Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun (,, ) 应用概率统计 版权所用,,, EM,,. :,,, P-. : O (count data)

Σχετικά έγγραφα
552 Lee (2006),,, BIC,. : ; ; ;. 2., Poisson (Zero-Inflated Poisson Distribution), ZIP. Y ZIP(φ, λ), φ + (1 φ) exp( λ), y = 0; P {Y = y} = (1 φ) exp(

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

Research on Economics and Management

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

Bayesian modeling of inseparable space-time variation in disease risk

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Summary of the model specified

Lecture 7: Overdispersion in Poisson regression

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Congruence Classes of Invertible Matrices of Order 3 over F 2

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Statistical Inference I Locally most powerful tests

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian., 2016, 31(2): : (heterogeneity) Bayesian. . Gibbs : O212.8 : A : (2016)

Buried Markov Model Pairwise

Multilevel models for analyzing people s daily moving behaviour

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Research on model of early2warning of enterprise crisis based on entropy

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

ADT

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Παναγιώτης Μερκούρης ΕΚΠΑΙΔΕΥΣΗ

ΔΙΑΓΩΝΙΣΜΟΣ ΥΠΟΨΉΦΙΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΣΕΠ (2002).ΜΕΛΕΤΗ ΕΠΙΔΟΣΕΩΝ ΚΑΙ ΕΞΑΓΩΓΗ ΣΥΜΠΕΡΑΣΜΑΤΩΝ ΓΙΑ ΤΟΝ ΚΛΑΔΟ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Quick algorithm f or computing core attribute

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Βιογραφικό Σημείωμα. Διεύθυνση επικοινωνίας: Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών

Prey-Taxis Holling-Tanner

FORMULAS FOR STATISTICS 1

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Research on real-time inverse kinematics algorithms for 6R robots

Βιογραφικό Σημείωμα. (τελευταία ενημέρωση 20 Ιουλίου 2015) 14 Ιουλίου 1973 Αθήνα Έγγαμος

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

Sparse Modeling and Model Selection

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Introduction to the ML Estimation of ARMA processes

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

High order interpolation function for surface contact problem

Supplementary Appendix


ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).


Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Κύρια σημεία. Μεθοδολογικές εργασίες. Άρθρα Εφαρμογών. Notes - Letters to the Editor. Εργασίες στη Στατιστική Μεθοδολογία

, -.

OLS. University of New South Wales, Australia

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET


A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Motion analysis and simulation of a stratospheric airship

DOI /J. 1SSN

Stabilization of stock price prediction by cross entropy optimization

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Supporting Information

Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση

Anomaly Detection with Neighborhood Preservation Principle

( ) Multiple Comparisons on Longitudinal Data Junji Kishimoto SAS Institute Japan / Keio Univ. SFC / Univ. of Tokyo address: jpnjak@jpn.sas.

ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Άσκηση 10, σελ Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Approximation Expressions for the Temperature Integral

Second Order Partial Differential Equations

Ηλεκτρονικοί Υπολογιστές IV

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Biostatistics for Health Sciences Review Sheet

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed

ΔΙΟΡΘΩΣΗ ΣΤΟΙΧΕΙΩΝ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ Η/Ε ΣΤΟΝ ΟΙΚΙΑΚΟ ΤΟΜΕΑ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ*

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Ταξινόμηση. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή

Mantel & Haenzel (1959) Mantel-Haenszel

A research on the influence of dummy activity on float in an AOA network and its amendments

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

Βιογραφικό Σημείωμα. Διδακτορικό Δίπλωμα, Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης, Πανεπιστήμιο Πειραιά, 3/2009

:,,,, ,,, ;,,,,,, ,, (Barro,1990), (Barro and Sala2I2Martin,1992), (Arrow and Kurz,1970),, ( Glomm and Ravikumar,1994), (Solow,1957)

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

Transcript:

2012 6 Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun. 2012 (,, 675000),,, EM,,. :,,, P-. : O212.7. 1. (count data), Poisson Poisson,, (zero-inflation).,.,, ;,,.,, Fahrmeir Echavarrri (2006) ; Yip Yau (2005) ; Xie et al. (2009, 2008) Poisson Score ; Ghosh et al. (2006) Bayesian.,,,.,,,,. Davidian Giltinan (1995), Diggle et al. (2002), Lin Carroll (2001), He et al. (2002), (2006). Zhang et al. (10BTJ001) (11171105). 2011 11 25, 2011 12 28.

312 (1998), (2006) Lin Carroll (2001),. : Poisson ; P- ; EM ;. 2., Poisson (Zero-Inflated Generalized Poisson Distribution), ZIGP. Y ZIGP(φ, λ, α), φ + (1 φ)p(0; λ, α), y = 0; P{Y = y} = (1 φ)p(y; λ, α), y > 0, p(y; λ, α) Poisson, p(y; λ, α) = 1 ( λ ) y(1 { + αy) y 1 exp y! 1 + αλ α, λ. Y, Y α 0, Poisson. λ(1 + αy) 1 + αλ E[Y λ, α] = λ, Var [Y λ, α] = λ(1 + αλ) 2, Y ZIGP(φ, λ, α), Y E[Y φ, λ, α] = (1 φ)λ, φ = 0, ZIGP GP. }, y = 0, 1, 2,..., Var [Y φ, λ, α] = (1 φ)λ[(1 + αλ) 2 + φλ, (2.1),, Y ij, y ij, i j i j, t ij, x ij, z ij, i = 1, 2,..., n, j = 1, 2,..., n i, (y ij, x ij, z ij, t ij )., Y ij ZIGP(φ ij, λ ij, α),, α, φ ij λ ij ( Wu Zhang (2006)). logit(φ ij ) = zij T γ + g(t ij) + u i, log(λ ij ) = x T ij β + h(t ij) + v i, (2.2)

: 313 γ β z ij x ij, g( ) h( ),, u i v i, (u T i, vt i ) N(0, Σ)., x ij z ij,, (2.1) (2.2) Poisson. 3. P-,,,,,.,, (P- ). Green Silverman (1994), (2.1) (2.2) PL(γ, β, g, h) = l(y; φ, λ) 1 2 λ 1 (g (t)) 2 1 2 λ 2 (h (t)) 2 dt, (3.1) λ 1, λ 2 > 0, l(y; φ, λ) = n n i { I(y ij = 0) log [φ ij + (1 φ ij )p(0; λ ij, α)]f(ω i ; Σ)dω i i=1 j=1 + I(y ij > 0) log [1 φ ij p(y ij ; λ ij, α)]f(ω i ; Σ)dω i }, (3.2) ω i = (u T i, vt i ), f(ω i; Σ)., Yu et al. (2002), Ruppert et al. (2003), g(t) = τ 0 + τ 1 t + + τ q t q + K τ q+k (t h k ) q +, k=1 h(t) = δ 0 + δ 1 t + + δ l t l + K δ l+k (t h k ) l +, w+ k = [max(0, w)] k, {h k } K k=1, k=1 τ = (τ 0, τ 1,..., τ q+k ) T, δ = (δ 0, δ 1,..., δ l+k ) T, B 1 (t) = {1, t,..., t q, (t h 1 ) q +,..., (t h k) q + }T, B 2 (t) = {1, t,..., t l, (t h 1 ) l +,..., (t h k ) l +} T, g( ) h( ) g(t) = τ T B 1 (t), h(t) = δ T B 2 (t). Yu et al. (2002), 5 10,, ;, 10,, K = 15.

314, Yu et al. (2002) ( g(t)) 2 dt (ḧ(t))2 dt τ T Kτ δ T Kδ, K t ;, Wu Zhang (2006), [rank(k T K)/3],, q = l = 3. 4. EM (2.1) (2.2), (3.1) (3.2),,,,, EM, ω = (u, v). D c = (D o, D m ), D m ω,, D o. PL(γ, β, δ, τ, Σ D c ) PL(γ, β, δ, τ, Σ D c ) = l 1 (φ, λ) + n log f(ω i ; Σ) 1 2 Nλ 1τ T Kτ 1 2 Nλ 2δ T Kδ, (4.1) l(φ, λ) = n N = n n i, λ 1, λ 2. i=1 i=1 j=1 (4.1) EM. E-step: M-step: i=1 n i {I(y ij = 0) log[φ ij + (1 φ ij )p(0; λ ij, α)] + I(y ij > 0) log[1 φ ij p(y ij ; λ ij, α)]}, Q(ψ ψ (m) ) = E[PL(γ, β, δ, τ, Σ D c ) D o, ψ (m) ]; ψ (m+1) = arg max ψ [Q(ψ ψ(m) )]. ψ = (γ, β, δ, τ, Σ), ψ (m) m. E,, Metropolis f ω y ( ), MonterCarlo., f(ω), ω, ω, ω, q(ω, ω ) = min {1, f ω y(ω y, γ, β, τ, δ, Σ)f(ω) } f ω y (ω y, γ, β, τ, δ, Σ)f(ω. ) M,, Σ Σ = 1 J J (ω (j) ) T ω (j), j=1

: 315 {ω (j) } J j=1 Metropolis. θ = (γ, β, δ, τ), [ PL(θ, Σ Dc ) ] E = 0, θ Newton-Raphson θ. λ 1, λ 2, GCV(λ 1, λ 2 ) = (2N) 1 Y 1 HY 1 2 {1 (2N) 1 tr(h)} 2, Y 1 = (M T, Y T ), Y T {y ij } (i = 1, 2,..., n, j = 1, 2,..., n i ) N, M T Y T, y ij = 0, M ij = 1, 0. H C = ( B1 0 0 B 2 ) H = SC(C T SC + ) 1 C T,, S = ( S1 0 0 I ), = ( λ1 K 0 0 λ 2 K S 1 = diag(exp{z T ijγ + g(t ij ) + u i }/[1 + exp{z T ijγ + g(t ij ) + u i }] 2 ). λ 1 GCV λ 2, λ 2 = λ 2, GCV λ 1 = λ 1, (λ 1, λ 2 ).. : (1) ψ (0), m = 0; (2) GCV GCV λ (m) 1, λ (m) 2 ; (3) EM ψ (m+1) ; (4) m = m + 1, (2),. 5., 5.1 ),,, Poisson : Y ij ZIP(φ ij, λ ij ), logit(φ ij ) = γ 0 + γ 1 x 1ij + γ 2 x 2i + u i + g(t ij ); log(λ ij ) = β 0 + β 1 x 1ij + β 2 x 2i + v i + h(t ij ),

316 i = 1, 2,..., n, j = 1, 2,..., n i, x 1ij U[ 1, 1], x 2i { 1, 1}, t ij U[ 2, 2], (u i, v i ) T N(0, Σ), Σ ( ) ( ) σ11 σ 12 1 0.3 Σ = =. σ 21 σ 22 0.3 1 h(t) = sin(πt/2) 1 + 2t 2, g(t) = sin(πt/2). [sign(t) + 1] β 0 = 1.5, β 1 = 1, β 2 = 2, γ 0 = 2, γ 1 = 0.5, γ 2 = 1, n = 50, n i = 20, 1000, 1. λ 1 3.25 3.56, λ 2 1.62 2.32, 1, 2 (,, 5% 95% ). 1 β 0 β 1 β 2 γ 0 γ 1 γ 2 0.036 0.066 0.023 0.012 0.058 0.032 0.397 0.175 0.367 0.271 0.305 0.290 1.5 1 0.5 0 0.5 1 1.5 2 t 1.5 1 0.5 0 0.5 1 1.5 2 t 1 g(t) 2 h(t) 5.2, ( 10BTJ001 ). 2008 2009 21 7 17 4687,, 47,,., (y), (x 1 ), BMI(x 2, (kg)/ (m 2 )) (t),, 10, 200.

: 317 y, y > 0 Poisson, α = 1.311. ZIGP, y ij ZIGP(φ ij, λ ij, α), i = 1, 2,..., 10 ( ), j = 1, 2,..., 200 ( ). logit(φ ij ) = γ 0 + γ 1 x 1ij + γ 2 x 2ij + u i + g(t ij ); log(λ ij ) = β 0 + β 1 x 1ij + β 2 x 2ij + v i + h(t ij ). 2, 3, 4. 2 β 0 β 1 β 2 γ 0 γ 1 γ 2 1.304 1.108 0.544-4.065-0.588 0.082 0.640 0.170 0.302 1.155 0.055 0.081 8 9 10 11 12 13 14 15 16 17 8 9 10 11 12 13 14 15 16 17 age age 3 g( ) 4 h( ) [1] Fahrmeir, L. and Echavarrri, L.O., Structured additive regression for overdispersed and zero-inflated count data, Applied Stochastic Models in Business and Industry, 22(5)(2006), 351 369. [2] Yip, K.C.H. and Yau, K.K.W., On modeling claim frequency data in general insurance with extra zeros, Insurance: Mathematics and Economics, 36(2)(2005), 153 163. [3] Xie, F.C., Wei, B.C. and Lin, J.G., Score test for zero-inflated generalized Poisson mixed regression models, Computational Statistics & Data Analysis, 53(9)(2009), 3478 3489. [4] Xie, F.C., Wei, B.C. and Lin, J.G., Assessing influence for pharmaceutical data in zero-inflated generalized Poisson mixed models, Statistics in Medicine, 27(8)(2008), 3656 3673. [5] Ghosh, S.K., Mukhopadhyay, P. and Lu, J.C., Bayesian analysis of zero-inflated regression models, Journal of Statistical Planning and Inference, 136(4)(2006), 1360 1375. [7] Davidian, M. and Giltinan, D.M., Nonlinear Models for Repeated Measurement Data, Chapman and Hall, 1995. [7] Diggle, P.J., Liang, K.Y. and Zeger, S.L., Analysis of Longitudinal Data, Cambridge University Press, 2002.

318 [8] Lin, X.H. and Carroll, R.J., Semiparametric regression for clustered data, Biometrika, 88(4)(2001), 1179 1185. [9] He, X.M., Zhu, Z.Y. and Fung, W.K., Estimation in semiparametrics model for longitudinal data with unspecificed dependence structure, Biometrika, 89(3)(2002), 579 590. [10],,,, 25(2)(2009), 171 184. [11] Zhang, D., Lin, X. and Sower, M.F., Semiparametric stochastic mixed model for longitudinal data, Journal of the American Statistical Association, 93(442)(1998), 710 719. [12] Wu, H. and Zhang, J.T., Nonparametric Regression Methods for Longitudinal Data Analysis, Wiley Interscience, 2006. [13] Green, P.J. and Silverman, B.W., Nonparametric Regression and Generalized Linear Models, Chapman and Hall, 1994. [14] Yu, Y. and Ruppert, D., Penalized spline estimation for partially linear single-index models, Journal of the American Statistical Association, 97(460)(2002), 1042 1054. [15] Ruppert, D., Wand, M.P. and Carroll, R.J., Semiparametric Regression, Cambridge University Press, 2003. Penalized Likelihood Estimation of a Class of Zero-Inflated Semiparametric Mixed-Effect Model Shi Hongxing (School of Primary Education, Chuxiong Normal University, Chuxiong, 675000 ) In this paper, we consider an extension of semiparametric linear mixed-effect model to a class of longitudinal data or clustered data with zero-inflation and propose a novel semiparametric mixed model. Based on the maximum penalized likelihood estimation and EM algorithm, we give a method for our proposed model which may estimate both of the parameters and nonparameters simultaneously. In the method, we use GCV to choose the smoothing parameter.finally, we study a simulation analysis and one real data set to illustrate the proposed method. Keywords: Zero-inflation, semiparametric model, penalized likelihood, P-spline. AMS Subject Classification: 62G05.