GIS. . Harris SIFT : SIFT. SIFT Harris. GIS

Σχετικά έγγραφα
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

ER-Tree (Extended R*-Tree)

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

ΟΠΤΙΚΗ ΑΝΑΓΝΩΡΙΣΗ ΓΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΥΤΟΝΟΜΗΣ ΠΤΗΣΗΣ ΕΛΙΚΟΠΤΕΡΟΥ

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.

Abstract. Detection of Feature Points for Computer Vision. Harris. (feature point) (interest point) (corner) Moravec. Harris.

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΑΛΓΟΡΙΘΜΩΝ ΕΞΑΓΩΓΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Area Location and Recognition of Video Text Based on Depth Learning Method

Mapping Textures on 3D Geometric Model Using Reflectance Image

Detection and Recognition of Traffic Signal Using Machine Learning

Ανάκτηση πολυμεσικού περιεχομένου

Quick algorithm f or computing core attribute

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Anomaly Detection with Neighborhood Preservation Principle

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

Comparison of Discriminant Analysis in Ear Recognition

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)

Αξιολόγηση µεθόδων σύνθεσης εικόνων. Β. Τσαγκάρης και Β. Αναστασόπουλος

HSI %89 SOM RGB. Journal of Transactions on Electrical Technology Vol.2 No.7- Autumn 2011

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT


Ειδικές Επιστηµονικές Εργασίες

Spring 2010: Lecture 3. Ashutosh Saxena. Ashutosh Saxena

Buried Markov Model Pairwise

PACS: Pj, Gg

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Robust Feature Extraction Method Based on Run-Length Compensation for Degraded Character Recognition

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

Wireless capsule endoscopy video classification using an unsupervised learning approach


FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Ταξινόμηση και διαχρονική παρακολούθηση των βοσκόμενων δασικών εκτάσεων στη λεκάνη απορροής του χειμάρρου Μπογδάνα Ν. Θεσσαλονίκης

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

CorV CVAC. CorV TU317. 1

Adaptive grouping difference variation wolf pack algorithm

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ

substructure similarity search using features in graph databases

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων

A High Precision Iris Feature Extraction and Its Application in Iris Recognition

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System

Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης

Research on model of early2warning of enterprise crisis based on entropy

{takasu, Conditional Random Field

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

ΠΑΡΑΔΟΤΕΟ 3.1 : Έκθεση καταγραφής χρήσεων γης

Gain self-tuning of PI controller and parameter optimum for PMSM drives

JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering. Cyclic MUSIC DOA TN (2012)

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Legal use of personal data to fight telecom fraud

Current Status and Future Prospects of Camera-Based Character Recognition and Document Image Analysis

Mandibular Canal Segmentation Based on Shape-Driven Level-set Algorithm Restrained by Local Information

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

ΣΙΣΛΟ ΓΙΑΣΡΙΒΗ ΔΞΑΓΧΓΗ ΥΑΡΑΚΣΗΡΙΣΙΚΧΝ ΔΙΚΟΝΟΠΛΑΙΙΧΝ ΑΠΟ ΑΚΟΛΟΤΘΙΔ ΒΙΝΣΔΟ ΜΔ ΥΡΗΗ ΟΜΑΓΟΠΟΙΗΗ ΠΟΛΛΑΠΛΧΝ ΟΦΔΧΝ ΜΔΣΑΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΔΞΔΙΓΙΚΔΤΗ

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

Μοντελοποίηση της Οπτικής Προσοχής Visual Attention Modeling

Ανάλυση και Αναζήτηση Εικόνων με Μεθόδους Ανίχνευσης Τοπικών Χαρακτηριστικών

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

Random Forests Leo. Hitoshi Habe 1

Παρακολούθηση του περιβάλλοντος του νομού Καστοριάς με τη χρήση δεικτών υγείας τοπίου.

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Υλοποίηση σε FPGA Αλγορίθμου Συρραφής Εικόνων

Research on Economics and Management

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

Research on real-time inverse kinematics algorithms for 6R robots


BoVW. (Histogram Encoding) [2], [5], [6] [7], [8], (Fisher Encoding) [3] VLAD [9] Super Vector [10] Locality Constrained [11], [12], [13]

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

9. Ανάλυση κυρίων συνιστωσών *Principal Component Analysis)

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

UAV. UAV Unmanned Aerial Vehicle LED Light Emitting Diodes LQR Linear Quadratic Regulator

38 8 Vol. 38, No ACTA AUTOMATICA SINICA August, , (Graphic processing unit, GPU). : 1) GPU Based Fast 3D-Object Modeling with Kinect


Transcript:

GIS 389 Vol.2, No., Spring 200 Iranian Remote Sensing & GIS -22 3 2 *..2.3 389/4/ : 388//4 :. SIFT... Harris SIFT...... SIFT. Harris SIFT : : *.88888445 : Email: am.sedaghat@gmail.com

( ) ). ( (Gruen, 987) LSM 3 (Kern and Pattichis, 2007) (Keller and Averbuch, 2006) Implicit Similarity LSM. 0/02 ).(Remondino et al., 2008) (. ) ( 32.(Zitova and Flusser, 2003) ) (. Schmid et al., 2000; Jing and ).(Allinson, 2008.. Image Registration 2. Resampling 3. Mutual Information - Zitova and ).(Flusser, 2003. ( ) I2 ( ) I. 2. Zitova and Flusser, 2003; Brown, 992; ).(Goshtasby, 2005 Wong and ).(Clausi, 2007 ) ( ) ( ( ) Zitova and Flusser, 2003; Wong and ).(Clausi, 2007. 389 2

(Harris and Stephens, 988) Harris. SIFT Yu. 65432.(Yu et al., 2008) SIFT. SIFT Harris. SIFT. Harris-SIFT. RANdom Sample Consensus 2. Feature Vector 3. Moment Invariants 4. Scale Invariant Feature Transform 5. Automatic Registration of Remote Sensing Images 6. Phase Congruency. Fischler ) RANSAC. (and Bolles, 98 2 ( ). 3 (Belongie et al., 2002) Shape Context (Mindru et 4. (Lowe, 2004) SIFT al., 2004).(Wong and Clausi, 2007). 6 5 ARRSI MDSAC RANSAC Wen.(Wong and Clausi, 2007). Wen et al., ).(2008 Yu Yu et ).(al., 2008 SIFT 389 3

/ k DoG..( ). ) DoG 8 ( 9 DoG 9 DoG ( ). 3 Lowe 32. 5 DoG 6 26 3D Quadratic. DoG ) 4 (. (T c ). 6. Difference of Gaussian 2. Octave 3. Convolution 4. Ratio Between the Principal Curvatures.. SIFT -2 SIFT --2 SIFT Lowe.(Lowe, 2004). SIFT DoG 2.( ) () 0 k 0 k 2 0 k 3 0 k 4 0 k 5 0 (2) k 3 0 k 4 0 k 5 0 k 6 0 k 7 0 k 8 0 IKONOS DoG. 3.( ) 389 4

.. 4 6=24 DoG 4 5=20.. 4 3 3=36 DoG. 26. Ledwich and Williams, 2004; ).(Tamimia et al., 2006 Yu. SIFT (Yu et al., 2008).. (T r ) (2004) Lowe.. 0 0/03 T r T c. SIFT 8 4 4 28.. (4 4 8=28). Lowe,.. SIFT Mikolajczyk.2004 SIFT Shape Context.(Mikolajczyk and Schmid, 2005) Ke. PCA Sulthankar.(Ke and Sukthankar, 2004) Li et ) : al., 2009; Wang et al., 2008; Li and Ma, 2009;.(Heikkil et al., 2009 SIFT -2-2 SIFT SIFT 389 5

(3. Harris Harris-SIFT.2 SIFT Harris-SIFT. Harris Harris-. SIFT.. 500 500 SPOT 4 Landsat ETM 9000 60. SIFT.(Cheng et al., 2008) SIFT. 4 Harris DoG.... SIFT. -3 Harris-SIFT SIFT 2. ( : (2 Harris-SIFT 389 6

. Quickbird 0/67. IKONOS 0/67.... {/ 0 670,/,/ 40 2}. IRS SPOT 4 5 0. -2--3. Characteristic Scale... --3 Harris-SIFT ---3 SIFT.. SIFT.. Sn(n 2,, 3) Bilinear. 389 7

... : : ( Schmid et al., ).(2000.. (2 ) Harris : (2.(Schmid et al., 2000).(Zhu et al., 2006-b) ) ( 5.(3 ) E i 2 i P log P i (3) i P i..(zhu et al., 2006-a) Zitova ) Harris and ) Harris.(and Flusser, 2003 (Stephens, 988 Schmid (Schmid et al., 2000) ) ) ( ( Foerstner and ) Foerstner (Gulch, 987. Harris : I2 x IxI y H G(x,y, w ) 2 () I I I y x y I y x I x G(x,y, w ) y M H Harris. : MH Det(H) Trace 2(H) (2) Trace (H) Det (H) H a. 0/04 Harris (2 ) 8 Harris.. 389 8

Nf _Cell i E _Cell i W E.. 0/5 5 Harris. n_cell i... N -3--3 SIFT...(Zhu et al., 2006-a).. (N). ( N l ). Harris.. (n_cell i ) (4). (N l ) : n_cell i (4) n_cell i we E_Cell i ( w E) Nf _Cell i Nl E_Celli Nf _Celli ( (. ( :.3 389 9

45 8 360. 3. 28 SIFT (8 4 4)... SIFT.(Lowe, 2004) 4 4 3. -5. -5. SIFT 4 4 5 5..( -5 ) ( -5 ).. R 5 R...( -3 ) /7 36 360 0-3 ).(. 3.( 3 ) -4--3. SIFT 4 4...(4 ).. 389 0

SIFT (.5. (.. 2 3 4.6 Lowe. T ED 0/ 8.. 2 3 4 3 6. 3 8=04. 5 ) 2/5. ( -2-3.. 6.. 389

... RMSE ( 0).. -3-3.. ) (. Yu et al., 2008; Hong and ).(Zhang, 2008. Root Mean Square Error Pi P. qj Q. p i p i q j q j. P. Navy. (2006)... (RMSE). RMSE ( ).. RMSE 3 389 2

). (.... ) (....(Hong and Zhang, 2008) Yu et al., 2008; Hong and ). (Zhang, 2008.. Bilinear. -4 SIFT Harris-SIFT. Matlab 3.. ( ) ( ) ( ) Hangzhou - 200 2004 8 8 20 30 6 235 648 230 Multispectral Multispectral SPOT4 Landsat TM Halifax - 2006 999 8 8 0 30 3 25 440 40 Panchromatic Multispectral SPOT 5 Landsat ETM 2-998 996 6 8 5 0 346 35 700 590 Panchromatic Panchromatic IRS-C SPOT 4 3-200 2006 0 2/5 288 085 65 548 Panchromatic Panchromatic IKONOS IRS-P6 4 389 3

... (Gilles, 998) Gilles (LSM) 200~00 40... 40 RMSE Check 2. RMSE Check. 7 q p q q q p.... Landsat SPOT4 (Yu et al., 2008) Yu TM. SIFT.. 2CHz --4. RMSE Proj.. 389 4

. SIFT Harris-SIFT. -2-4 N 4000 00. 5. 5 RMSE. SIFT. ( SIFT Demo Program) Lowe Yu 0/5 RMSE 0/5 0/5 2.. SIFT demo Program (Vession 4, 2005) http://www.cs.ubc.ca/spider/lowe/keypoints/siftdemo V4. zip RMSE a. RMSE Check. RMSE Reg =RMSE a -).(RMSE Check.7 : : (. :RMSE Reg (2. RMSE a RMSE Reg. : (3 389 5

2 25 SIFT Yu ) SIFT (Yu et al., 2008)... Harris-SIFT 65 (8 ) Harris-SIFT. SIFT SIFT Harris-SIFT SIFT. Harris- RMSE. SIFT 2 SIFT 58 Landsat TM 67 Landsat ETM. 949 843 IKONOS. SIFT. 2 ( ) RMSE RMSE Reg 0/2852 0/5249 0/9243 0/6430 Harris-SIFT SIFT.2 RMSE Check RMSE Proj 0/4527 0/984 0/7459 /037 0 /4983 0 /9789 0 /9832 0 /8766 ( ) Harris-SIFT 72 7 75 8 SIFT 298 0 08 38 Harris-SIFT 65 68 74 82 SIFT 25 0 0 0 N GM 95 87 20 0 Harris-SIFT 4000 4000 4000 4000 4000 4000 4000 SIFT 5697 58 466 67 3779 250 0 SPOT4 Landsat TM SPOT 5 Landsat ETM IRS-C SPOT 4 IKONOS 40. LSM Gilles :. : Harris-SIFT RMSE :2. RMSE :RMSE Proj RMSE :RMSE Check. :RMSE Reg 389 6

Landsat TM SPOT4..8 SIFT... Harris-SIFT 9.. RMSE Reg 2 RMSE Check. RMSE Reg Harris-SIFT 0/2852 8. Harris-SIFT.... 389 7

IRS-P6 IKONOS :.9-5 Harris-SIFT SIFT. SIFT. Harris.. Harris-SIFT.. ENVI V4.3, ITT, 2006, http://www.ittvis.co/envi. SIFT. SIFT 4 SIFT. 04 28 SIFT ) SIFT ( 4 4. 80 67 59 23.. SIFT V4/3 ENVI. (ITT) 7. 389 8

Fischler, M., Bolles, R., 98, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, Commun. ACM, Vol. 24, No. 6, pp. 38-395. Forstner, W., Gulch, A., 987, A Fast Operator for Detection and Precise Location of Distinct Points, Corners and Centres of Circular Features, In Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland. Gilles, S., 998, Robust Description and Matching of Images, Ph.D. thesis, University of Oxford. Goshtasby, A., 2005, 2-D and 3-D Image Registration for Medical, Remote Sensing and Industrial Applications, Wiley- Interscience, New York. Gruen, A., 987, Adaptive Least Square Correlation: A Powerful Image Matching Technique, South African J. Photogrammetry, Remote Sens. Cart., Vol. 4, No. 3, pp. 75-87. Harris, C. and Stephens, M., 988, A Combined Corner and Edge Detector, In Alvey Vision Conference, UK. Heikkil, M., Pietikainena, M., Schmid, C., 2009, Description of Interest Regions with Local Binary Patterns, Pattern Recognition, Vol. 42, pp. 425-436. Hong, G., Zhang, Y., 2008, Wavelet-Based Image Registration Technique for High- Resolution Remote Sensing Images, Computers & Geosciences, Vol. 34, pp. 708-720.... 200 00 Gilles. SIFT. -6 Yu Yu et al., ). (2008-7 Belongie, S., Malik, J., Puzicha, J., 2002, Shape Matching and Object Recognition Using Shape Contexts, IEEE Trans. Pattern Anal. Mach. Intell, Vol. 24, No. 4, pp. 509-522. Brown, L.G., 992, A Survey of Image Registration Techniques, ACM Computing, Vol. 24, pp. 73-89. Cheng, L., Gong, J., Yang, X., Fan, C., Han, P., 2008, Robust Affine Invariant Feature Extraction for Image Matching, IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 2, pp. 246-250. 389 9

Ke, Y., Sukthankar, R., 2004, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors, Proc. Conf. Computer Vision and Pattern Recognition, Washington, USA, pp. 5-57. Keller, Y., Averbuch, A., 2006, Multisensor Image Registration via Implicit Similarity, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 8, No. 5, pp. 794-80. Kern, J.P., Pattichis, M.S., 2007, Robust Multispectral Image Registration using Mutual-Information Models, IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 5, pp. 494-505. Ledwich, L., Williams, S., 2004, Reduced SIFT Features for Image Retrieval and Indoor Localization, in: Australasian Conf. on Robotics and Automation, Canberra. Li, C., Ma, L., 2009, A New Framework for Feature Descriptor Based on SIFT, Pattern Recognition Letters, Vol. 30, pp. 544-557. Li, J., Allinson, N.M., 2008, A Comprehensive Review of Current Local Features for Computer Vision, Neurocomputing, Vol. 7, pp. 77-787. Li, Q., Wang, G., Liu, J., Chen, S., 2009, Robust Scale-Invariant Feature Matching for Remote Sensing Image Registration, IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 2, pp. 287-29. Lowe D., 2004, Distinctive Image Features from Scale Invariant Keypoints, Int. J. Comput. Vis., Vol. 60, pp. 9-0. Mikolajczyk, K., Schmid, C., 2005, A Performance Evaluation of Local Descriptors, IEEE Trans. Pattern Anal. Mach. Intell, Vol. 27, No. 0, pp. 65-630. Mindru F., Tuytelaars T., Van Gool L., Moons T., 2004, Moment Invariants for Recognition under Changing Viewpoint and Illumination, Comput. Vis. Image Underst, Vol. 94, pp. 3-27. Navy, P., Page, V., Grandchamp, E., Desachy, J., 2006, Matching Two Clusters of Points Extracted from Satellite Images, Pattern Recognition Letters, Vol. 27 pp. 268-274. Remondino, F., Gruen, S.F., Zhang, L., 2008, Turning Images into 3-D Models, IEEE Signal Processing Magazine, pp. 55-64. Schmid, C., Mohr, R., Bauckhage, C., 2000, Evaluation of Interest Point Detectors, Int. J. Comput. Vis., Vol. 37, No. 2, pp. 5-72. Tamimia, H., Andreasson, H., Treptow, A., Duckett, T., and Zell, A., 2006, Localization of Mobile Robots with Omnidirectional Vision using Particle Filter and Iterative SIFT, Robotics and Autonomous Systems, Vol. 54, pp. 758-765. Wang, X., Fu, W., Wang, X., 2008, Optimized SIFT Image Matching Algorithm, Proceedings of the IEEE International Conference on Automation and Logistics Qingdao, China. Wen, G. J., Lv, J. J., Yu, W. X., 2008, A High- Performance Feature-Matching Method for Image Registration by Combining Spatial and Similarity Information, IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 4, pp. 266-277. 389 20

Wong, A., Clausi, D. A., 2007, ARRSI: Automatic Registration of Remote- Sensing Images, IEEE Trans. Geosci. Remote Sens, Vol. 45, No. 5, pp. 483-493. Yu, L., Zhang, D., Holden, E. J., 2008, A Fast and Fully Automatic Registration Approach Based on Point Features for Multi-Source Remote-Sensing Images, Computers & Geosciences, Vol. 34, pp. 838-848. Zhu, Q., Wu, B., Xu, Z. X., 2006-a, Seed Point Selection Method for Triangle Constrained Image Matching Propagation, IEEE Geosci. Remote Sens. Lett., Vol. 3, No. 2, pp. 207-2, Zhu, Q. Wu, W. Wan, N. Xu, X., Tian, Y.X., 2006-b, An Interest Point Detect Method to Stereo Images with Good Repeatability and Information Content, Int. J of Acta Electron. Sin, Vol. 34, No. 2, pp. 205-209. Zitova, B. and Flusser, J., 2003, Image Registration Methods: A Survey, Image and Vision Computing, Vol. 2, pp. 977-000. 389 2