: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00

Σχετικά έγγραφα
11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

Discriminantal arrangement


Diderot (Paris VII) les caractères des groupes de Lie résolubles

IUTeich. [Pano] (2) IUTeich

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

A summation formula ramified with hypergeometric function and involving recurrence relation

Θεοδώρα Θεοχάρη Αποστολίδη

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΑΧΙΛΛΕΑΣ ΔΡΑΜΑΛΙΔΗΣ CV

ACHILLES DRAMALIDIS CV

Jean Pierre Serre. Géométrie Algébrique et Géométrie Analytique (GAGA) Annales de l institut Fourier, Tome 6 (1956), p

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

page: 2 (2.1) n + 1 n {n} N 0, 1, 2

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

ΜΗ ΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ

a11 a A V = v 1 = a 11 w 1 + a 12 w 2 + a 13 w 3 + a 14 w 4 v 2 = a 21 w 1 + a 22 w 2 + a 23 w 3 + a 24 w 4 (A 12, A 13, A 14, A 23, A 24, A 34 ) A 6.

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

Wishart α-determinant, α-hafnian

The q-commutators of braided groups

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

1 What is CFT? 1. 3 Strange duality conjecture (G) Geometric strange duality conjecture... 5

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

A new modal operator over intuitionistic fuzzy sets

ΧΛΟΥΒΕΡΑΚΗ ΜΑΡΙΑ ΕΚΠΑΙΔΕΥΣΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΜΠΕΙΡΙΑ

Jordan Form of a Square Matrix

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο

Single-value extension property for anti-diagonal operator matrices and their square

Ó³ Ÿ , º 3(180).. 313Ä320

ΜΙΑ ΜΕΛΕΤΗ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΟΥ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΩ ΤΗΣ ΘΕΩΡΙΑΣ ΤΩΝ ΕΝΣΩΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ (EMBODIED MATHEMATICS)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Κβαντικη Θεωρια και Υπολογιστες

Η συμβολή του Δ. Κάππου στην Kβαντική Πιθανότητα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Hecke Operators on the q-analogue of Group Cohomology

2.1

Séminaire Grothendieck

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

A General Note on δ-quasi Monotone and Increasing Sequence

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

High order interpolation function for surface contact problem

Minimal Surfaces PDE as a Monge Ampère Type Equation

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons E. Witten Chern-

ADE. 1 Introduction. (Ryo Fujita) Lie. U q (Lg) U(Lg) Dynkin. Dynkin. Dynkin. 4 A n (n Z 1 ), B n (n Z 2 ), C n (n Z 2 ), D n (n Z 4 )

Support and Life Reconstruction for Living with HIV-infected Hemophilia in Japan

Curran et al.,**. Davies et al ,**, ,***,**/

arxiv: v1 [math.sp] 29 Mar 2010

Prey-Taxis Holling-Tanner

C-19 (B) Development of stochastic numerics and probability theory via lacunary series (FUKUYAMA KATUSI)

ΜΑΡΙΑ Χ. ΠΑΠΑΤΡΙΑΝΤΑΦΥΛΛΟΥ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

L p approach to free boundary problems of the Navier-Stokes equation

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Example Sheet 3 Solutions

Homework 3 Solutions

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Μ. Κορφιατη - Π. Γεωργίου ΒΙΒΛΙΟΘΗΚΗ & ΥΠΗΡΕΣΙΑ ΠΛΗΡΟΦΟΡΗΣΗΣ ΠΑΝ. ΠΑΤΡΩΝ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Mάρτιος 2007

Από την Άλγεβρα του Λυκείου στην Άλγεβρα των Ερευνητών. Χαρά Χαραλάµπους. Τµήµα Μαθηµατικών, ΑΠΘ

On the k-bessel Functions

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

BIΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Ημερομηνία γεννήσεως: Ιδιότητα : ΚΑΘΗΓΗΤΗΣ από το 1984 'Ιδρυμα: ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Σχολή: ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Jean Bourgain Institute for Advanced Study Princeton, NJ 08540

The k-α-exponential Function

On the Galois Group of Linear Difference-Differential Equations

arxiv: v1 [math-ph] 4 Jun 2016

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Δρ. Χρήστος Παπακώστας

μ μ μ μ ( ) / μ μ

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

The Spiral of Theodorus, Numerical Analysis, and Special Functions

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

P (t) t. dp (t) dt (rate of increase) P (t) = P (0)e λt (Malthusian population) (Maltusian parameter) (1) ) (Leonardo Pisano/Fibonacci)

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function

Trace gas emissions from soil ecosystems and their implications in the atmospheric environment

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Ενότητα 7: Συναρτησιακά καμπύλων με ασυνέχεια στις παραγώγους. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Mellin transforms and asymptotics: Harmonic sums

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Θέματα Αρμονικής Ανάλυσης

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ - ΒΙΟΓΡΑΦΙΚΟ

Transcript:

: 2010 9 6 ( ) 9 10 : 1. 9/6( ) 10:20 12:40 GL(2) Hecke ( ) 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 16:45 18:15 GL(2) I ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 9/7( ) 7:00 9:00 9:15 10:30 GL(2) II ( ) 10:45 12:00 GL(2) III ( ) 12:15 13:15 13:30 14:30 Eichler-Selberg ( ) 14:45 16:15 Jacquet-Langlands I ( ) 16:30 18:00 Jacquet-Langlands II ( ) 18:30 19:45 20:15 21:15 degree 2 p Siegel-Eisenstein p- Euler Abel Fitting 9/8( ) 7:00 9:00 9:15 10:30 GL(3) I ( ) 10:45 12:00 GL(3) II ( ) 12:15 13:15 13:30 15:30 ( ) 16:00 18:00 ( ) 18:30 19:45 20:15 21:15 1

9/9( ) 7:00 9:00 9:15 10:30 ( ) 10:45 12:00 ( ) 12:15 13:15 13:30 14:30 ( ) 14:45 16:15 I ( ) 16:30 18:00 II ( ) 19:00 21:00 9/10( ) 7:00 9:00 9:15 10:45 III ( ) 11:00 12:30 IV ( ) 12:45 13:45 2

2. 2.1. : GL(2) Hecke ( ) 140. (i) Lie : SL(2, R) Haar Casimir (ii) SL(2, R) : SL(2, R) ( ) SL(2, R) (Gel fand-graev- Piatetski-Shapiro ) (iii) adele GL(2, A) Hecke : adele GL(2, A) Hecke GL(2, Q p ) Hecke Hecek-eigen form Eisenstein [1] A. Borel, Automorphic forms on SL 2 (R), Cambridge Tracts in Mathematics 130, Cambridge, Cambridge University Press, 1997. [2] D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics 55, Cambridge, Cambridge University Press, 1997. [3] H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics 17, Providence, RI: American Mathematical Society (AMS), 1997. 2.2. Selberg ( ) 90. R Z. G Γ G f L 2 (Γ\G) r Γ (f),. SL(2, Z) G = SL(2, R) Γ = SL(2, Z). r Γ (f) L 2 (Γ\G), L 2 dis (Γ\G).. [1], Selberg Trace Formula. [2] A.W. Knapp, Theoretical aspects of the trace formula for GL(2), Representation theory and automorphic forms, American Mathematical Society, Proc. Symp. Pure Math. 61 (1997), 355 405. [3] A. Selberg, Harmonic analysis, Collected Papers, Vol. I, 626 674, Springer- Verlag, 1989. 3

[4] G. Warner, Selberg s trace formula for nonuniform lattices: The R-rank one case, Studies in Algebra and Number Theory, Adv. Math., Suppl. Stud. 6 (1979), 1 142. 2.3. GL(2) 90. GL(2) Arthur-Selberg L 2 - GL(1) Poisson GL(2) L 2 -space GL 2 (A) φ R(φ) Eisenstein Eisenstein : Weil, A., Basic number theory, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen Band 144, Springer-Verlag New York Heiderberg Berlin 1974. Tate, J. Fourier analysis in number fields and Hecke s zeta functions, Algebraic Number Theory, Academic Press (1990), 305 347. Ramakrishnan, D., Valenza, R.J., Fourier analysis on number fields, Graduate Texts in Mathematics vol. 186, Springer (1998). Knapp, A., Theoretical aspects of the trace formula for GL(2), Proceedings of Symposia in Pure Mathematics, 61 (1997), 355 405. Gelbert, S., Jacquet, H., Forms of GL(2) from the analytic point of view, Proceedings of Symposia in Pure Mathematrics Vol. 33 (1979), part 1, 213 251. Bump, D., Automorphic forms and representations, Cambridge studies in Advanced Mathematics: 55, Cambridge University Press (1998). Borel,. A.,Automorphic forms on SL 2 (R), Cambridge tactics in Mathematics, Cambridge University Press (1997). 4

Iwaniec, H., Spectral methods of automorphic forms (second edition), Graduate Studies in Mathematics 53, American Mathematical Society Providence, Rhode Islamd (2002). 2.4. Selberg ( ) 90. G = SL(2, R) K,.,. G = SL(2, Z),. [1] D. A. Hejhal, The Selberg trace formula for PSL(2, R) Vol. I, Lecture Notes in Mathematics 548, Berlin- Heidelberg-New York: Springer-Verlag, 1976. [2] D. A. Hejhal, The Selberg trace formula for PSL(2, R) Vol. II, Lecture Notes in Mathematics 1001, Berlin- Heidelberg-New York: Springer-Verlag, 1983. [3] P. Sarnak, Class numbers of indefinite binary quadratic forms, J. Number Theory 15 (1982), no. 2, 229 247. [4] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47 87. 2.5. GL(2) II, III ( ) 150. GL(2) I. L 2 (GL(2, Q)\GL(2, A) 1 ) Arthur-Selberg Arthur., Eichler-Selberg Jacquet-Langlands.. Arthur s modified kernel Simple trace formula GL(2, R) [1] H. Jacquet, R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in Mathematics 114, Berlin-Heidelberg-New York: Springer-Verlag, 1970. [2] S. Gelbart, H. Jacquet, Forms of GL(2) from the analytic point of view, Proceedings of Symposia in Pure Mathematics 33 Part 1 (1979), 213 252. [3] S. Gelbart, Lectures on the Arthur-Selberg trace formula, University Lecture Series 9, Providence, RI: American Mathematical Society, 1996. [4] A.W. Knapp, Theoretical aspects of the trace formula for GL(2), Proc. Symp. Pure Math. 61 (1997), 355 405. 5

2.6. Eichler-Selberg ( ) 60. Gottschling Sp(2, Z) Sp(2, Z) Hasse (cf. Hashimoto and Ibukiyama ), SL 2 (Z) Sp(2) Miyake [5] local-global [1] M. Eichler, On the class number of imaginary quadratic fields and the sums of divisors of natural numbers, J. Indian Math. Soc. 19 (1955), 153-180. [2] M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren, J. Reine Angew. Math. 195 (1955), 127 151. [3] K. Hashimoto and T. Ibukiyama, On class numbers of positive definite binary quaternion hermitian forms (I), J. Fac. Sci. Univ. Tokyo Sect IA. Math. Vol. 27 No. 3 (1980), 549 601. [4] A. Knightly, C. Li, Traces of Hecke operators, Mathematical Surveys and Monographs 133, Providence, RI: American Mathematical Society (AMS), 2006. [5] T. Miyake, Modular forms, Springer-Verlag, Berlin, 1989. [6] D. Zagier, The Eichler-Selberg trace formula on SL 2 (Z), Introduction to modular forms by S. Lang, Appendix, pp. 44 54, Springer, Berlin, 1976. 2.7. Jacquet-Langlands ( 90 ). Arthur-Selberg lifting) Jacquet-Langlands GL(2) inner forms Jacquet-Langlands GL(2) smooth ) GL(2) inner forms 6

GL(2) smooth Jacquet-Langlands L 2-2.8. Jacquet-Langlands II ( 90 ). Arthur-Selberg Jacquet-Langlands Hecke maching Arthur-Selberg : Jacquet, H., Langlands, L.P.,Automorphic forms on GL(2), Lecture Notes in Mathematics, 114, Springer-Verlag, Berline, Heiderberg, New York (1970). Knapp, A. W, Rogawski, J. D, Applications of the trace formula, Proc. Symp. Pure Math. 61 (1997), 413 431 Rogawski, Jonathan D, Representations of GL(n) and division algebras over a p-adic field, Duke Math. J. 50 (1983), no. 1, 161 196. Deligne, P., Kazhdan, D., Vigneras, M.-F. Representations des algebres centrales simples p-adiques, 33 117, Travaux en Cours, Hermann, Paris, 1984 Gelbert, Stephen S., Automorphic forms on adele grous, Annals of Mathematics Studies, Princeton University Press (1975). 2.9. GL(3) ( ) 150. GL(3). GL(3). (invariant distribution),... GL(3) (G, M)-family distribution GL(3) GL(3) 7

[1] J. Arthur, A trace formula for reductive groups. I. Terms associated to classes in G(Q), Duke Math. J. 45 (1978), no. 4, 911 952. [2] J. Arthur, A trace formula for reductive groups. II. Applications of a truncation operator, Compositio Math. 40 (1980), no. 1, 87 121. [3] J. Arthur, The trace formula in invariant form, Ann. of Math. (2) 114 (1981), 1 74. [4] J. Arthur, The invariant trace formula. I. Local theory, J. Amer. Math. Soc. 1 (1988), no. 2, 323 383. [5] J. Arthur, The invariant trace formula. II. Global theory, J. Amer. Math. Soc. 1 (1988), no. 3, 501 554. [6] J. Arthur, An introduction to the trace formula, Clay Mathematics Proceedings 4 (2005), 1 263. 2.10. ( ) 120. 2.11. ( ) 120. Arthur-Selberg Langlands L Langlands Lefschetz Arthur Tate Serre, J.-P. Local fields Springer-Verlag, 1979, 67, viii+241. Milne, J. Arithmetic duality theorems Booksurge Publishing, 2006, 339+viii. Hida, H. Modular forms and Galois cohomology Cambridge University Press, 2000, 69, x+343. Langlands Labesse, J.-P. Cohomologie, L-groupes et fonctorialit? Compositio Math., 1985, 55, 163-184. Langlands, R. P. Les débuts d une formule des traces stable Université de Paris VII U.E.R. de Mathématiques, 1983, v+18. Kottwitz, R. E. Rational conjugacy classes in reductive groups Duke Math. J., 1982, 49, 785-806. 8

Kottwitz, R. E. Stable trace formula: elliptic singular terms Math. Ann., 1986, 275, 365-399. 2.12. ( ) 75. ( ) Langlands-Shelstad Hecke Hecke Langlands, R. P. & Shelstad, D. On the definition of transfer factors Math. Ann., 1987, 278, 219-271. Harris, M. Arithmetic applications of the Langlands program Jpn. J. Math., 2010, 5, 1-71. 153-236. 2.13. ( ) 75. Arthur Langlands, R. P. Les débuts d une formule des traces stable Université de Paris VII U.E.R. de Mathématiques, 1983, v+18. Kottwitz, R. E. Stable trace formula: elliptic singular terms Math. Ann., 1986, 275, 365-399. 2.14. ( ) 60. Arthur Clozel-Labesse Kottwitz, 1963, 15, 8-17. Kottwitz, R. E. Tamagawa numbers Ann. of Math. (2), 1988, 127, 629-646. 9

Clozel, L. Nombres de Tamagawa des groupes semi-simples (d après Kottwitz) Astérisque, 1989, Exp. No. 702, 61-82. 2.15. ( ) 360. trace formula elliptic term stabilization 3 U(3) trace formula stabilization trace formula GL twisted trace formula 1. Langlands A-packet 2. GL 3. multiplicity formula [1] J. D. Rogawski, The multiplicity formula for A-packets. The zeta functions of Picard modular surfaces, 395 419, Univ. Montréal, Montreal, QC, 1992. [2] J. D. Rogawski, Automorphic representations of unitary groups in three variables. Annals of Mathematics Studies, 123. Princeton University Press, Princeton, NJ, 1990. xii+259 pp. [3] J. Arthur, An introduction to the trace formula. Harmonic analysis, the trace formula, and Shimura varieties, 1 263, Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, 2005. 10