Probabilistic Approach to Robust Optimization

Σχετικά έγγραφα
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Quick algorithm f or computing core attribute

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Resilient static output feedback robust H control for controlled positive systems

ΘΑΛΗΣ Πανεπιστήμιο Πειραιά Μεθοδολογικές προσεγγίσεις για τη μελέτη της ευστάθειας σε προβλήματα λήψης αποφάσεων με πολλαπλά κριτήρια

Research on model of early2warning of enterprise crisis based on entropy

Λήψη Αποφάσεων σε Συνθήκες Αβεβαιότητας. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Simplex Crossover for Real-coded Genetic Algolithms

Καθηγητής Παν Πειραιά, Δρ Φούντας Ευάγγελος. Δρ ΦΟΥΝΤΑΣ ΕΥΑΓΓΕΛΟΣ. Καθηγητής Πανεπιστημίου Πειραιώς Πρόεδρος Τμήματος Πληροφορικής

Stabilization of stock price prediction by cross entropy optimization

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Algorithms to solve Unit Commitment Problem

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

High order interpolation function for surface contact problem

Buried Markov Model Pairwise


Anomaly Detection with Neighborhood Preservation Principle

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

Applying Markov Decision Processes to Role-playing Game

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Decision making under model uncertainty: Hamilton-Jacobi-Belman-Isaacs approach, weak solutions and applications in Economics and Finance

New Adaptive Projection Technique for Krylov Subspace Method

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Επιχειρησιακή Έρευνα

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ

Nondifferentiable Convex Functions

Ευρετικές Μέθοδοι. Ενότητα 1: Εισαγωγή στις ευρετικές μεθόδους. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΙ

A research on the influence of dummy activity on float in an AOA network and its amendments

Πανεπιζηήμιο Πειπαιώρ Τμήμα Πληποθοπικήρ

ΕΝΑΣ ΝΕΟΣ ΤΡΟΠΟΣ ΔΗΜΙΟΥΡΓΙΑΣ ΤΥΧΑΙΩΝ ΒΕΛΤΙΣΤΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΚΑΙ ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ

Fundamentals of Finance

Gradient Descent for Optimization Problems With Sparse Solutions

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (3 ο Φυλλάδιο)

ER-Tree (Extended R*-Tree)

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

New conditions for exponential stability of sampled-data systems under aperiodic sampling


Models for Asset Liability Management and Its Application of the Pension Funds Problem in Liaoning Province

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

New bounds for spherical two-distance sets and equiangular lines

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Sampling Basics (1B) Young Won Lim 9/21/13

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

ΑΠΟΣΠΑΣΜΑ Π Ρ Α Κ Τ Ι Κ ΟΥ 3 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ ΣΧΟΛΗΣ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

A summation formula ramified with hypergeometric function and involving recurrence relation

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Μοντελοποίηση προβληµάτων

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

Global energy use: Decoupling or convergence?

ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Single-value extension property for anti-diagonal operator matrices and their square

ΘΑΛΗΣ Πανεπιστήμιο Πειραιά Μεθοδολογικές προσεγγίσεις για τη μελέτη της ευστάθειας σε προβλήματα λήψης αποφάσεων με πολλαπλά κριτήρια

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

ΘΑΛΗΣ Πανεπιστήμιο Πειραιά Μεθοδολογικές προσεγγίσεις για τη μελέτη της ευστάθειας σε προβλήματα λήψης αποφάσεων με πολλαπλά κριτήρια

Big Data/Business Intelligence

Research on real-time inverse kinematics algorithms for 6R robots

Distributed Probabilistic Model-Building Genetic Algorithm

(020) (020)

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Βιογραφικό Σημείωμα. Διδακτορικό Δίπλωμα, Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης, Πανεπιστήμιο Πειραιά, 3/2009

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. ΤΗΛΕΦΩΝΟ:

IMES DISCUSSION PAPER SERIES

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

2013 Aymeric Bethencourt et al., licensee Versita Sp. z o. o.

Διοίκησης Επιχειρήσεων. ΠΡΟΓΡΑΜΜΑ eμβα ΚΩΔ. ΤΜΗΜΑ ΤΙΤΛΟΣ ΔΙΕΠ5 ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑΤΟΣ. Credits 6 ΕΞΑΜΗΝΟ 3 ος κύκλος ΟΝΟΜ/ΝΟ ΔΙΔΑΣΚΟΝΤΟΣ

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

ΚΩΝΣΤΑΝΤΙΝΟΣ Σ. ΠΟΛΙΤΗΣ Διπλ. Φυσικός Πανεπιστημίου Πατρών Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ


ΜΙΧΑΗΛ ΑΝΘΡΩΠΕΛΟΣ ΤΡΕΧΟΥΣΑ ΑΚΑΔΗΜΑΪΚΗ ΘΕΣΗ

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

L.R. Alejano, 1* J. Muralha, 2 R. Ulusay, 3 C.C. Li, 4 I. Pérez-Rey, 1 H. Karakul, 5 P. Chryssanthakis, 6 Ö. Aydan, 7 J. Martínez 8 & N.

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

Lect_ Cloud Computing

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ, ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ, ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ, ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

Summary of the model specified

Study of urban housing development projects: The general planning of Alexandria City

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΣΤΑΤΙΣΤΙΚΗΣ & ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Transcript:

Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552, Japan takeda@is.titech.ac.jp u f(x, u) 0, u ( ) ( ) N N Calafiore & Campi N Keywords: Ben-Tal&Nemirovski 998 Tal&Nemirovski,. 70 Soyster [9] Ben- El Ghaoui&Lebret [4]

Ben-Tal&Nemirovski[2] [2] Calafiore &Campi[3] N N N 2 min x X c x s.t. f(x, u) 0, u () f(x, u) x X, minx X max u g(x, u) () t g(x, u) t min x X,t t s.t. g(x, u) t, u () g i (x, u) 0, i =,...,m, f(x, u) =max i=,...,m g i (x, u) 0 () () ()

: 2: max u f(x, u) 0 min x X c x s.t. f(x, u) 0, u. (2) =[a 0 ā, a 0 + ā] : (Soyster [9]) ā 0 (2) max a a x = a 0 x + ā x b (3) y a 0 x + ā y b, y x y, y 0 ( ) (2) 2 (3)

= {a 0 + Au : u } : (Ben-Tal&Nemirovski [2]) a u (2) max (a 0 + Au) x b u: u = a 0 x + max u: u (A x) u 2 u = A x A x a 0 x + A x b (2) min x c x s.t. a 0 x + A x b [2, 5] 3 ( ) Calafiore&Campi P P u u (C-C ) x V ( x) =P {u : f( x, u) > 0} (K-T ) f max ( x) =max u f( x, u) V ( x) f max ( x) x N () N N (P N ) (P N ) min x X c x s.t. f(x, u i ) 0, i=...,n, V ( x N ) (P N ) x N Calafiore&Campi () x N

3: f(x,) V ( x N ) ɛ ɛ η (n x ) N N(ɛ, η) = 2 ɛ log η +2n + 2n ɛ log 2 ɛ (Calafiore&Campi [3]) ɛ (0, ), η (0, ) N>N(ɛ, η) (P N ) x N η V ( x N ) ɛ ɛ ɛ 0 ( N(ɛ, η) (P N ) ) f max ( x N ) 2(Kanamori&Takeda[6])ɛ (0,q(B)), η (0, ) N>N(ɛ, η) (P N ) x N η V ( x N ) ɛ f max ( x N ) q (ɛ) 2 q(δ), 0 δ B, f(x, ) ( 3 ) { } p(δ, x) :=P max f(x, u) δ<f(x,) u 0 q(δ) p(δ, x), 0 δ B, ( x X) (4) () f(x, u) u f(x, u) f(x, v) L u v, x X, u, v (2) ( ) [6]

(3) P ( ) q(δ) B [6] q(δ) B L :=max u,v u v [6] q(δ) B [6] 2 q (ɛ) ɛ ɛ (P N ) N 2 ɛ N(ɛ, η) (P N ) 3(Kanamori&Takeda[6]) N (P N ) x N δ (0,B], η (0, ) M( ln η ) ln( q(δ)) ũ,...,ũ M f max ( x N ) } P {f M max ( x N ) < max f( x N, ũ i )+δ i=,...,m η (P N ) x N ũ,...,ũ M M f( x N, ũ i ) () N (P N ) x N 3 max i=,...,m f( x N, ũ i )+δ 0 0 x N () 0 N (P N ) 4 Kouvelis&Yu [7] u minx X f(x, u) 3

(Absolute Robustness) min max f(x, u). (5) x X u (Deviation Robustness) (RD) f (u) =minx X f(x, u). (Relative Robustness) f (u) =minx X f(x, u). min max x X u {f(x, u) f (u)}, (6) min max x X u f(x, u) f (u), f (u) f (u) (5) () (6) u (6) f (u) (5) (6) [2] [, ] Deviation Robustness (6) f(x, u) x f (u) u (6) (RD) (RD N ) min x X,t s.t. t f(x, u i ) f (u i ) t, i =,...,N. f(x, u) x u,...,u N f (u i )=min x X f(x, u i)=f(x i, u i ), i =,...,N, (7) f (u i ) (RD N ) (RD N ) (CRP N ) min x X,t t s.t. f(x, u) f(x, u) t, u... f(x, u) f(x N, u) t, u

x i f (u i ) i f(x, u) f(x i, u) t, u, u = u i f(x, u i ) f (x i ) t (RD N ) i (RD N ) (CRP N ) (CRP N ) (RD N ) 2 4 ɛ (0,q(B)), η (0, ) N N(ɛ, η). opt(rd) (CRP N ) (RD N ) opt(crp N ) opt(rd N ) η opt(rd) opt(crp N ) opt(rd) opt(rd N ) q (ɛ) Proof (RD N ) ( x N, t N ) 2 (RD N ) η { } max f( xn, u) f (u) t N q (ɛ) (8) u t N (RD N ) max u {f( x N, u) f (u)} (8) min max x X u {f(x, u) f (u)} min max {f(x, u i) f (u i )} q (ɛ) x X i=,...,n opt(rd) opt(rd N ) q (ɛ) opt(rd N ) opt(crp N ) 4 3 5 N (CRP N ) (x N,t N ) η (0, ) δ ln η (0,B] M ln( q(δ)) ũ,...,ũ M β M = max i=,...,m {f(x N, ũ i) f (ũ i ) t N } η opt(rd) opt(crp N ) <β M + δ (9)

: (CRP N ) (CRP N ) (CRP N ) no? yes : 4: 5 4 x N ζ + δ t N η N = N 0 (CRP N ) (x N,t N ) V = {i : f(x N, ũ i ) f (ũ i ) t N > 0} N>N 0 (CRP N ) 5 μ x r max f x X x Qx, Q r f 0 Krishnamurthy[8] μ l μ = μ 0 + u j μ j, u := {u : u } j= min x X max u {f (u) f(x, u)} (0)

.2. proposed relaxation (CRP N ) robust deviation (RD).2. sampled relaxation (RD N ) robust deviation (RD) Optimal Value 0.9 0.8 0.7 0.6 Optimal Value 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0 0.5 0 2 0 2.5 Num. of Samples (N) 0 3 0.3 0 0.5 0 2 0 2.5 Num. of Samples (N) 0 3 5: (CRP N ) (RD N ) 00 proposed relaxation (CRP N ) sampled relaxation (RD N ) Average Comp. Time [sec] 0 0. 0 0.5 0 2 0 2.5 Num. of Samples (N) 0 3 6: (CRP N )and(rd N ) X := {x : x 0, e x =}, f(x, u) = (μ 0 + l j= u jμ j r f e) x, and f (u) =max x Qx x X (μ 0 + l j= u jμ j r f e) x. x Qx f (u) f(x, u) (RD N ) (CRP N ) f (u i ) f(x, u i ) t (i =,...,N) f(x i, u) f(x, u) t, u (i =,...,N) [8] (RD N ) (RD N ) f (u i ) i =,...,N (RD N ) Takeda,Taguchi-Tanaka[0] (0) (CRP N ) f (u i ) i =,...,N (CRP N ) 20 (x IR 20 ) l =4(u IR 4 ) (CRP N ) (RD N ) /. μ j, j =

: opt(rd) opt(crp N ) (η =0.0) ɛ N(ɛ, η) q (ɛ) R.err [%] 0.787 00.397 3.8 0.25 000 0.724 68.3 0.020 0000 0.429 40.4 2: opt(rd) opt(crp N ) (η =0.0) x N (N = 00) x N 2 (N 2 = 000) δ M β M A.err R.err [%] M β M A.err R.err [%] 0.5 2297 0.030 0.80 6.9 2294 0.006 0.56 4.7 0.0 074 0.06 0.6.0 057 0.006 0.06 0.0 0.05 69026 0.03 0.08 7.6 68759 0.00 0.060 5.7 x N 3 (N 3 = 0000) δ M β M A.err R.err [%] 0.5 2285-0.077 0.073 6.9 0.0 03-0.020 0.080 7.5 0.05 68073-0.003 0.047 4.4 0,,...,4 (CRP N ) [0] u,...,u N 00 (CRP N ) (RD N ) (00 ) 5 (RD) N =5 0 4 (CRP N ) (t N =.060) (RD) 5 (CRP N) (RD N ) f (u i ) i =,...,N 6 (CRP N ) (CRP N ) N(ɛ, η) η ɛ q (ɛ) R.err R.err := q (ɛ) opt(rd) N =0 3 q (ɛ) =0.724 99% 5 N =0 3 (CRP N ) 2 N =0 2, 0 3, 0 4 (CRP N ) β M = max {f (ũ i ) f(x N, ũ i) t N } i=,...,m

3: (N 0 =0 η =0.0 ζ =0.0) δ =0.5 ( ζ + δ 0.6 ) itr. V.rate (V/M) β M t N 42/2274 0.275 0.856 2 0/2276-0.043.04 δ =0.0 ( ζ + δ 0. ) itr. V.rate (V/M) β M t N 248/0963 0.275 0.856 2 0/002-0.02.057 δ =0.05 ( ζ + δ 0.06 ) itr. V.rate (V/M) β M t N 3653/67295 0.349 0.856 2 0/68250-0.004.060 A.err := β M + δ A.err := A.err 00 opt(rd). N =02 (CRP N ) δ =0.05 A.err = 0.08 q (ɛ) =.397 δ M β M x N (CRP N ) (CRP N ) ζ 4 η N 0 δ η opt(rd) opt(crp N ) ζ + δ (RD) opt(crp N ) N 0 =0 η =0.0 ζ =0.0 (0) 3 δ ũ,...,ũ M V.rate (V/M) M V (x N,t N ) M V 3 δ (0) 2 δ =0.05 N =5 0 4 (CRP N ) (t N =.060) N =0 (CRP N ) 3653 2 N = 3663 (CRP N ) ( ζ + δ 0.06) t N =.060

6 N N Calafiore & Campi [3] (Relative Robustness) [] I.D Aron and P.V. Hentenryck: On the complexity of the robust spanning tree problem with interval data, Operations Research Letters, 32 (2004) 36-40. [2] A. Ben-Tal and A. Nemirovski: Robust convex optimization, Mathematics of Operations Research, 23 (998) 769-805. [3] G. Calafiore and M.C. Campi: A new bound on the generalization rate of sampled convex programs, 43rd IEEE Conference on Decision and Control (CDC04), 5 (2004) 5328-5333. [4] L. El Ghaoui and H. Lebret: Robust solutions to least-squares problems with uncertain data, SIAM Journal on Matrix Analysis and Applications, 8 (997) 035-064. [5] D. Goldfarb and G. Iyengar: Robust portfolio selection problems, Mathematics of Operations Research, 28 (2003) -38. [6] T. Kanamori and A. Takeda: Worst-case violation of sampled convex programs for optimization with uncertainty, Research Report B-425, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology (2006). [7] P. Kouvelis and G. Yu: Robust discrete optimization and its applications, (Kluwer Academic Publishers, Norwell, 997). [8] V. Krishnamurthy: Robust optimization in finance, (Second Summer Paper for the Doctoral Program, Tepper School of Business, Carnegie Mellon niversity, 2004). [9] A.L. Soyster: Convex programming with set-inclusive constraints and applications to inexact linear programming, Operations Research, 2 (973) 54-57.

[0] A. Takeda, S. Taguchi and T. Tanaka: Relaxation methods for robust deviation and relative robust decision models, Research Report B-427, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology (2006). [] H. Yaman, O.E. Karaşan and M.Ç. Pinar: The robust spanning tree problem with interval data, Operations Research Letters, 29 (200) 3-40. [2] G. Yu and J. Yang: On the robust shortest path problem, Computers & Operations Research, 25 (998) 457-468.