152 8550 2 12-1. E-mail: {ueda,keyaki}@lsc.cs.titech.ac.jp, miyazaki@cs.titech.ac.jp. DEIM Forum 2016 E1-5. spotify 1 Last.

Σχετικά έγγραφα



MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Kenta OKU and Fumio HATTORI

Text Mining using Linguistic Information

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,


ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

Ανακάλυψη κανόνων συσχέτισης από εκπαιδευτικά δεδομένα

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Quick algorithm f or computing core attribute

Web DEIM Forum 2009 A7-1. Web. Web. Web. Web. 4 Wikipedia. Wikipedia. Web.

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

Επερωτήσεις σύζευξης με κατάταξη

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Προσωποποιημένη πλοήγηση σε εξωτερικούς χώρους: ανασκόπηση αλγορίθμων και μεθόδων επιλογής μονοπατιού

Stabilization of stock price prediction by cross entropy optimization

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU


ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Αναζήτηση και ανάκτηση δεδοµένων από το διαδίκτυο, προσωποποιηµένη παρουσίαση πληροφορίας και προτυποποίηση χρηστών.

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

ER-Tree (Extended R*-Tree)

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

ELIXIR-GR / BiP! Finder

User Behavior Analysis for a Large2scale Search Engine

An Effective and Efficient Algorithm for Text Categorization

Buried Markov Model Pairwise

Topic Structure Mining based on Wikipedia and Web Search

Legal use of personal data to fight telecom fraud

Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

Anomaly Detection with Neighborhood Preservation Principle

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Ανάκτηση Πληροφορίας Εισαγωγή

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

Shortness Ambiguity TEAM Ungrammaticality

The Greek Data Protection Act: The IT Professional s Perspective

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

Online Social Networks: Posts that can save lives. Sotiria Giannitsari April 2016

Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Customized Pricing Recommender System Simple Implementation and Preliminary Experiments

DECO DECoration Ontology

{takasu, Conditional Random Field

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Μοντέλα πρόβλεψης διάδοσης πληροφορίας στα κοινωνικά μέσα

Ημερίδα διάχυσης αποτελεσμάτων έργου Ιωάννινα, 14/10/2015

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Secure Cyberspace: New Defense Capabilities


ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Online Social Networks: Posts that can save lives. Dimitris Gritzalis, Sotiria Giannitsari, Dimitris Tsagkarakis, Despina Mentzelioti April 2016

Αξιολόγηση πληροφοριακών συστηµάτων και υπηρεσιών πληροφόρησης

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Εξαγωγή ζευγών ερώτησης απάντησης από forum και αυτόματη απάντηση νέων ερωτήσεων

9 th Symposium on Oceanography & Fisheries, Proceedings, Volume ΙΙ

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

ΣΤΟΙΧΕΙΑ ΠΡΟΤΕΙΝΟΜΕΝΟΥ ΕΞΩΤΕΡΙΚΟΥ ΕΜΠΕΙΡΟΓΝΩΜΟΝΟΣ Προσωπικά Στοιχεία:

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

2. N-gram IDF. DEIM Forum 2016 A1-1. N-gram IDF IDF. 5 N-gram. N-gram. N-gram. N-gram IDF.

Research on Real-Time Collision Detection Based on Hybrid Hierarchical Bounding Volume

A Survey of Recent Clustering Methods for Data Mining (part 2)

Δράσεις για την ενίσχυση της Δημιουργικότητας μέσω της Μουσικής Πληροφόρησης και της Τηλεκπαίδευσης στη Φιλαρμονική Ένωση Κέρκυρας «Καποδίστριας»

Scrub Nurse Robot: SNR. C++ SNR Uppaal TA SNR SNR. Vain SNR. Uppaal TA. TA state Uppaal TA location. Uppaal

Collaborative Filtering

Towards a more Secure Cyberspace

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

ΑΤΟΜΙΚΟ ΑΝΔΡΩΝ ΟΛΥΜΠΙΑΚΟΥ ΤΟΞΟΥ ΓΥΡΟΣ ΚΑΤΑΤΑΞΗΣ

A Survey of Recent Clustering Methods for Data Mining (part 1)


From Secure e-computing to Trusted u-computing. Dimitris Gritzalis

ΑΝΑΛΥΤΙΚΟ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. 2. ΑΚΑΔΗΜΑΪΚΕΣ ΣΠΟΥΔΕΣ Ιδρυμα: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Ημ/νία: 2003 Τίτλος: ΔΙΠΛΩΜΑ ΜΗΧΑΝΙΚΟΥ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Probabilistic Approach to Robust Optimization

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

Απόστολος Παπαδόπουλος Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Σχολή Θετικών Επιστηµών Τµήµα Πληροφορικής. Ακαδηµαϊκό Έτος

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

ΕΜΜΕΛΗΣ ΑΠΑΓΓΕΛΙΑ. Γεωργίου Ε. Χατζηχρόνογλου

(1) (2) MFA/SFA: material flow analysis/ substance flow analysis MFA/SFA

! : ;, - "9 <5 =*<

Security in the Cloud Era

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΠΤΥΧΙΑΚΩΝ ΕΡΓΑΣΙΩΝ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ

N8-0 (1 *.0 ' :7 ' _H $ (G0 )-: + $ B1+ N (+:- A+1 5.

Transcript:

DEIM Forum 2016 E1-5 152 8550 2 12-1 152 8550 2 12-1 E-mail: {ueda,keyaki}@lsc.cs.titech.ac.jp, miyazaki@cs.titech.ac.jp,, 1. spotify 1 Last.fm ( ) [4] Hit rates [7] Hit rates [2] [8] [7] [3] 1 http://www.spotify.com http://last.fm [10] [5] [6] ( ) [5]

2. Hit rates 2. 1 Hit rates Hit rates [7] Hit rates n n 1 N Hit rates Hit rates Hit rates T rain T est h t r h t r (1) HitRate(T rain, T est) = 1 T est (h,t r ) T est 1 R(h) (t r ) (1) R(h) T est 1 R(h) (t r) t r R(h) 1 0 R(h) 10 50 100 2. 2 2. 2. 1 PopRank [9] Same artists - greatest hits(sagh) h h [9] t (2) score SAGH(t, h) = counts(t) 1 h (a) (2) 1 h (a) a h 1 0 counts(t) t Collocated artists - greatest hits(cagh) SAGH h [2] a b (3) sim a(a, b) = p (1 p(a) 1 p (b)) p 1p(a) p 1p(b) (3) 1 p(a) p a 1 0 t a (4) score CAGH (t, h) = b A h sim a (a, b) counts(t) (4) A h h 2. 2. 2 Association Rules(AR) Association Rule( ) A B A B A B h h h t 1, t 2,...t i (t 1), (t 1, t 2), (t 2), (t 2, t 3),...(t i 1, t i) t t [2] (5) score AR (t, h) = ω Ω confidence(ω t) (5)

Ω h [1] (ω t) n w w h confidence(ω t) ω t Sequential Pattern(SP) Sequential Pattern( ) [2] h t 1, t 2,...t i < t 1 >, < t 1, t 2 >,... < t i 1, t i > t t (6) score SP (t, h) = ω Ω confidence(ω t) (6) 2. 2. 3 knn k [7] h p (7) sim(h p) = h p (7) h p N h t (8) score knn (t, h) = n N h sim p(h, n) 1 n(t) (8) 1 n (t) n t 1 0 [7] knn k k = 10, [8] k = 300. k = 300 2. 3 [8] 3. AR SAGH SAGH (1) ( ) (2) ( ) 3. 1 3. 2 3. 1 (a, b, c), (a, b, c, d), (a, b, d, e) 1 a t cooc(a, t) a counts(a) cooc(a, b) = 3, cooc(a, c) = 2, cooc(a, d) = 2, cooc(a, e) = 1 counts(a) = 3

1 b e 3 1 a 1 c d = {(a,b,c),(a,b,c,d),(a,b,d,e)} counts(a) = 3 cooc(a,b) = 3,cooc(a,c) = 2,cooc(a,d) = 2,cooc(a,e) = 1 total_cooc(a) = 8 1 1 a b, c, d, e a = 3 + 2 + 2 + 1 = 8 a a t (9) score t (a, t) = cooc(a, t) max counts log ( + 1) (9) counts(a) max counts a a (9) cooc(a,t) a = 8 b, c, d, e cooc(a,b) = 3/8, cooc(a,e) 2/8 = 1/4, = 2/8 = 1/4, cooc(a,d) cooc(a,c) = = 1/8 a a max counts max counts log ( + 1) counts(a) TF-IDF TF a t IDF a f 7 b 6 a 5 7 Ar)st A e 5 10 c d listcounts(a) = 10 occur(a,a) = 5,occur(A,b) = 6,occur(A,c) = 10,occur(A,d) = 5, occur(a,e) = 7,occur(A,f) = 7 total_occur(a) = 40 2 - h t t score track (h, t) (10) score track (t, h) = a h score t(a, t) (10) 3. 2 2 A A A occur(a, t) occur(a, a) = 5, occur(a, b) = 6, occur(a, c) = 10, occur(a, d) = 5, occur(a, e) = 7, occur(a, f) = 7 total occur(a) total occur(a) = 5 + 6 + 10 + 5 + 7 + 7 = 40 A A A listcounts(a) max listcounts max listcounts A log ( + 1) listcounts(a) A t score a (11)

1 Last.fm Aotm 30music Playlists 2978 1040 8750 Users 451 142 1141 Avg. Playlists/User 6.60 7.32 7.67 Tracks 18081 11411 71472 Avg. Tracks/Playlist 11.70 16.99 12.52 Artists 3272 2770 17335 Avg. Artists/Playlist 4.55 12.76 8.61 Avg. Artist Usage 10.65 6.38 6.32 score a(a, t) = Artist reuse rate 65.28% 26.63% 40.07% occur(a, t) max listcounts log ( total occur(a) listcounts(a) + 1) (11) h t t score artist(h, t) (12) score artist (t, h) = score a (A, t) 1 h (A) (12) 3. 3 3. 1 3. 2 0.55 0.45 h t score track (h, t) score artist (h, t) t score track (h, t) score artist (h, t) max score track, max score artist (13) score(t, h) = score track(t, h) scoreartist(t, h) 0.55 + 0.45 max score track max score artist 4. (13) 10,50,100 100 PC CPU AMD Phenom ii x6 1090T 8GB 4. 1 [8] Last.fm Art-of-the-Mix [11] Last.fm web api 1 Avg. Artist Usage Artist reuse rate Aotm Last.fm Artist reuse rate 4. 2 Hit rates MRR(mean reciprocal rank) MRR 4. 2. 1 MRR(mean reciprocal rank) MRR [12] h t r h R(h) reciprocal rank (RR) R(h) t r R(h) t r (14) RR(h, t r ) = { 0 (1R(h) (t r ) = 0) 1 rank tr (1 R(h) (t r ) = 1) (14) rank tr R(h) t r reciprocal rank MRR (15) MRR(T rain, T est) = 4. 3 1 T est (h,t r ) T est RR(t r, h) (15) AR SP n w n = 3 w = 100 Proposed method score track score artist Hit rates MRR(mean reciprocal rank) p 0.05 * 10 Hit rates MRR 2 50,100 Hit rates MRR 3 4 100 5 Last.fm 451 Aotm 142 30music 1458 Aotm MRR

2 10 5 : (s) Algorithm Last.fm Aotm 30music precision@10(hit rates MRR) PopRank 0.030 0.010 0.099 Algorithm Last.fm Aotm 30music SAGH 0.034 0.030 0.205 PopRank 0.005 0.001 0.009 0.003 0.004 0.001 CAGH 27.1 6.29 531.5 SAGH 0.208 0.098 0.032 0.013 0.090 0.045 knn 203.9 115.2 830.0 CAGH 0.125 0.044 0.032 0.007 0.072 0.028 AR(n=2,w=10) 2.94 0.627 7.43 knn 0.236 0.143 0.058 0.039 0.078 0.039 SP(n=2,w=10) 2.46 0.380 4.37 AR 0.232 0.154 0.060 0.038 0.073 0.037 AR(n=3,w=100) 13.8 0.746 8.52 SP 0.202 0.135 0.063 0.042 0.058 0.028 SP(n=3,w=100) 14.6 0.506 5.55 Proposed method 0.256* 0.155 0.067 0.041 0.091 0.047 Proposed method 0.482 0.226 1.70 score track 0.234 0.151 0.056 0.037 0.070 0.034 score artist 0.212 0.100 0.037 0.013 0.085 0.041 3 50 precision@50(hit rates MRR) SAGH score artist 30music MRR score artist SAGH Last.fm Aotm score track Algorithm Last.fm Aotm 30music 30music score artist PopRank 0.018 0.001 0.025 0.004 0.009 0.001 SAGH 0.295 0.098 0.062 0.015 0.146 0.048 3 4 CAGH 0.277 0.044 0.083 0.010 0.140 0.032 knn 0.308 0.147 0.083 0.041 0.117 0.041 AR 0.302 0.157 0.086 0.038 0.114 0.039 SP 0.279 0.138 0.076 0.042 0.091 0.030 5. Proposed method 0.339* 0.160 0.095 0.042 0.151 0.050 score track 0.310 0.155 0.083 0.039 0.111 0.036 score artist 0.304 0.105 0.063 0.015 0.148 0.044 4 100 precision@100(hit rates MRR) Algorithm Last.fm Aotm 30music PopRank 0.027 0.002 0.048 0.004 0.016 0.002 SAGH 0.315 0.103 0.074 0.015 0.168 0.048 CAGH 0.329 0.052 0.114 0.010 0.170 0.032 knn 0.328 0.147 0.100 0.041 0.129 0.041 AR 0.323 0.158 0.093 0.040 0.129 0.039 SP 0.303 0.139 0.085 0.042 0.102 0.030 Proposed method 0.365* 0.160 0.120 0.042 0.178 0.050 score track 0.329 0.155 0.095 0.039 0.128 0.037 score artist 0.321 0.105 0.072 0.015 0.170 0.044 SP Last.fm Hit rates SAGH AR score track AR score track 5 AR Last.fm Aotm Dietmar Jannach Iman Kamehkhosh (B)( :15H02701) (B)( :26280115)

[1] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB, Vol. 1215, pp. 487 499, 1994. [2] Geoffray Bonnin and Dietmar Jannach. A comparison of playlist generation strategies for music recommendation and a new baseline scheme. In Workshops at the Twenty- Seventh AAAI Conference on Artificial Intelligence, 2013. [3] Geoffray Bonnin and Dietmar Jannach. Evaluating the quality of playlists based on hand-crafted samples. In 14th International Society for Music Information Retrieval Conference, pp. 263 268, 2013. [4] Geoffray Bonnin and Dietmar Jannach. Automated generation of music playlists: Survey and experiments. ACM Computing Surveys (CSUR), Vol. 47, No. 2, p. 26, 2014. [5] Jiajun Bu, Shulong Tan, Chun Chen, Can Wang, Hao Wu, Lijun Zhang, and Xiaofei He. Music recommendation by unified hypergraph: combining social media information and music content. In Proceedings of the international conference on Multimedia, pp. 391 400. ACM, 2010. [6] Ziyu Guan, Jiajun Bu, Qiaozhu Mei, Chun Chen, and Can Wang. Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pp. 540 547. ACM, 2009. [7] Negar Hariri, Bamshad Mobasher, and Robin Burke. Context-aware music recommendation based on latenttopic sequential patterns. In Proceedings of the sixth ACM conference on Recommender systems, pp. 131 138. ACM, 2012. [8] Dietmar Jannach, Lukas Lerche, and Iman Kamehkhosh. Beyond hitting the hits: Generating coherent music playlist continuations with the right tracks. In Proceedings of the 9th ACM Conference on Recommender Systems, pp. 187 194. ACM, 2015. [9] Brian McFee, Thierry Bertin-Mahieux, Daniel PW Ellis, and Gert RG Lanckriet. The million song dataset challenge. In Proceedings of the 21st international conference companion on World Wide Web, pp. 909 916. ACM, 2012. [10] Brian McFee and Gert RG Lanckriet. Hypergraph models of playlist dialects. In ISMIR, pp. 343 348. Citeseer, 2012. [11] Roberto Turrin, Massimo Quadrana, Andrea Condorelli, Roberto Pagano, and Paolo Cremonesi. 30music listening and playlists dataset. 2015. [12] Ellen M Voorhees, et al. The trec-8 question answering track report. In TREC, Vol. 99, pp. 77 82, 1999.