46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

Σχετικά έγγραφα
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Research on the Correlation of Portfolio Value at Risk in Financial Markets

Research on Economics and Management

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Arbitrage Analysis of Futures Market with Frictions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Statistical Inference I Locally most powerful tests

Supplementary Appendix

Risk Analysis of Portfolio by Copula2GARCH

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun (,, ) 应用概率统计 版权所用,,, EM,,. :,,, P-. : O (count data)

X g 1990 g PSRB

FORMULAS FOR STATISTICS 1

YOU Wen-jie 1 2 JI Guo-li 1 YUAN Ming-shun 2

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

:,,,, ,,, ;,,,,,, ,, (Barro,1990), (Barro and Sala2I2Martin,1992), (Arrow and Kurz,1970),, ( Glomm and Ravikumar,1994), (Solow,1957)

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Buried Markov Model Pairwise

Χρηματοοικονομική Ανάπτυξη, Θεσμοί και

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

An Inventory of Continuous Distributions

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

copula, 5 3 Copula Κ L = lim System s Engineering M ay., 2006 : (2006) ,,, copula Ξ A rch im edean copula (Joe,

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

ΠΙΝΑΚΑΣ ΠΛΗΡΟΦΟΡΙΩΝ ΓΙΑ ΥΠΗΡΕΣΙΕΣ ΠΛΗΡΩΜΩΝ (Ν. 3862/2010)

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Congruence Classes of Invertible Matrices of Order 3 over F 2


ST5224: Advanced Statistical Theory II

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

,..., Xn. (Value-at-Risk) ( ) Jarque-Bera (Extreme Value Theory) ARCH/GARCH [1][2] Mcneil (Tail Index) [8][9] [10] ISE-100 ARCH/ GARCH , ; 2

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

Βιογραφικό Σημείωμα. (τελευταία ενημέρωση 20 Ιουλίου 2015) 14 Ιουλίου 1973 Αθήνα Έγγαμος

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Κατανοώντας και στηρίζοντας τα παιδιά που πενθούν στο σχολικό πλαίσιο

C32,B22, Q1,E52 :JEL.

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Mantel & Haenzel (1959) Mantel-Haenszel

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Ulf Schepsmeier and. Jakob Stöber

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

Η Επίδραση των Events στην Απόδοση των Μετοχών

BUSINESS PLAN (Επιχειρηματικό σχέδιο)

552 Lee (2006),,, BIC,. : ; ; ;. 2., Poisson (Zero-Inflated Poisson Distribution), ZIP. Y ZIP(φ, λ), φ + (1 φ) exp( λ), y = 0; P {Y = y} = (1 φ) exp(

Prey-Taxis Holling-Tanner

Πολιτισμός και ψυχοπαθολογία:

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Homomorphism of Intuitionistic Fuzzy Groups

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Biostatistics for Health Sciences Review Sheet

Approximation of distance between locations on earth given by latitude and longitude

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Additional Results for the Pareto/NBD Model

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: Mετακύλιση τιμών βασικών προϊόντων και τροφίμων στην περίπτωση του Νομού Αιτωλοακαρνανίας

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

!! " # $%&'() * & +(&( 2010

Study of urban housing development projects: The general planning of Alexandria City

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

!"#ά%&'( 21 To )*+,-&./ό 1(2'32&4'/ό 5ύ3472& /&' 4( )*+ώ

Πανεπιστήµιο Μακεδονίας Οικονοµικών και Κοινωνικών Επιστηµών Τµήµα Εφαρµοσµένης Πληροφορικής

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Quick algorithm f or computing core attribute

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

IMES DISCUSSION PAPER SERIES

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

An Introduction to Spatial Statistics: Data Types, Statistical Tools and Computer Software

MSM Men who have Sex with Men HIV -

Math 6 SL Probability Distributions Practice Test Mark Scheme

Σχέση στεφανιαίας νόσου και άγχους - κατάθλιψης

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

, -.

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

Assalamu `alaikum wr. wb.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Transcript:

2 Chinese Journal of Alied Probability and Statistics Vol.26 No.5 Oct. 2 Coula,2 (,, 372; 2,, 342) Coula Coula,, Coula,. Coula, Coula. : Coula, Coula,,. : F83.7..,., Coula,,. Coula Sklar [],,, Coula., Coula. Coula,, [2 5].,,. Coula. Coula, Coula, Coula,, Frank Gumbel Clayton Coula ( []). Coula,., Coula,. [4, 6] GARCH-t, Coula Coula, Coula,. Coula., Coula,. (757377). 26 6 8.

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) [], Coula. φ( ) Coula C(u, v), [8] C(U, V ) K() = P{C(U, V ) } = φ() φ, [, ]. (), Coula, Kendall [8] φ() τ = 4E{C(U, V )} = + 4 φ () d. ρ,, ρ. Coula, Coula τ,, (concordant) []., ρ, τ., Coula, τ, Coula ( ). Gumbel Frank Clayton Coula Coula ( ( θ } /θ ) Coula), Kendall (θ )/θ 4 { θ t/(e t )dt θ/(θ + 2), θ Coula. Coula C θ (u, v) φ() θ Gumbel ex{ [( log u) θ + ( log v) θ ] /θ } ( log ) θ [, ] Frank { θ log + (e θu )(e θv ) } e θ log e θ e θ (, + )/{} Clayton max((u θ + v θ ) /θ, ) ( θ )/θ [, )/{} Coula, t,, t n n, < t < < t n <, t =, t n+ >, Coula φ(), S() = log(φ()), Q() = n {θ,i + θ i S()}I(t i < t i+ ), (2.2) i=

: Coula 46 I( )., ex( Q) Coula : i =,, n, θ,i = i k= S(t k )(θ k θ k ); θ n θ. θ,, ex( Q) Coula, θ, =. : ex( Q),, ex( S). Q() Q (x) = n i= S ( x θ ),i I{Q(t i ) x < Q(t i+ )}, θ i S, Q, (2.), ex( Q()) Coula C(u, v) = n i= Coula ( Coula), [ x = log ex S ( x θ ),i I{Q(t i ) x < Q(t i+ )}, (2.3) θ i { n i= } (θ,i + θ i S(u))I(t i u < t i+ ) { + ex n }] (θ,i + θ i S(v))I(t i v < t i+ ). i= φ (2.3) Coula. n, S() m, Coula m + n +. Coula S(). S(), Coula ;, (θ,, θ n ) Coula. φ(), S(), Coula C(u, u) S (S(u) log 2/θ ) λ L = lim = lim, u + u u + u (2.4) 2u + C(u, u) 2u + S (S(u) log 2/θ n ) λ U = lim = lim. u u u u (2.5) Coula S() θ ( θ n ),, Coula, Coula,., φ() = log, Coula C(u, v) = uv,, ex{ Q()} = n [e θ,i ( log ) θ i ] I(t i <t i+ ), (2.6) i= Coula. θ i = θ, i =,, n, ex( Q()) = ( log ) θ, Gumbel Coula.

462 3. (X,k, X 2,k ), k =,, m, V k = m m I(X,j X,k, X 2,j X 2,k ) k =,, m. (3.) j= K m () C(U, V ), [, ] K m () = m m I(V k ). k= Coula (2.3), C(U, V ), (2.6), K() = + S () n i= K() = log() n i= θ i I(t i < t i+ ), θ i I(t i < t i+ ). β = (β = /θ,, β n = /θ n ), Y = {K m (V k ) V k, j =,, m} X = {/S (V k )I(t i V k < t i+ ), i =,, n, k =,, m}. A, β β n A T β. : Y = Xβ + ɛ, β β = arg min β (Y Xβ) T (Y Xβ), A T β. (3.2),, β = arg min β {(Y Xβ) T (Y Xβ) + λβ T T r r β}, A T β. (3.3) β = (β i β i, i =,, n) t, r β = ( r β) r. λ. r =. r = 2,, λ +, β i., 2. (3.3)., (bootstra). R, [9] :

: Coula 463. {(X,k,X 2,k ), k =,, m} (X,,X 2, ),, (X,m,X 2,m ); 2. (3.) V,, V m; 3. λ, V k, k =,, m (3.3), β r. R, β r, r =,, R β. K() K m (), Coula. Coula K() K m (). K() K m (), Coula., n (K( i ) K m ( i )) 2, < i <,, Coula i=. χ 2 Coula, Coula. {u t } {v t }, t =,, m, [, ]. k < a < < a k <, a =, a k =, [, ] [, ] k k, i j A(i, j), i, j =,, k. (u t, v t ), a i u t < a i a j v t < a j, (u t, v t ) A(i, j), a i, i =,, k,,. E ij A(i, j), T ij Coula A(i, j), Coula N = k k i= j= (E ij T ij ) 2 T ij, (3.4) N (k ) 2 χ 2.,,, q, (k ) 2 (q ). 4. / / / / / / /, EUR CAD AUD JPY CHF DKK GBP. {P t }, {R t } R t = log P t log P t. 999 24 3, 479. (CHF, EUR) (DKK, EUR) (AUD, GBP) (CAD, JPY) Kendall τ.772.526.243.5, CHF EUR, DKK EUR, CAD JPY. [, ],, (CHF, EUR),, ; (DKK, EUR),, (, ) (, ), ; (AUD, GBP), (, ) (, ),

464 (, ) (, ) ; (CAD, JPY), (AUD, GBP). τ,., Coula. EUR GBP.8.6.4.2.2.4.6.8 CHF.8.6.4.2.2.4.6.8 AUD EUR JPY.8.6.4.2.2.4.6.8 DKK.8.6.4.2.2.4.6.8 CAD n = t < < t, t =, t =.. S() = log( log()) Q(), ex( Q()) Coula., r = 2, λ =, β. R = 5, β. τ Coula, 2. 2 β (CHF, EUR) (DKK, EUR) (AUD, GBP) (CAD, JPY) θ θ θ θ Gumbel 4.39.5 2..282.32.249.2.72 Frank 5.7.24 6.23.589 2.3.28.95.33 Clayton 6.77.67 2.22.8.64.26.23.66.38.65.9.78

: Coula 465 (CHF EUR) (DKK EUR). 8.5 6 4 2 emirical semiarametric model 95% confidence bands.2.4.6.8.3 25.2 5. 5 (AUD GBP) emirical semiarametric model 95% confidence bands.2.4.6.8. 8 6 2 4 emirical gumbel model 2 frank model clayton model.2.4.6.8.3 25.2 5. 5 (CHF EUR) (AUD GBP).2.4.6.8 k() k()..5 emirical semiarametric model 95% confidence bands.2.4.6.8.35.3.25.2.5..5 (CAD JPY) emirical semiarametric model 95% confidence bands.2.4.6.8 Coula K() emirical gumbel model frank model clayton model k() k().5..5 (DKK EUR) emirical gumbel model frank model clayton model.2.4.6.8.35.3.25.2.5..5 (CAD JPY) emirical gumbel model frank model clayton model.2.4.6.8 3 Coula K()

466 2 3 Coula K() K m (). 2 β 95% Coula K(). Coula 4,., 4, K() K m (), K() K m (). (CAD, JPY), K() K m (). (CAD, JPY), K() K m (), 2,, (CAD, JPY)., 3 Coula β, 4, 7.48%.%, (DKK, EUR), K() 95% K m (), (DKK, EUR), 95% K m ()., 4, K() K m (),,. Clayton K() K m (), K m (), (CHF, EUR) (DKK, EUR) ; Gumbel K(), K m (), K m (), (CHF, EUR) (DKK, EUR) ; Frank K(), (CAD, JPY), K m (),., 2, Coula Coula., 4, K() K m (), Coula Coula,. 3 β (CHF, EUR) (DKK, EUR) (AUD, GBP) (CAD, JPY).92%.%.7% 2.2% 4.39%.8% 3.65% 7.48%, k a i, i =,, k, k k A., (u t, v t ), t =,, 478 A(i, j) E ij, Coula A(i, j), T ij, i, j =,, k, (3.4) N. 4 N, Coula 4 : Coula 4, Coula.,.5, Coula 3, Coula Coula ;., Coula (CAD, JPY).

: Coula 467 4 df χ 2 N (CHF, EUR) (DKK, EUR) (AUD, GBP) (CAD, JPY) df N df N df N df N Frank 33 23.8 49 29.2 37 3.3 52 23.8 Gumbel 34 22.3 45 27.6 35 28.6 48 9.6 Clayton 26 6.3 42 2.3 32 7.5 46 8.4 43 27.6 57 42.4 45 3.4 6 42.9 :.5.. 5., Coula Gumbel Frank Clayton Coula, Coula, Coula. 4,, Coula,. Coula, Coula, S() Coula,. [] Nelsen, B., An Introduction to Coulas, New York: Sringer, 999, 89 24. [2],, VaR,, 22(9)(24), 42-45. [3],, Coula,, 24(4)(24), 49 55. [4],,,,, 9(4)(24), 355 362. [5],,, Coula, ( ), 3(5)(23), 97. [6] Hu, L., Essays in Econometrics with Alications in Macroeconomic and Financail Modelling, New Haven: Yale University, 22. [7] Vandenhende, F. and Lambert, P., Local deendence estimation using semiarametric Archimedean coulas, The Canadian Journal of Statistics, 33(3)(25), 377 388. [8] Genest, C. and MacKay, R.J., Coules archimédiennes et familes de lois bidimensionnelles dont lesmarges sont données, The Canadian Journal of Statistics,4(2)(986), 45 59. [9] Davison, A.D. and Hinkley, D.V., Bootstra Methods and Their Alication, Cambridge, England: Cambridge University Press, 999, 264 266. [] Waldmann, K.H., On the exact calculation of the aggregate claims distribution in the individual life model, ASTIN Bulletin, 24(994), 89 96. [] Genest, C. and Rivest, L.P., Statistical inference rocedures for bivariate Archimedean coulas, Journal of the American Statistical Association, 88(993), 34 43.

468 [2] Embrechts, P., Lindskog, F. and McNeil, A., Modelling deendence with coulas and alication to risk management, Handbook of Heavy Tailed Distributions in Finance, ed. S. Rachev, Elsevier, 23, Chater 8: 329 384. Emirical Research on the Semiarametric Archimedean Coula Shi Daoji Guo Hui,2 Luo Juneng ( Institute of Science, TianJin University, TianJin, 372 ) ( 2 The Real Estate Market Administrative Deartment of Tianjin, Tianjin, 342 ) Semiarametric Archimedean coulas, which have a fexible deendence structure because of the secial way constructed by using the existing archimedean generator, can describe the deendence structure between the financial data auto-adatively. The emirical results on the exchange rate market suggest that the semiarametric Archimedean coula is more flexible than the other three coulas, and is suggestive when selecting coulas. Keywords: Selection of coulas, semiarametric Archimedean coula, exchange rate, tail deendence. AMS Subject Classification: 62P2.