1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Σχετικά έγγραφα
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Α Ρ Ι Θ Μ Ο Σ : 6.913

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

L p approach to free boundary problems of the Navier-Stokes equation

D Alembert s Solution to the Wave Equation

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Markov chains model reduction

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Prey-Taxis Holling-Tanner

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Higher spin gauge theories and their CFT duals

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

Dispersive estimates for rotating fluids and stably stratified fluids

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Dark matter from Dark Energy-Baryonic Matter Couplings

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

A REGULARIZED TRACE FORMULA FOR A DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH DELAYED ARGUMENT

High order interpolation function for surface contact problem

SPECIAL FUNCTIONS and POLYNOMIALS

Part 4 RAYLEIGH AND LAMB WAVES

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Constitutive Relations in Chiral Media

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

m i N 1 F i = j i F ij + F x

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

Second Order Partial Differential Equations

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

A Lambda Model Characterizing Computational Behaviours of Terms

! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Surface Acoustic Wave Devices in Telecommunications

: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00

Branching form of the resolvent at threshold for discrete Laplacians

Wavelet based matrix compression for boundary integral equations on complex geometries

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Hartree-Fock Theory. Solving electronic structure problem on computers

Linearized Lifting Surface Theory Thin-Wing Theory

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Finite difference method for 2-D heat equation

Local Approximation with Kernels

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Lecture 21: Scattering and FGR

Orthogonal systems and semigroups

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

[Note] Geodesic equation for scalar, vector and tensor perturbations

High Current Chip Ferrite Bead MHC Series

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog


Η Ομάδα SL(2,C) και οι αναπαραστάσεις της

Dr. D. Dinev, Department of Structural Mechanics, UACEG

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Computing the Macdonald function for complex orders

Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics. Based on joint research with

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]


! # %& # () & +( (!,+!,. / #! (!

f O(U) (f n ) O(Ω) f f n ; L (K) 0(n )

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons E. Witten Chern-

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

A General Note on δ-quasi Monotone and Increasing Sequence

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

Homework 8 Model Solution Section

Spherical Coordinates

1 Το φυσικό πρόβλημα και εξισώσεις

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

A summation formula ramified with hypergeometric function and involving recurrence relation

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography

Θαλής MATENVMED - ΜΙΣ Δράση Μέθοδοι Μετασχηματισμού Φωκά

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Single-value extension property for anti-diagonal operator matrices and their square

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Solutions - Chapter 4

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Mellin transforms and asymptotics: Harmonic sums

Space-Time Symmetries

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

Current Sensing Metal Chip Resistor

< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α


Discretization of Generalized Convection-Diffusion

clearing a space (focusing) clearing a space, CS CS CS experiencing I 1. E. T. Gendlin (1978) experiencing (Gendlin 1962) experienc-

Trimmable Thick Film Chip Resistor

Transcript:

3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473)

2 3 Dermenian-Guillot[3] M.Kawashita-W.Kawashita-oga [7] [8] M. Kawashita-oga[9] [6] ) ) 2. 3 [3] ) x = x x 2 x 3 ) = x x 3 ) R 2 R + = ux) = t u x) u 2 x) u 3 x)) C3 ρ > µ > λ R 3λ + 2µ > H = L 2 C 3 ρ dx) L L u = ρ λ + µ ) u + µ u} DL ) = u H C 3 ); ρ λ + µ ) u + µ u} H u λ u)δ 3 + µ + u ) 3 = in the trace sense = 2 3) x 3 x x3 = = t / x / x 2 / x 3 ) = 2 / x 2 + 2 / x 2 2 + 2 / x 2 3 L L k = k k 2 k 3 ) = k k 3 ) R 2 R + = p = p p 2 ) R 2 k = k ω = k ω ω 3 ) = k ω ω 2 ω 3 ) p = p ν = p ν ν 2 ) ξ l k) = c 2 c 2 l c 2 P = λ + 2µ c 2 = µ ρ ρ ) /2 ) c 2 /2 k 2 k 2 γ l ω) = ω 2 for l = P ) /2 ) /2 ξ l k) = k 2 c2 c 2 k 2 γ l ω) = ω 2 c2 l c 2 for l = P l ) /2 γ R = c2 R c 2 for = P c 2 R < c2 R < µ ρ } E V = k ; k 3 > c 2 P c 2 ) /2 k c 2 l E V = k ; < k 3 < c 2 P c 2 ˆk = k k 3 ) k P = k ξ P k)) = k ω γ P ω)) k ξ P k)) = k ω γ P ω)) k = k ω E V ) k P = k iξ P k)) = k ω iγ P ω)) k = k ω E V ) }. ) /2 k }

3 3 L ) k Ψ P x k) = 2π) 3 2 ρ 2 α ±) P ω) = c2 P c 2 a ) e iˆk x a ) P ω) + eik P x a 2) P ω) eik x a 3) P ω) } 2 ω 2 ) 2 ± 4 ω 2 ω 3 γ P ω) β P ω) = 4 ω c2 P c 2 2 ω 2 )ω 3 P ω) = t ω ω 2 ω 3 ) P ω) = β P ω) ω γ P ω) ω a 2) a 3) P 2) k Ψ V x k) = 2π) 3 2 ρ 2 t α +) P ω) ω) = α ) P ω) α +) P ω) t ω ω 2 ω 3 ). β P ω) = 4 ω 2 ω 2 )ω 3 α ±) P ω) = a ) a 2) V ω ) 2γ P ω) ω ω e iˆk x a ) V ω) + eik x a 2) V ω) + eik P x a 3) V ω) } c2 P c 2 2 ω 2 ) 2 ± 4 ω 2 ω 3 γ P ω) k = k ω E V ) c2 P c 2 2 ω 2 ) 2 ± 4i ω 2 ω 3 γ P ω) k = k ω E V ) V ω) = t ω ω 3 ω 2ω 3 ω ω α ) P ω) = ω) ω ω 3 ω a 3) V ω) = 3) k 4) p R 2 Ψ R x p) = ) a ) R ν) = 2 c2 R c 2 t α +) P ω) β P ω) α +) ) ω ω ) 2ω 3 ω ω t ω ω 2 γ P ω)) P ω) k = k ω E V ) β P ω) ω α +) ω 2 iγ P ω) P ω)) k = k ω E V ) Ψ H x k) = e iˆk x + e ik x )a 2π) 3 2 ρ H ω) 2 a H ω) = t ω 2 ω ω ) ω. C 2π p 2 e ip x e p γ RP x 3 a ) R ν) + e p γ Rx 3 a 2) R ν) } t iν iν 2 γ RP ) a 2) R ν) = 2 γ RP t iν γ R iν 2 γ R )

4 C 4π 2 Ψ R x p) 2 ρ dx 3 =. Ψ P x k) : incident P wave+refleced wave +reflected P wave Ψ V x k) : incident wave+refleced wave +reflected P wave Ψ H x k) : incident wave+refleced wave Ψ R x p) : Rayleigh wave F = P V H) F R u C R3 + C 3 ) ): F uk) = F R up) = Ψ x k) ux)ρ dx Ψ R x p) ux)ρ dx. F = P V H) H L 2 ) F R H L 2 R 2 ). F [3]. F H F u = F P u F V u F H u F R u) for u H Ĥ = =PVH L 2 ) L 2 R 2 ) unitary u DL ) F L u = c 2 P k 2 F P u c 2 k 2 F V u c 2 k 2 F H u c 2 R p 2 F R u). 3. z = λ + iε C ε L R z) R z) = L z) ) u H suppu compact u L R z)u = F c 2 k 2 z) F u + FRc 2 R p 2 z) F R u 3.) 3.2) = G x y; z) = =PVH =PVH G R x y; z) = c = G x y; z)uy)dy + G R x y; z)uy)dy c P = P ) = V H) c c 2 k 2 z ψ x k) t ψ y k)dk R 2 c 2 R p 2 z ψ Rx p) t ψ R y p)dp = P V H)

3 5 ) 2) ) G x y; λ ± i) = lim ϵ ± G x y; z) = P V H R). λ y ) x G x y λ ± i) x 3.) 3.2) 2) < a < b a < λ < b a b Φ l s) C R) l = 2) Φ s) = a/2 < s < 3b/2) s < a/3 2b < s) Φ 2 s) = Φ s). G x y; z) = G l) x y; z) = P V H R) l=2 G l) x y; z) = Φ l c 2 k 2 ) R 3 c 2 + k 2 z ψ x k) t ψ y k)dk G l) R x y; z) = Φ l c 2 R p ) c 2 R p 2 z ψ Rx p) t ψ R y p)dp R 2 = P V H) l = 3.3) 3.4) G ) x y; z) = G ) R x y; z) = µ 2 Φ c 2 µ2 ) c 2 µ2 z J x y µ)dµ = P V H) τφ c 2 R τ 2 ) c 2 R τ 2 z J Rx y τ)dτ J x y µ) = 2 + ψ x µω) t ψ y µω)dω J R x y τ) = ψ R x τν) t ψ R y τν)dν = P V H) J x y µ) = P V H) J R x y τ) ) x = x x 2 x 3 ) = x x 3 ) = x ϕ = r ϕ ϕ 3 ) = rϕ ϕ 2 ϕ 3 ) ˇϕ = ϕ ϕ 3 ) ϕ l = ϕ γ l ϕ)) x = x ϕ = r ϕ.

6 I P x y µ) =e iµr a ) P ˇϕ) t Ψ P y µ ˇϕ) e iµr a 3) χ ϕ < c e iµ c P cp c r c P ϕ 3 c γ P ω) a2) P P ϕ) t Ψ P y µϕ) ) cp ϕ P c t Ψ P y c c P µϕ P I V x y µ) =e iµr a ) V ˇϕ) t Ψ V y µ ˇϕ) e iµr a 2) V ϕ) t Ψ V y µϕ) ) e iµ c cp r c γ P ω) a 3) c V ϕ P c P ϕ 3 c t Ψ V y c ) µϕ P P c P I H x y µ) =e iµr a H ˇϕ) t Ψ H y µ ˇϕ) e iµr a H ϕ) t Ψ H y µϕ) I R x y τ) =e πi 4 e iτ r e τ γ RP x 3 a ) R ϕ) + e τ γ Rx 3 a 2) R ϕ) } t Ψ R y τ ϕ) + e πi 4 e iτ r e τ γ RP x 3 a ) R ϕ) + e τ γ Rx 3 a 2) R ϕ) } t Ψ R y τ ϕ) a i ) il=23 a i ) il=23 = max i=23 a i 2. M a b < a < b M > ) ) 3) ) y < M a/3 < c 2 P µ2 < 2b y µ J i P x y µ) 2πρ ) 2 µr I P x y µ) = or ) r ). 2) = V H y < M a/3 < c 2 µ2 < 2b y µ J i x y µ) 2πρ ) 2 µr I x y µ) = O r log r ) r x 3 > r r r ) or ) < x3 < r r r ). ) 3) y < M a/3 < c 2 R τ 2 < 2b y τ J C Rx y τ) I 2π) 3 2 τ r) R x y τ) 2 = O r 3 2 ) e a 3 c R γ RP x 3 + e ) a 3 c R γ Rx 3 r ) 3. 2) V i ) = 3 ) 3 2) 3 3) 3 ) 3 2) ) i J V x y µ) 2πρ ) 2 µr I V x y µ) = or ) r ) H i ) = 3 ) 3 2) 3 3) 3 ) 3 2) 2 [4] [2] Copson[] Lewis[5] i

3 7 3.3) 3.4) ϵ ) lim ϵ ± G) x y; z) = p.v. µ 2 Φ c 2 µ2 ) c 2 µ2 λ J x y µ)dµ ± πij x y c λ 2 ) = P V H) lim ϵ ± G) R x y; z) = p.v. τφ c 2 R τ 2 ) c 2 τ 2 λ J Rx y τ)dτ ± πij R x y c R λ 2 ) G ) x y; λ ± i) = P V H R) x y; z) = P V H R) G 2) ϵ = ) x ) 4. M a b < a < b M > ) ) 4) ) λ > y < M a < λ < b y λ G 2) P x y; λ) = or ) r ). 2) y < M y 3 a < λ < b y λ G 2) V x y; λ) = or ) r ). 3) y < M a < λ < b y λ G 2) H x y; λ) = or ) r ). 4) y < M a < λ < b y λ 5. 2) ) y 3 G 2) R x y; λ) = Or 2 ) G 2) V x y; λ) = Φ 2 c 2 k 2 ) E V c 2 k 2 λ ψ V x k) t ψ V y k)dk+ r ). E V Φ 2 c 2 k 2 ) c 2 k 2 λ ψ V x k) t ψ V y k)dk 2 2) ux) C 2 ) suppux) E V Φ 2 c 2 k 2 ) c 2 k 2 λ ψ V x k) t ψ V y k)dkuy)dy = o x ) References [] E.T.Copson Asymptotic Expansions. Cambridge Tracts in Mathematics 55 Cambridge Univ. Press965. [2] D.Colton and R.Kress Inverse Acoustic and Electromagnetic cattering Theory. Appl.Math.ci.Vol.5 pringer-verlag997. [3] Y. Dermenian and J.C. Guillot cattering of elastic waves in a perturbed isotropic half space with a free boundary. The limiting absorption principle Math. Meth. in the Appl. ci. 988) 87 24. [4]. 976 [5]. 4 979. [6] M.Kadowaki On a framework of scattering for dissipative systems. Osaka J. Math.4 23) no. 245 27.

8 [7] M.Kawashita W.Kawashita and H.oga Relation between scattering theories of the Wilcox and Lax- Phillips types and a concrete construction of the translation representation. Comm. Partial Differentail Equations 28 23) no. 7-8437 37 [8] cattering theory for the elastic wave equation in perturbed half-spaces. Tran. Amer. Math. oc. 358 26) no. 2 539 535. [9] M. Kawashita and H. oga ingular support of the scattering kernel for the Rayleigh wave in perturbed half-spaces. Method Appl. Anal. 7 2) no. 47 [] K. Kikuchi Asymptotic behavior at infinity of the Green function of a class of systems including wave propagation in crystals. Osaka J. Math.22 985) no. 3 575 635. [] 2. [2] ) 24 972 [3] M. Matsumura Asymptotic behavior at infinity for Green s functions of first order systems with characteristics of nonuniform multiplicity. Publ. Res. Inst. Math. ci. 2 976) no. 2 37 377. [4] R.G.Newton Inverse chrödinger cattering in Three Dimensions. Text and Monographs in Physics pringer-verlag989. [5] R. Lewis Asymptotic theory of transients Electromagnetic wave theory URI ymposium Proceedings Delft Pergamon Press New York 967.