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China ; 21Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco2Environment and Soil Sciences, Guangzhou 510650, China) Abstract Microbial fuel cells ( MFCs) are the emerging technology for producing electricity directly from biodegradable organic matter using bacteria as catalyst. One of the most promising applications for MFCs is to use them simultaneously treating organic wastes while accomplishing power generation. The main problems for MFC are low electron transfer and power density. The electron transfer from the microbial cell to the fuel cell anode, as a process that links microbiology and electrochemistry, represents a key factor that defines the MFC power and energy output. In the paper, five key steps including fuel bio2oxidation, electron transfer to anode, electron transfer through the external circuit, proton diffusion and cathode reaction for electricity generation by MFC systems are identified and discussed in detail. Finally, the potential study directions in the future are prospected. Key words microbial fuel cells ; mechanism of energy generation ; electron transfer ; output power 1,, (microbial fuel cell,mfc) [1,2 ],MFC, : (1), ; (2), ; (3), ; (4), Logan [3 6 ] : 2007 8, : 2007 9 3 (No. 40601043) (No. 7006759) 3 3 e2mail :nijinren @iee. pku. edu. cn

1234 20,,MFC 1911, Potter [7 ], MFC, MFC, 10 WΠm 2, MFC,, MFC, MFC 2 MFC MFC,, 1 MFC [3,8,9 ], MFC 5 : (1), ; (2), ; (3) ; (4), ; (5) ( ),, 211 21111 ( ), (electricigenic respiration),, [10 ] Fe ( ) ( ),,, Fe ( ) [10 ] Fe ( ), Fe ( ),, Fe ( ),, 1 :11 ;21 ;31 ;41 ;51 Fig. 1 Steps of electron2transfer in MFC system. 11fuel biooxidation, 21electron transfer to anode, 31resistance, 41proton diffusion, and 51cathode reaction MFC,,,,,, NADH Q [11 ] Kim [9 ] MFC, ;,,, ;,,,, 21112 MFC, 1, MFC MFC,,,, MFC,, [12 ] [13 ] [14 ] [15 ] MFC MFC( MFC)

7Π8 1235 1 Table 1 Anodic microorganisms and their electron transfer types microorganism bacterial example transfer type electron acceptor ref. mediator2driven microorganisms Butyribacterium methylotrophicum exogenous mediators neutral red 13 Desulfovibrio desulfurcans primary metabolites as mediators S 2-16 Pseudomonas aeruginosa secondary metabolites as mediators pyocyanin 40,41 electricigens Geobacteraceae membrane2driven cytochrome 25 27 Rhodoferax ferrireducens cytochrome 24 Clostridium butyricum cytochrome 23 Shewanella putrefaciens cytochrome 18 H 2 H 2 S ( ), ( Escherichia coli) Desulfobulbaceae Harbermann [16 ] Desulfovibrio desulfurcans, MFC, 212,, ( Pseudomonas aeruginosa [17 ] ) MFC, ( ), 2,,, 4 : MFC, 4,, [9,18 ] ( ), MFC, 2 Table 2 Development of anodic electron2transfer mechanisms in [9,19 ] MFC MFC MFC( MFC), [19 21 ], [22 ] ( Shewanella putrefaciens ) [18 ] ( Clostridium butyricum ) [23 ] ( Rhodoferax ferrireducens) [24 ] [25 ( Geobacteraceae) 27 ] ( Aeromonas hydrophila) MFC, MFC 16S rdna, MFC,,, 3615 % Gammaproteobacteria 2710 % Firmicutes [28 ] ;, Deltaproteobacteria, 70 %, 1713 % Gammaprote2 obacteria [29 ] ; 4019 % Betaproteobacteria 2712 % Alphaproteobacteria, Deltaproteobacteria Gammaproteobacteria [20 ] ; [30 ] year finder viewpoint ref. 1911 Potter demonstrating the production of electrical energy (the first reported MFC) 1931 Cohen proposing the introduction of electromotively active redox substances 1991 Harbermann & Pommer proposing the production of reduced primary metabolites as redox mediators 1999 Kim, et al demonstrating some microorganisms possessing membrane bound cytochromes to transfer electrons 2000 Newman & Kolter 2005 Reguera, Lovley,et al 21211 proposing the secondary metabolites being involved in extracellular electron transfer processes proposing the electron2transfer mechanism of electronically conducting nanowires 7 57 16 18 40, 41,,, 34

1236 20 2 :A ;B ;C ;D Fig. 2 Identified anodic electron2transfer mechanisms in MFC. A) cell2membrane2bound cytochromes, B) electrically conductive nanowires, C) redox mediators, and D) oxidation of primary metabolites 0147 gπl),, (12 h 3 C),,,, Kim [18 ] 2121112, MFC,, (pili),, (nanowire) [34 ], 3 5 nm, MFC, 1 000 Reguera [34 ] (AFM) G. sulfurreducens :,,,, ( ),,,, NADH Q [11,31 ] :,, C,, [32 ],, 2 B, Kim [9 ],,,, NADH Q,, C 21212,,, Geobacter sulferreducens 100 ( ), C [33 ],,, ( Shewanella, putrefaciens ) [18 ] ( Rhodoferax ferrireducens) [24 ] [25 ( Geobacteraceae) 27 ] ( Aeromonas hydrophila), ( Clostridium butyricum) [23 ], : 2121111, C, 2 A Geobacter Desulfuromonas Shewanella,, Kim [9 ] MFC,, ( ( ), 3 2121211 20 80,

7Π8 1237,MFC,, MFC 2 C,,, ;,, : (1), ; (2),, ; (3), ; (4), ; (5), [14 ] [16 ] Fe ( ) EDTA [35 ] [12 ] [13 ], 3, Park [36 ],, 10,,,, [37 ] 3 MFC [38 ] Table 3 Exogenous redox mediators and their potentials used for MFC [38 ] substance class redox mediator redox potential phenazines neutral red - 0132 safranine - 0129 phenazine ethosulfate 0106 phenothiazines new methylene blue - 0102 toluidine blue o thionine 0103 0106 phenoxazines resorufin - 0105 gallocyanine 0102 quinones 22hydroxy21,42naphthoquinone - 0114 anthraquinone22,62disulfonate - 0118,, MFC, ;,, MFC 2121212, ( [39 ) 41 ],, (pyocyanine) 22 232 21,42 (ACNQ) [39 ] MFC,, 2 C,,, ;,,,,, [17,19 ], Rabaey [17 ] Pseudomonas aeruginosa MFC (pyocyanine) phenazine212carboxamide MFC,,16S rrna,mfc Lactobacillus Enterococcus [19 ] MFC, C [38 ],,, [10,42 ],,, MFC 2121213 H 2 H 2 S ( ),, 2 D,,,,, MFC, MFC,

1238 20 :, MFC, [43 ], MFC [44 ],, (1) SO 4 2- + 8H + + 8 e - S 2- + 4H 2 O (1) Harbermann [16 ] Desulfovibrio desulfuricans MFC,,,, [43 ],,,, Harbermann [16 ], S 2 -,, : MFC,,, Schrgder [45 ] E. coli K12,, 15 000 maπm 2, 213, MFC,,,,,, ;,,,,, Menicucci [46 ],,,,, MFC, MFC, ;,, MFC 214, MFC, MFC, MFC, [2 ], [47 ] MFC,, ph,, MFC :,Nafion,, (10-2 SΠcm) Logan [48 ],, MFC,, MFC, Min [49 ], Liu [47 ] MFC,, Nafion MFC 119 512,,,, ;,,,,,,, Liu [47 ], MFC Nafion MFC 3,, 28 %,MFC,, MFC,, 14 % [50 ] 215, ( ),, MFC

7Π8 1239,, ( ), MFC,, Oh [51 ], MFC 22 % Cheng [52 ], 2 mgπcm 2 011 mgπcm 2,, MFC, Morris [53 ] PbO 2, Pt 117,,, 319,,,, MFC,, [54 ],, MFC,, [55 ],,,, Oh [51 ] 50 % 80 %,,,,,,,, Rhoads [56 ],, ( + 38415 6410) mv 3 MFC MFC,, : ( ), ; ( ),,, MFC MFC 5,,, MFC,, MFC MFC, : (1),, MFC (2) MFC Fe ( ),Fe ( ) MFC (3),, MFC, MFC, MFC [ 1 ] Park D H, Zeikus J G. Biotechnol. Bioeng., 2003, 81 : 348 355 [ 2 ] Gil G C, Chang I S, Kim B H, et al. Biosen. Bioelectron., 2003, 18 : 327 334 [ 3 ] Liu H, Ramnarayanan R, Logan B E. Environ. Sci. Technol., 2004, 38 : 2281 2285 [ 4 ] Liu H, Logan B E. Environ. Sci. Technol., 2004, 38 (14) : 4040 4046 [ 5 ] Min B, Logan B E. Environ. Sci. Technol., 2004, 38 (21) : 5809 5814 [ 6 ] He Z, Minteer S D, Angenent L T. Environ. Sci. Technol., 2005, 39(14) : 5262 5267 [ 7 ] Potter M C. Proc. R. Soc. Lond. B, 1911, 84 : 2760 2761 [ 8 ] ( Guan Y), ( Zhang X). ( Progress in Chemistry), 2007, 19(1) : 74 79 [ 9 ] Kim H J, Park H S, Hyun M S, et al. Enzyme Microbiol. Technol., 2002, 30 : 145 152 [10] Lovley D R. Nat. Rev. Microbiol., 2006, 4 : 497 508

1240 20 [11] Nevin K P, Lovley D R. Environ. Microbio1., 2002, 68 (4) : 2294 2299 [12] Roller S D. J. Chem. Technol. Biotechnol., 1984, 34(1) : 3 12 [13] McKinlay J B, Zeikus J G. Appl. Environ. Microbiol., 2004, 70 (6) : 3467 3474 [14] Choi Y, Kim N, Kim S, et al. Bull. Korean Chem. Soc., 2003, 24(4) : 437 440 [15] Newman D K, Kolter R. Nature, 2000, 405 : 94 97 [16] Habermann W, Pommer E H. Appl. Microbiol. Biotechnol., 1991, 35(1) : 128 133 [17] Rabaey K, Boon N, Hofte M, et al. Environ. Sci. Technol., 2005, 39 : 3401 3408 [18] Kim B H, Kim H J, Hyun M S, et al. J. Microbiol. Biotechnol., 1999, 9 : 127 131 [19] Rabaey K, Boon N, Siciliano S D, et al. Appl. Environ. Microbiol., 2004, 70(9) : 5373 5382 [20] Moon H, Chang I S, Kim B H. Bioresource Technology, 2006, 97 : 621 627 [21] Back J H, Kim M S, Cho H, et al. FEMS Microbiol. Lett., 2004, 238 : 65 70 [22] Holmes D E, Bond D R, OπNeil R A, et al. Microbiol. Ecology, 2004, 48 : 178 190 [23] Park H S, Kim B H, Kim H S, et al. Anaerobe, 2001, 7 : 297 306 [24] Chaudhuri S K, Lovley D R. Nat. Biotechnol., 2003, 21 : 1229 1232 [25] Logan B E, Regan J M. Trend in Microbiology, 2006, 14 (12) : 512 518 [26] Bond D R, Holmes D E, Tender L M, et al. Science, 2002, 295 : 483 485 [27] Reimers C E, Tender L M, Fertig S, et al. Environ. Sci. Technol., 2001, 35(1) : 192 195 [28] Chang I S, Hyunsoo M, Orianna B, et al. J. Microbiol. Biotechnol., 2006, 16(2) : 163 177 [29] Lee J, Phung N T, Chang I S, et al. FEMS Microbiol. Lett., 2003, 223 : 185 191 [30] Phung N T, Lee J, Kang K H, et al. FEMS Microbiol. Lett., 2004, 233 : 77 82 [31] Beliaev A S, Saffarini D A, McLaughlin J L, et al. Mol. Microbiol., 2001, 39(3) : 722 730 [32] Lovley D R, Holmes D E, Nevin K P. Adv. Microb. Physiol., 2004, 49 : 219 286 [33] Heidelberg J F, Paulsen I T, Nelson K E, et al. Nat. Biotech., 2002, 20 : 1118 1123 [34] Reguera G, Carthy K D, Loveley D R, et al. Nature, 2005, 435 : 1098 1101 [35] Veag C A, Fernandez I. Bioelectrochem. Bioenerg., 1987, 17 : 217 222 [36] Park D H, Zeikus J G. Appl. Environ. Microbiol., 2000, 66 (4) : 1292 1297 [37] Tanaka K, Vega C A, Tamamushi R. Bioelectrochem. Bioenerg., 1983, 11 : 289 297 [38] Schrgder U. Phys. Chem. Chem. Phys., 2007, 9 : 2619 2629 [39] Hernandez M E, Newman D K. Cell. Mol. Life Sci., 2001, 58 : 1562 1571 [40] Newman D K. Science, 2001, 292 : 1312 1313 [41] Newman D K, Kolter R. Nature, 2000, 405 : 94 97 [42] Lovley D R. Curr. Opin. Biotechnol., 2006, 17(3) : 327 332 [43] Madigan M T, Martink J M, Parker J. Brock Biology of Microorganisms, 8th ed. NJ : Prentice Hall, 1999 [44] Rabaey K, Sompel K, Maignien L, et al. Environ. Sci. Technol., 2006, 40(17) : 5218 5224 [45] Schrgder U, Niegen J, Scholz F. Angewandte Chemie, 2003, 115 : 2986 2989 [46] Menicucci J, Beyenal H, Marsili E, et a1. Environ. Sci. Technol., 2006, 40 (3) : 1062 1068 [47] Liu H, Cheng S A, Logan B E. Environ. Sci. Technol., 2005, 39 : 5488 5493 [48] Oh S E, Logan B E. Appl. Microbiol. Biotechnol., 2005, 70 (2) : 162 169 [49] Min B, Cheng S, Logan B E. Water Res., 2005, 39 : 1675 1686 [50] Logan B E, Murano C, Scott K, et al. Water Res., 2005, 39 : 942 952 [51] Oh S, Min B, Logan B E. Environ. Sci. Technol., 2004, 38 : 4900 4904 [52] Cheng S A, Liu H, Logan B E. Environ. Sci. Technol., 2006, 40 : 2426 2432 [53] Morris J M, Jin S, Wang J Q, et al. Electrochem. Commun., 2007, 9(7) : 1730 1734 [54] Pham T H, Jang J K, Chang I S, et al. J. Microbiol. Biotechnol., 2004, 14 : 324 329 [55] Cheng S, Liu H, Logan B E. Electrochemistry Communications, 2006, 8 : 489 494 [56] Rhoads A, Beyenal H, Lewandowshi Z. Environ. Sci. Technol., 2005, 39 : 4666 4671 [57] Cohen B. J. Bacteriol., 1931, 21 : 18