2001/020 OFFSHORE TECHNOLOGY REPORT. Elevated temperature and high strain rate properties of offshore steels HSE

Σχετικά έγγραφα
Κλινικοί Εκπαιδευτές: σύντομη περιγραφή ρόλου, κριτήρια επιλογής & πρόγραμμα εκπαίδευσης

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

2 Προετοιμαςία & χοριγθςθ IV υγρϊν. Όροι Χρήςησ


2 Διενζργεια Διενζργεια υψθλοφ εκκενωτικοφ υποκλυςμοφ. Όροι Χρήςησ

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Pipe E235N (St 37.4 NBK) phosphated and oiled

MECHANICAL PROPERTIES OF MATERIALS

Προι Χρήςησ. 2 Κατευκυντιριεσ Οδθγίεσ Μαιευτικισ Φροντίδασ

Grey Cast Irons. Technical Data

DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS

Figure 1 - Plan of the Location of the Piles and in Situ Tests

ο αεροσολσ σλοω χλιµατιχ ωαρµινγ? Ηαλτινγ τηε σπρεαδ οφ ΑΙ Σ. Χαν παρτιχλε πηψσιχσ χοµε βαχκ?

Το σχέδιο της μέσης τομής πλοίου

Thin Film Chip Resistors

Precision Metal Film Fixed Resistor Axial Leaded

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

ΘΕΜΑ : Ανακοίνωση Επαναληπτικής Υποβολής Προσφορών για την Προμήθεια Ελασμάτων/Σιδηρικών για κάλυψη αναγκών ΤΠΚ ΝΤΕΓΙΑΝΝΗΣ

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Chapter 7 Transformations of Stress and Strain

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ

Multilayer Chip Inductor

KEPKYPA Â Î Û Â È KEPKYPA

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Συµπεριφορά µεταλλικών και σύµµικτων συστηµάτων πλάκας σε πυρκαγιά. Αριθµητική παραµετρική διερεύνηση της απλοποιηµένης µεθόδου σχεδιασµού

SEN TRONIC AG A AB 93 :, C,! D 0 7 % : 3 A 5 93 :

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

NTC Thermistor:SCK Series

GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1.

PROFILCO UNIVERSAL SEPTEMBER

ΑΝΤΙΣΕΙΣΜΙΚΗ ΤΕΧΝΟΛΟΓΙΑ

TEST REPORT Nο. R Έκθεση Ελέγχου α/α

NTC Thermistor:SCK Series

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

DATA SHEET Surface mount NTC thermistors. BCcomponents

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

Other Test Constructions: Likelihood Ratio & Bayes Tests

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

NTC Thermistor:TSM type

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση κατά του ιού της γρίπης Σε δομές του νομού Λάρισας

5.0 DESIGN CALCULATIONS

Strain gauge and rosettes

IMES DISCUSSION PAPER SERIES

Biodiesel quality and EN 14214:2012

Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

(Mechanical Properties)

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Οδηγίες Εγγραφής στις Εξετάσεις για Ανεξάρτητους Υποψηφίους

NTC Thermistor:TTC3 Series

Transient Voltage Suppressor

ΕΚ ΟΣΕΙΣ ΠΑΠΑ ΟΠΟΥΛΟΣ

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Aluminum Electrolytic Capacitors (Large Can Type)

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

FERRITES FERRITES' NOTES RAW MATERIAL SPECIFICATION (RMS)

SMBJ SERIES. SMBG Plastic-Encapsulate Diodes. Transient Voltage Suppressor Diodes. Peak pulse current I PPM A with a 10/1000us waveform See Next Table

Thin Film Chip Resistors

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΑΓΧΟΣ ΚΑΙ ΚΑΤΑΘΛΙΨΗ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ

ΠΟΙΟΝ ΑΓΑΠΑΣ ΓΙΑ ΠΑΝΤΑ ΑΥΤΗ ΤΗ ΦΟΡΑ;

CMPTER SMA CONNECTORS. ... A Vital Part of Connection World

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

DuPont Suva 95 Refrigerant

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

Aluminum Electrolytic Capacitors

Math 6 SL Probability Distributions Practice Test Mark Scheme

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

ASME PTB Example E E4.3.5 BPVC VIII

Ε Κ Θ Ε Σ Η Δ Ο Κ Ι Μ Ω Ν

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

NPI Unshielded Power Inductors

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

ΠΕΤΕΠ ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ Υ.ΠΕ.ΧΩ..Ε.

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

Assalamu `alaikum wr. wb.

C4C-C4H-C4G-C4M MKP Series AXIAL CAPACITORS PCB APPLICATIONS

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ

Πνεσμαηικά Γικαιώμαηα 2006 Ίδρσμα ECDL (ECDL Foundation -

υγεία των νοσηλευτών που συστηματικά εμπλέκονται στην παρασκευή και χορήγηση τους.


Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Technical Information Efficiency and Derating SUNNY BOY / SUNNY TRIPOWER / SUNNY MINI CENTRAL

Version: 1.0 Page: 1/15 TYPE: HYDRO SUPERIOR MRL HYDRAULIC LIFTS. Date: Range of Application

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Shenzhen Lys Technology Co., Ltd

Multilayer Ceramic Chip Capacitors

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

4.6 Autoregressive Moving Average Model ARMA(1,1)

Transcript:

HSE Health & Safety Executive Elevated temperature and high strain rate properties of offshore steels Prepared by the Steel Construction Institute for the Health and Safety Executive OFFSHORE TECHNOLOGY REPORT 2001/020

HSE Health & Safety Executive Elevated temperature and high strain rate properties of offshore steels B Burgan Steel Construction Institute Silwood Park Buckhurst Road ASCOT SL5 7QN HSE BOOKS

Crown copyright 2001 Applications for reproduction should be made in writing to: Copyright Unit, Her Majesty s Stationery Office, St Clements House, 2-16 Colegate, Norwich NR3 1BQ First published 2001 ISBN 0 7176 2023 9 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the copyright owner. This report is made available by the Health and Safety Executive as part of a series of reports of work which has been supported by funds provided by the Executive. Neither the Executive, nor the contractors concerned assume any liability for the reports nor do they necessarily reflect the views or policy of the Executive.

!"#" $% &!"#" ' ()) *+,-. ' /)0 *+,-. 10 2!00 3 4!"#" ' ()) *+,-. /)0 *+,-. 00"5 "0 5 *,' "/0", (0/. "/0/,("6. "//61,110). "/(61, 7 1(0/.. * 3 7 3 i

CONTENTS EXECUTIVE SUMMARY i 1 SURVEY OF COMMONLY USED STEELS FOR OFFSHORE STRUCTURES 1 1.1 Structural steel for topsides and sub-structures 1 1.2 High strength steels for jack-ups 6 1.3 Pressure vessel steels 8 1.4 Piping in topside facilities 9 1.5 Casing steels 10 2 TEST METHODS USED FOR MEASURING MATERIAL PROPERTIES OF STEEL 11 2.1 Methods to measure elevated temperature material properties 11 2.2 Methods of measuring strain rate effects 13 3 MATERIAL DATA REQUIREMENTS FOR FIRE AND EXPLOSION DESIGN 15 3.1 Material property data for fire resistance design 15 3.2 Material property data for explosion resistance design 17 4 EXISTING ELEVATED TEMPERATURE MATERIAL PROPERTY DATA FOR HIGH STRENGTH STRUCTURAL CARBON STEELS 21 4.1 Eurocode 3 Part 1.2 21 4.2 Quenched and tempered steels 28 4.3 Thermo-mechanically rolled steel 29 4.4 Fire resistant steels 32 5 EXISTING ELEVATED TEMPERATURE MATERIAL PROPERTY DATA OF STAINLESS STEELS 35 5.1 Grade 1.4301 (304) stainless steel 36 5.2 Grade 1.4404 (316L) stainless steel 40 5.3 Grade 1.4462 (2205) duplex stainless steel 45 5.4 Grade 1.4362 (SAF 2304) duplex stainless steel 50 ii

6 *8 >' *?*:*4 *+A*;9;* +*;? A;=A*;< 4 7=; @'@ ;*>'@ **? 9 *4 7=; :* *? >4 AA>' )( 6" : )( 61 A )B! *8 >' +*;? A;=A*;< 4 @'@ ;> ;* 6"!" 6"!1 32 6(!( 6/ B >*% *?*:*4 *+A*;9;* +*;? A;=A*;< 7=;!"#" ';4* ())*+,-. >4 /)0*+,-. **? 6# B" + 6# B1 6# B( ; ' ())*+,-.!0 B/ ; ' /)0*+,-.!" B) 3!1 # >*% +*;? A;=A*;< 4 @'@ ;> ;* 7=;!"#"D ';4* ())*+,-. >4 /)0 *+,-. **? "0( #" + "0( #1 4 "0) #( ; ())*+,-. "0) #/ ; /)0*+,-. ""0 #) 3 "") #6 7 ""6 3=4* =7 A;33* >4 >4;4 "/( ;*7*;*>3* "/! iii

iv

1 SURVEY OF COMMONLY USED STEELS FOR OFFSHORE STRUCTURES E D E,. 5 F 7 9G > 9 G 3 5 E 3 D A 9G + ' ; G *E 7G 3A @ 1.1 STRUCTURAL STEEL FOR TOPSIDES AND SUB-STRUCTURES 1.1.1 Design premise E E 2 @ 2 3,. 7 5 9G!"#"D "#B# **+9 A ")0 2 1

7 >=; =G + "10, >. *> "011) A ; A 12?;74 1.1.2 Types of structural steel = D?!"#" *,*>. A,A. " Table 1 BS 7191 steel grades used for plates /)0*+- /)0 C /)0*+ /)0 C ())*+- ()) > ())*+ ()) > ())4 ()) > 1!)4 1!) > 7 9 G > * 2 >=; =G * ' ()) +,+?. /10 +,+?. /60 +,+?. /10 +,+?. < ()) >5 /10 >5 /60 >5 E *> "0 11) A 1 * C )00 C ))0 C 610 C 6#0 C )00 6#0 >5 2

1 Table 2 BS 7191 steel grades used for seamless structural tubulars ())*+ ()) > ())4 ()) > 1!)4 1!) > = A!"#" E ())4 1!)4 A )? ' 8)1 ( Table 3 BS 7191 steel grades for rolled profiles and hollow sections ())*+ ()) > ())4 ()) > 1!)4 1!) > 1.1.3 Usage of grades of steel ""1 2 D H I I 5 I I 2 3

/ Table 4 Steel types and grades for primary structures A /)0 *+- /)0 *+ ()) *+- ()) *+ ()) *+ ; ()) *+ 7 >,' /)0*+ /)0*+-. + /)0*+ /)0*+-,' /10 + >. = ())*+ ()) *+-,- E. D I I I I I I E I ) Table 5 Steel types and grades for primary structures A ; ()) *+ ()) 4 1!) 4 D E I I I I E I 4

6 Table 6 Steel types and grades for tertiary structures ; 1!) 4 D I I I I! Table 7 Steel types and grades for miscellaneous structures A ()) 4 1!) 4 1!) 4 ; 1!) 4 1.1.4 Recent offshore developments that have used high strength structural steels!"#" ' /)0 BJ "#BB /0J "##) > #)J ' /10 + I B 5

Table 8 Amounts of high strength steel used in recent offshore projects [1]!" # $ "##1 A5 A59 5' "##( *5> @5 35 A5K "##/ 54 G5 > "600 "000 "00 B000 1)000 ")000 #000 "0000 (0000 "BJ "0J "J (0J )0J ' /10 ")J /0J /0J #)J ' /10 "##) A5* ((000 #)J ' /10 @ # Table 9 Other offshore projects utilising higher strength steels (Grade 420-450)! " #! " # 4 > @ + + @ )000 A + (000 >!000 + * ""000 3 ""000 #000 /100 "0000 7 A *A * E /)0 *+- H @* "000 @? ""00, L@ ; /60-GL. 4??+8 6#0, 4. 6#0 >5 A *A 1.2 HIGH STRENGTH STEELS FOR JACK-UPS 2 H,. E 2 ")0 1)0 () B0 B00 "100 % E 6

2 9G3 "#B0 9G 4 * 2?, +?. 37*+ 7 ' @ 1.2.1 Chord rack steels 2 E >232+2: 7 K 9 # $#%& ' @B0 * K D + )"/ + )"! E E + 7 C >232+2: @B0 ( ' * 32?,3?. * 7 * D 5 3? ") 47=, "#B0.!00 3;!00 ;,. )"! 73;, "##0. E >232+ 6#0 +A "0 Table 10 Yield strength of French chord rack steels ) 3 )"! 7,. 6#0 ") 47= 6#0 3!00 6#0 3 :5: 6))56#0 3 : 6#0 > 60,4. )B6 + )"! ' C,. E )"! 73;!00 ") 47= )"! 73; )"! ' C 7

* ' + K > 6#0 +A E %2 B0 B0 2 LB0L B0 5,B00+A. >232+2: 7 )"! 73; @B0 B0 5 E + )"/ ' 7,. + ' 9 2?? 9 5 2 >2(0 @> >210 @ "",/B1 +A.,6#0 +A. Table 11 Yield strengths of Le Tourneau chord rack steels ) 3 >2(02@> 610 #0 3 >210 @ /B1!0 1.2.2 Steel for jack-up bracing 2 D A )? A )? 9 E A )? A E 86) 8"00,6) "00. )0,(/) +A. =? ' ++? B) 2 A 9B) E ' 1.3 PRESSURE VESSEL STEELS : *> "0 01B *> "0 01B ")0"D A "D ")0"D A 1D ")0"D 8

A (D "###51000 *> "0 01B A! 3 ")0" DA 1 9G *> "001B D A "D ' E A 1D >2 A (D % H A /D > A )D % 2 A 6D % E A!D = ")0" "0 01B 2 2 E A "### E ")0"D A "1 ( * = #(1BD "##" D A "D 2 E A 1D 2 9 2 A (D 2 >2 A /D 2 % H E A )D 2 1.4 PIPING IN TOPSIDE FACILITIES A 2 E 9 A > 9 @, E. +, +. D + ((( + "06 A )? + ((( ' 6 + "06 ' 1/0 >5 A )? ',E *>"010B2( '?1/) = ("B(21 '?1/). A )? ' 86),E *>"010B2( '?/)0 = ("B(21 '?/)0. 9

E * D *> "010B A "D A E A 1D A E A (D A E 3 = ("B(D! A "D A 1D A 2 2 2 A ;E 3 A 2 2 2 A ;E 3 7 2 (60" (601 (60( (60/ (60) " " # ))00D + 1.5 CASING STEELS 3 9G A "1 Table 12 Casing steels, # @32#) 6))!B0 @32""0!)B B61 C;2"1) B61 #(" 82")) "06# ""(B 10

2 TEST METHODS USED FOR MEASURING MATERIAL PROPERTIES OF STEEL * 2 <M E 2 2.1 METHODS TO MEASURE ELEVATED TEMPERATURE MATERIAL PROPERTIES 7 2 E!00 3 + I,. $,. 2.1.1 Steady State (Isothermal) test method E, 000"2000(. 2 E 2 9 E * *> "0001D A ) 2.1.2 Transient state (Anisothermal) test method 2 7 )#)0D A B * (D A "1 11

3 * = > 2 2H = 7 " Figure 1 Typical apparatus for transient state testing 1) ) "0 1035 / 1 " N = B(/ + )J 12

; 2 7 1 Figure 2 Elevated temperature transient state heating test curves for various load factors "0 35 2.1.3 Comparison of Steady state and transient state test data G A @,O "J. ()) 1!) 2.2. METHODS OF MEASURING STRAIN RATE EFFECTS > E C2 2 "0 "0 7,"0 "0P. "0 2"0 E2 2.2.1 Quasi-static methods C2 % 13

H 2.2.2 Cam and wedge plastometers 2 @ "0P * 2.2.3 Drop hammer 2 2 2 2 4 + 3 14

3 MATERIAL DATA REQUIREMENTS FOR FIRE AND EXPLOSION DESIGN E 3.1 MATERIAL PROPERTY DATA FOR FIRE RESISTANCE DESIGN * E @ E, )#)0 $ % & ' () *., 2. 3.1.1 Simple or Codified methods Q? ;M,. 3 E E )#)0 A B ; )#)0 A B E E )#)0 A B 0)J ")J 1J 2 3 0)J ")J 1J 15

)#)0 B 7 ( 1.0 Strength reduction factor 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 2% strain 1.5% strain 0.5% strain 0.0 0 100 200 300 400 500 600 700 800 900 1000 Temperature C Figure 3 Relationship between strength factor and temperature for various strains - BS 5950 Part 8 * ( A "1 1J *3( A "1 <M 3.1.2 Advanced calculation approach E 2 2 @ E D. 2... 2 2 E + E + 2 16

' 2 7 / Figure 4 Elevated temperature stress-strain curves *3( A "1 2 *3( A "1 3.2 MATERIAL PROPERTY DATA FOR EXPLOSION RESISTANCE DESIGN + E @ E,.,. 3.2.1 Simplified methods E 222, 4=7. 222 2,7 ). Figure 5 Single degree of freedom system 17

4=7 222 E 2 E E, 7 6. E Figure 6 Typical stress-strain curve profile at a high strain rate,. 2,47. D DIF, 2. * 3!1 3.2.2 Advanced methods +222 2 2 2 E 7 E E E 2 E 2 2 2 2 18

7 4 @ 2 2 ' 2 7 Figure 7 Effects of strain rate on the behaviour of mild steel 2 7 B H 2 Stress 12 10 8 6 4 2 0 Strain rate 2 Strain rate 1 0 5 10 15 20 25 Strain Figure 8 Linearized stress strain curve allowing for strain rate effects 19

20

4 EXISTING ELEVATED TEMPERATURE MATERIAL PROPERTY DATA FOR HIGH STRENGTH STRUCTURAL CARBON STEELS 9G!"#" @!"#" * D *> "0 01) @ 2 *> "0""( *> "0"(! @ A 1D 4 H5H A (D 4 2 A A 1D 4 E A (D 4 % * ( 4 A "1 + 4.1 EUROCODE 3 PART 1.2 * *3( A "1,.,. *3( A "1 1() 1!) ()) /10 /60 @, 2 H 2 E. * 7 1 )0 35 2 "( 7 # "/ 103 D 103D & R 5 103D & R 5 103D & R, 5, 7 /1 "/ & & 21

103 *>: "##(2"2" Table 13 Parameters for stress-strain profile defined in EC3 Part 1.2 and shown in Figure 4.2 # f p, c (b/a) a 2 y, 2 0,5 b y, a a 2 2 0,5 y, f y, 1 t, / u, t, a 2 y, p, y, p, c /E a, b 2 c y, p, E a, c 2 c f y, f p, 2 y, p, E a, 2 f y, f p, Figure 9 Stress-strain relationship for steel at elevated temperatures 22

Table 14 Reduction factors at elevated temperatures for stress-strain profiles at elevated temperatures 10 "000 "000 "000 "000 "00 "000 "000 "000 "000 100 "000 0#11 0B0! 0#00 (00 "000 0B/) 06"( 0B00 /00 "000 0!!0 0/10 0!00 )00 0!B0 06") 0(60 0600 600 0/!0 0()/ 0"B0 0("0!00 01(0 0"6! 00!) 0"(0 B00 0""0 00B! 00)0 00#0 #00 0060 00)" 00(B 006B "000 00/0 00(/ 001) 00/) ""00 0010 00"! 00"( 001( "100 0000 0000 0000 0000 >=*D 7 Reduction factor k θ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 200 400 600 800 1000 1200 Temperature C Effective yield strength Proportional limit Slope of elastic range Figure 10 Reduction factors for the stress-strain relationship of steel at elevated temperatures 23

4.1.1 Stress-strain relationships at elevated temperatures ()) /60 ") "6 7 "" "1 ()) /60 > σa/fy 1.0 0.9 0.8 0.7 0.6 0.5 100 C 200 C 300 C 400 C 500 C 0.4 0.3 600 C 0.2 0.1 0.0 700 C 800 C 0 0.005 0.01 0.015 0.02 Strain Figure 11 Variation of stress-strain relationship with temperature for grade S355 steel (strainhardening not included, see section 4.1.2) 1.0 0.9 100 C 0.8 200 C 0.7 0.6 300 C 400 C σ a/fy 0.5 0.4 0.3 500 C 600 C 0.2 0.1 0.0 700 C 800 C 0 0.005 0.01 0.015 0.02 Strain Figure 12 Variation of stress-strain relationship with temperature for grade S460 steel (strainhardening not included, see section 4.1.2) 24

Table 15 Stress-strain relationship at elevated temperatures for grade S355 steel -.. /. 0&1 23 4&& 0&& 5&& 6&& 7&& 8&& 9&& %&& 25

Table 16 Stress-strain relationship at elevated temperatures for grade S460 steel -.. /. 0&1 4&& 0&& 5&& 6&& 7&& 8&& 9&& %&& 26

4.1.2 Strain-hardening of steel at elevated temperatures 7 /003 2 2 *3( "1 2 E 7 /003 2 D 001 S S 00/ )0,. 1 00/ 0") 0") S S 010 T" 10, 0").U 010 000 D 2 2 7 "( D S (00 3 "1) (00 3 S /00 3,1 0001). /00 3 Stress a f u, f y, f p, E = tan a, p, y, s, t, u, Strain Figure 13 Stress-strain relationship for steel, allowing for strain hardening 27

4.1.3 Thermal properties 5 D 103 S!)03 5 "1V"0 0/V"0 1/"6 V "0!)03 B603 5 ""V"0 B603 S "1003 5 1 V"0 61V"0 D 103I I T3U 7 "/ D 5 "/V"0, 10. Elongation dl/l x 10-3 20 18 16 14 12 10 8 6 4 2 0 0 200 400 600 800 1000 1200 Temperature C Figure 14 Thermal elongation of steel as a function of temperature 4.2 QUENCHED AND TEMPERED STEEL E 2 E ;C 7 ") /00W3 ;C )0" ;C 28

500 450 Grade 55F RQT 501 0.2% PS MPa 400 350 300 250 200 0 100 200 300 400 500 Temperature C Figure 15 Effect of composition on strength of RQT 501 steel ;C 4.3 THERMO-MECHANICALLY ROLLED STEEL 4.3.1 Grade S355 M 4,'. 2 )0 = ()) +? ()) + )00 W3 7 "6 29

550 Strength N/mm 2 500 450 400 350 300 250 200 0 100 200 300 400 500 Temperature C Yield strength 25mm pl Yield strength 50mm pl T ensile strength 25mm pl T ensile strength 50mm pl Figure 16 Elevated temperature material properties for S355 thermo-mechanically rolled steel - Dillinger 4.3.2 Grade S420 M ; = G + @ 9 /10+ > *3( A "1,.,. *3( A "1 E = % ; %; = 4.3.3 Stress-strain relationships according to EC3 Part 1.2 /10 +,, a, & E,, & E, ()"0 10 3 a "# "06 2 a 00001B a "0 10 S a!00 p, & p, y 30

& p, # "0 9 3 a 1# "06 2 a 00006/ a "0 10 S a!00 p, & y, y & y, #"0 7 2 a 0000! a "0"/ 10 S a /00 & p, 11 "0 8 3 a 00000(B2 a 00"#" a 10# /00 a!00 /10+!003 7 "! 1.0 Yield strength reduction factor k y 0.9 0.8 0.7 0.6 0.5 0.4 0.3 S420 M EC3 Part 1.2 0.2 0 100 200 300 400 500 600 700 Temperature C Figure 17 Yield strength reduction factor k y, for the structural steels studies at temperatures up to 700C /10+ 2 *3( A "1 4.3.4 Grade S460 M 4 2 /60 + )0? /60 + )00 W3 7 "B 31

600 500 Strength N/mm 2 400 300 200 100 Yield strength 20mm pl Yield strength 50mm pl Tensile strength 20mm pl Tensile strength 50mm pl 0 0 100 200 300 400 500 Temperature C Figure 18 Elevated temperature material properties for S460M thermo-mechanically rolled steel - Dillinger ;*42; /60+,2. : 2 2 2 *3( 4.4 FIRE RESISTANT STEELS 7,7;. 1!) ()) 7; 2 ; G > 7; Q M > 1!), > 7;. 7; 1!) )0J 6)0W3 1!) )0J ))0W3 7 "# 32

Yield Strength factor 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 FR1 S275 FR2 0 100 200 300 400 500 600 700 800 Temperature C Figure 19 Yield strength factor at elevated temperatures for fire resistant and S275 steels 33

34

5 EXISTING ELEVATED TEMPERATURE MATERIAL PROPERTY DATA OF STAINLESS STEELS * * M * D *> "00BB ")0"D A ( *> "001B A! (60) # 4 * 3 *,. ))03,. E ' ' "/(0",(0/. ' "//0/,("6?.,2. ' "//61,4 110). '"/(61, 7 1(0/. D (0/ I ("6? E I 4 110) 7 1(0/ E "! 2 "00BB (0/ ("6 110) Table 17 Elevated temperature material properties for selected BS EN 10088 plate stainless steels &10: 4&& 47& 0&& 07& 5&& 57& 6&& 67& 7&& 77& (0/ "" "/! "(1 ""B "0B "00 #/ B# B) B" B0 (0/ (" ")! "/1 "1! ""B ""0 "0/ #B #) #1 #0 ("6 ""5"( "66 ")1 "(! "1! ""B ""( "0B "0( "00 #B ("6 ("5(( "!! "61 "/! "(! "1! "10 "") ""1 ""0 "0B 110) (60 (() (") (00 2 2 2 2 2 2 7,. * 3 3,*3 3. 3 35

= 2 5.1 GRADE 1.4301 (304) STAINLESS STEEL 4 3 3 *3 3 2!003 7 10,. Figure 20 Elevated temperature stress-strain curves for 1.4301 (304) stainless steel derived from transient state tests 2 "B 7 1" 36

Table 18 Strength factors at elevated temperatures for grade 1.4301 (304) stainless steel based on transient state tests #. &17: 41&: 417: 01&: 51&: )0 0#6) "0/( """( ""B# "(00 "00 0B!) 0#)( "01" "06" ""/# ")0 0B"0 0BB( 0#/) 0##) "06) 100 0!!0 0B() 0BBB 0#(# "010 1)0 0!/" 0!#6 0B)" 0B#6 0##0 (00 0!") 0!6) 0B1/ 0B66 0#6" ()0 06#( 0!(! 0B0" 0B/1 0#(( /00 066# 0!"( 0!B( 0B10 0#0) /)0 06/) 06#0 0!6) 0B00 0B!6 )00 06"! 066B 0!/( 0!B0 0B/B ))0 0)BB 06/( 0!") 0!)) 0B10 600 0))( 06"1 06!B 0!11 0!#0 6)0 0)"0 0)!( 061( 066B 0!/0!00 0/)0 0)"" 0)/! 0)B1 06/#!)0 0(!) 0/11 0/)) 0/!) 0)"B B00 0(00 0((B 0(6) 0(B1 0/"" B)0 011) 01)! 01B0 01#6 0(1/ Strength factor 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.5% 1.0% 1.50% 2.00% 3.00% 0 100 200 300 400 500 600 700 800 900 Temperature C Figure 21 Relationship between strength factor and temperature for various strains 5.1.2 Comparison of steady state and transient state test results 2, <M + *> "00BBD A ". 0)J "0J "# 37

@ 9 Table 19 Comparison of strengths at 0.5% and 1.0% strain derived from steady state and transient state tests!" # " # ; ' $ % & $ ' $ & $ ( 100 "B6 "#( 100 1"1 1"! /00 "!1 "!! "!/ "#6 "B) )00 "6) ")B "60 "!! "!/ 600 ")0 ")0 "// "6# ")# B00 "(1 #1!B #! BB 5.1.1 Comparison of results with previously published data 7 11 @ 9 01J 3 *3 3 "0J @ 1.4 Strength factor at 2% strain 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Ref [11] Ref [10] 0 100 200 300 400 500 600 700 800 900 Temperature C Figure 22 Comparison of strength factors at 2% strain derived from SCI ECSC transient state test programme [10] with those obtained from the Helsinki transient test programme [11] @ )#)0D A B "/(0",(0/. "//0",("6. 0)J "0J @ 3E 38

1.1 Strength factor 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.5% strain BS 5950 Pt 8 1.0% strain BS 5950 Pt 8 0.5% strain SCI ECSC [10] 1.0% strain SCI ECSC [10] 0.2 0 100 200 300 400 500 600 700 800 900 Temperature C Figure 23 Comparison between SCI ECSC data (transient tests) and existing guidance (steady state tests) for elevated temperature strength of grade 1.4301 (304) stainless steel 7 1( @ "/(0",(0/. 0)J "0J @ 300 0.2% Proof strength (N/mm 2 ) 250 200 150 100 BS EN 10088-2 Min values SCI ECSC data [10] 50 0 100 200 300 400 500 600 700 800 Temperature C Figure 24 Comparison of minimum specified 0.2% proof strength in EN 10088-2 with the measured 0.2% proof strength data from the SCI ECSC transient state test programme 7 1/ 01J *> "00BBD A 1 )) >5 *> "00BB 39

5.1.3 Elastic modulus 4 <M + 2 4 *> "00BB 9 > ; 7 4 D E 200.9 0.083 * B00 3 7 1) (0/ Reduction in elastic modulus 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 Inco Aves ta S heffield Thyssen Ugine B S EN 10088 Nordberg [13] 0.60 0 100 200 300 400 500 600 700 800 900 Temperature C Figure 25 Reduction of elastic modulus with temperature 5.2 GRADE 1.4404 (316L) STAINLESS STEEL 4 3 3 *33 2 B003 7 16,. 40

Stress (N/mm²) 400 350 300 250 200 150 100 50 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Strain % 100 C 200 C 400 C 600 C 700 C 800 C Figure 26 Elevated temperature stress-strain curves for grade 1.4404 (316L) stainless steel derived from transient state tests 5.2.1 Ambient temperature and steady state tests 10 # Table 20 Ambient and elevated temperature steady state tensile tests &10: &17: 41&: # - 7& ) : 10 1!/0 (0(0 ((01 )"60 (6 100 "B0( 11!# 1)// )"0( (B /00 "!/# "##/ 11/" /#"! (B )00 "6"6 "B6B 1"00 /!1! (6 600 "6(6 "B(" 10)) /1(6 /1 B00 ""B0 "1") "1)! 10#( #1 5.2.2 Transient state tests 7,. 1",. 41

Table 21 Temperatures for 1.4404 (316L) stainless steel for various critical strains and strength factors & ) " * +!, -. / # # # # # * 0) BB1 B16!66 6!) )(0 1B1 "6" B" () 2 2 2 "0 #01 B)(!#!!1! 6/) )") ((6 ")1 B0 (! 2 2 ") 2 B6( B")!)( 6#0 )!) /0! 1"( "10 /) 1/ 2 10 2 B6B B1(!!1!"B 61! )00 ((0 ")6 B6 /" 10 (0 2 B!/ B(0!B/!(B 6#0 6"6 /1B 1/1 ""6!6 /1 )0 2 BB# B// B00!)#!1( 6B! 6/( )66 (/# "6# "0" 01J 7 1! 1.4 Strength factor 1.2 1.0 0.8 0.6 0.5% 1.0% 1.5% 2.0% 3.0% 0.4 0.2 0 100 200 300 400 500 600 700 800 900 Temperature C Figure 27 Relationship between strength factor and temperature for various strains 11 "//0",("6. 7? 4 3 2 )#)0D A B 42

Table 22 #. - <,7=7&> %? @ # &17: 41&: &17: 41&: 417: 01&: 51&: 71&: 5.2.3 Comparison of steady state and transient state test results 1( "/J Table 23 Comparison between the results measured by the steady state and transient state heating test methods # # - < > # &17: 41&: 417: 01&: 51&: &17: 41&: 417: 01&: 51&: 5.2.4 Comparison of results with previously published data @ )#)0D A B "/(0",(0/. "//0",("6. 0)J "0J @ 3E 43

7 1B 11 @ 1.2 Strength factor 1.1 0.5% s train B S 5950 P t 8 1.0 1.0% s train B S 5950 P t 8 0.9 0.5% strain SCI ECSC 0.8 1.0% strain SCI ECSC 0.7 0.6 0.5 0.4 0.3 0.2 0 100 200 300 400 500 600 700 800 900 Temperature C Figure 28 Comparison between new data (transient tests) and existing guidance on the elevated temperature strength of 316 stainless steels "//0/,("6?. 0)J "0J @ Strength factor 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 EN 10088 Min vals SCI ECSC [10] 0 100 200 300 400 500 600 700 800 Temperature C Figure 29 Comparison of minimum specified 0.2% proof strength in EN 10088-2 with the measured 0.2% proof strength data from the SCI ECSC transient state test programme 7 1# 01J *> "00BBD A 1 )) >5 *> "00BB 44

5.2.5 Elastic modulus 4 *> "00BB 9 > ; 7 > (0/ D E 200.9 0.083 * B00 3 7 (0 ("6 1.00 0.95 Reduction in elastic modulus 0.90 0.85 0.80 0.75 0.70 0.65 0.60 Inco Avesta Sheffield Thyssen Ugine BS EN 10088 Nordberg [13] 0 100 200 300 400 500 600 700 800 900 Temperature C Figure 30 Reduction of elastic modulus with temperature 5.3 GRADE 1.4462 (2205) DUPLEX STAINLESS STEEL * "//61,110). @ D *>"00BB21 01 J ; 1)03 4 ;%@ 3 3 *33,. * ' 9 45

5.3.1 Steady state tests results 4 ;%@ 1/ Table 24 Elevated temperature material properties for 1.4452 (2205) stainless steel obtain by RWTH [10] - (Steady state tests) # - 10 100000 )66 )#1!!( )66 6(# 100 "B)000 (## /(0 616 /0( /)( /00 "!6000 ()1 /0) 6(( (6/ /(" 600 "/!000 16! (0B /"# 1B" (1/!00 "1)000 "6! "BB 1B0 "!) 1()!)0 B(000 "/( "!0 1(B "/B 1"" B00 "00000 "11 "!" 100 "1! "BB #00!)000 6#!0 "(0!0 "1! 4 1) Table 25 Elevated temperature material properties for 1.4462 (2205) stainless steel obtain from various sources [13] - (Steady state tests) # A, - 4&&%% # B +. B +. 10 /)0 )00 2 2 2 2 )0 2 2 /10 /") 6/0 660 "00 (60 /"0 (60 (60 610 610 ")0 (() 2 (/0 2 )#) 2 100 (") ()1 (10 ("0 )B0 )!0 1)0 (00 2 ("0 2 )B0 2 (00 2 ()( 2 1B0 2 )60 )00 2 ((1 2 2 2 2 600 2 1(0 2 2 2 2!00 2 "(# 2 2 2 2 B00 2 ""0 2 2 2 2 01J,;.,;. *> "00BB 21 ;%@ 9 7 (" (1 46

Rp0.2 (N/mm 2 ) 600 500 400 300 200 SCI ECSC B S EN 10088 Thyssen [12] Aves ta S heffield [12] 100 0 0 100 200 300 400 500 600 700 800 900 Temperature C Figure 31 Comparison of 0.2% proof stress values for Grade 1.4462 (2205) duplex steel from various sources [13] 900 Ultimate strength (N/mm 2 ) 800 700 600 500 400 300 200 100 0 SCI ECSC [10] Avesta Sheffield [12] Ugine [12] 0 100 200 300 400 500 600 700 800 900 Temperature C Figure 32 Comparison of ultimate strength values for grade 1.4462 (2205) duplex steel from various sources [13] 5.3.2 Transient state tests ;%@ 3 *33 ' "//61,110).!003 7 (( 47

Strength factor 1.0 0.9 0.8 0.7 0.6 0.5 3.00% strain 2.00% strain 1.50% strain 1.00% strain 0.50% strain 0.4 0 100 200 300 400 500 600 700 800 Temperature C Figure 33 Grade 1.4462 (2205) duplex steel - relationship between strength factor and temperature for various strains - SCI ECSC [10] tests 5.3.3 Comparison between steady state and transient state test results ;%@ 16 7 (/ > ; ; 0)J 10J Table 26 Comparison of results between steady state and transient state tests for grade 1.4462 (2205) stainless steel # # 100 /0( /)( /1# /#" /00 (6/ /(" (!" /0/ 600 1B" (1/ 1!! (10!00 "!) 1() ")! 1(6 48

600 Strength (N/mm 2 ) 500 400 300 200 100 0.5% Is o' tes t 2.0% Is o' tes t 0.5% anis o' tes t 2.0% anis o tes t 0 200 300 400 500 600 700 800 Temperature C Figure 34 Comparison of data obtained from steady state and transient state tests, which were performed by RWTH 1003 3+ % 5.3.4 Elastic modulus "//61,110). ;%@ 4 9 @ (003 7 () > ; 7 )003 Reduction factor for elastic modulus 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 Ugine [12] Nordberg [13] SCI ECSC [10] 0 100 200 300 400 500 600 700 800 900 Temperature C Figure 35 Reduction of elastic modulus with temperature for Grade 1.4462 (2205) stainless steel 49

5.4 GRADE 1.4362 (SAF 2304) DUPLEX STAINLESS STEEL >? 7 1(0/ (00 3 4 01J "0J 16 Table 26 Avesta Sheffield elevated temperature data for Grade 1.4362 (SAF 2304) # 10 /00 /)0 6/0 )0 (60 /"0 600 "00 (") (B0 )!0 100 1!) (10 )(0 (00 160 (00 )00 * M 1! @ ""00 3 7 (6 Table 27 Elevated temperature material properties for Grade 1.4362 (SAF 2304) stainless steel taken from Avesta research report [17] # 10 /B/ )/( 6B6 )0 /(! /B# 6)" "00 (#! /(! )#/ ")0 (6B /06 )61 100 ((0 (66 )(6 1)0 (11 ()! )(" (00 (06 (/) )(( /00 1#( ((1 )"" /)0 ((" (!6 )11 )00 1#) (1# /6B ))0 11" 1/6 (60 600 "!) "#! (01 6)0 ")( "B6 1!!!00 "1" "/( 11)!)0 B# B# "() B00!1!B ""1 #00 (") () 66 "000 ""# "( () ""00 /( 6 "# 50

Stress N/mm 2 700 600 500 400 300 200 0.2% P S T yp 1.0%P S T yp Ult s trength T yp 0.2% P S Min 1.0% P S Min Ult s trength Min 100 0 0 100 200 300 400 500 600 700 800 900 1000 1100 Temperature C Figure 36 Elevated temperature properties for Grade 1.4362 (SAF 2304) stainless steel based on steady state tests 5.4.1 Elastic modulus * ' "/(61, 7 1(0/. *> "00BB 2" (003 1B 7 (! Table 28 Elastic modulus at various temperatures for Grade 1.4362 (SAF 2304) stainless steel # 0& 4&& 0&& 5&& + '>5 100 "#/ "B6 "B0 ; " 0#! 0#( 0# 1.00 0.98 Reduction factor 0.96 0.94 0.92 B S E N 10088-1 0.90 0 50 100 150 200 250 300 Temperature C Figure 37 Reduction of elastic modulus with temperature for Grade 1.4362 (SAF 2304) stainless steel 51

52

6 EXISTING ELEVATED TEMPERATURE MATERIAL PROPERTY DATA FOR HIGH STRENGTH STEEL USED FOR VESSELS AND PIPING 6.1 VESSEL STEELS * *> "001BD ")0"D A (D *> "001B ")0"D A " 1 *> "0 01B ")0"D A ( ")0"D A 1D 9G "0 01B ")0" D *> "0 01B A /D *> "0 01B A )D *> "0 01B A 6D >2 % 2 % E * E 4 01J *> "001B E ")0" 6.1.1 BS EN 10 028 Part 2 steels *> "0 01B A 1D - 1# I 2 Table 29 BS EN 10 028 Part 2 alloy steels and equivalent BS 1501 steels, - 4& &0% 0 -C., 47&4 +# 4 +# 0 A())'@ 2 2 "" 3 + #2"0 2 611 2 )") * (0 (" 53

Table 30 Elevated temperature material properties for BS EN 10 028 Part 2 alloy steels #' &10: 7& 4&& 47& 0&& 07& 5&& 57& 6&& A())'@ 60 ("B 1#0 1!0 1)) 1() 1") 100 "B0 O60"00 1#B 1!0 1)) 1/0 110 100 "#0 "6) O"00") 1!B 1)0 1/0 1(0 1"0 "#) "!) ")) Table 31 Elevated temperature material properties for BS EN 10 028 Part 2 steels #' &10: 4&& 47& 0&& 07& 5&& 57& 6&& 67& 7&& 77& 1!" 1) /10 /06 (#B (B# (!/ (6( ()" (/! ("/ 2 O1)!) /01 (B# (B0 (!1 ()/ (/( ((1 (1# (0" 2 O!)")0 (6( (/# (/" ((1 ("0 (0" 1#1 1B# 166 2 1B" 1) /10 /06 (#B (B# (!/ (6( ()" (/! ("/ 2 O1)!) /01 (B# (B0 (!1 ()/ (/( ((1 (1# (0" 2 O!)")0 (6( (/# (/" ((1 ("0 (0" 1#1 1B# 166 2 61" 1) (") (0) 1#" 1B0 166 1)) 1)" 1/) 1(B 11! O1)!) (00 1#0 1!! 16) 1)0 1(B 1(/ 11B 11" 1"" O!)")0 1#0 1B0 16B 1)6 1(# 11! 111 1"! 1"" 10" 6.1.2 BS EN 10 028 Part 3 steels *> "0 01B A (D. (1 ' A())> A())>@ A())>?" 2 E A())>?1 A/60 2 Table 32 BS EN 10 028 Part 3 weldable fine grain normalized steels and equivalent BS 1501 steels, - 4& &0% @ 5, 47&4> +# 4 A())> 11)2/#0?10 A ()) >@ 11) 2 /#0? 10 A ()) >?" 11) 2 /#0? )0 A ()) >?1 11) 2 /#0? )0 A /60 > 2 A /60 >@ 2 A /60 >?" 2 A /60 >?1 2 A()) > E 54

* (( Table 33 Elevated temperature material properties for BS EN 10 028 Part 3 weldable fine grain normalized steels and equivalent BS 1501 steels #' &10: + # 7& 4&& 47& 0&& 07& 5&& 57& 6&& *> "0 01B A () ((6 (0/ 1B/ 1/) 116 1"6 "#6 "6! O()!0 ("( 1#/ 1!) 1/) 116 1"6 "#6 "6! O!0"00 (00 1!) 1)) 1() 1"6 "#6 "!! "/! O"00")0 1B0 1)) 1() 1"6 "#6 "!! ")! "1! ")0" 2 11) 2 "6 2 2 1B/ 1)B 1/0 110 106 "#) O"6/0 2 2 1B/ 1)B 1/0 110 106 "#) O/06( 2 2 1B/ 1)B 1/0 110 106 "#) "00 2 2 16" 1(! 11" 101 "#0 "!# ")0 2 2 1(( 1"1 "#! "B0 "6# "60 *> "0 01B A () 2 /01 (!( ((( ("/ 1#/ 16) 1() O()!0 2 (#1 (6( ((( ("/ 1#/ 16) 1() O!0"00 2 (!( (/( (1/ 1#/ 1!) 1/) 1"6 O"00")0 2 ()( (1/ (0/ 1!) 1)) 116 "#6 ")0" >= 3=;;* A=>4>' ';4* E "001B A / = #(1B A /? = (/ 4 01J /003 Table 34 Elevated temperature material properties for ISO 9328-4 weldable fine grain steels with high proof stress supplied in the normalised or quenched and tempered condition &10: + # 47& 0&& 07& 5&& 57& 6&& A@5A?@ ()) > 1B/ 1/) 116 1"6 "#6 "6! A@5A?@ (#0 > ("/ 1!) 1)) 1/) 1"6 "B6 A@5A?@ /10 > (/0 (0/ 1!) 16) 1() 106 A@5A?@ /60 > (!( ((( ("/ 1#/ 16) 1() 6.1.3 BS EN 10 028 Part 4 steels *> "0 01B A /D -& 6.1.4 BS EN 10 028 Part 5 steels *> "0 01B A )D 55

6.1.5 BS EN 10 028 Part 6 steels *> "0 01B A 6D / () Table 35 Elevated temperature material properties for BS EN 10 028 Part 6 weldable fine grain quenched and tempered steels &10: + # 7& 4&& 47& 0&& 07& 5&& *> "0 01B A ()) C@ (/0 ("0 1B) 160 1() 1") *> "0 01B A /60 C@ //) /1) /0) (B0 (60 (/0 *> "0 01B A )00 C@ /#0 /!0 /)0 /10 /00 (B0 *> "0 01B A 6#0 C@ 6!0 6/) 6") )#) )!) )!0 4 01J (003 E "001B A 6 = #(1B A /? = (6 4 01J /003 Table 36 Elevated temperature material properties for ISO 9328-4 weldable fine grain steels with high proof stress supplied in the normalised or quenched and tempered condition &10: + # 47& 0&& 07& 5&& 57& 6&& A@5A?@ /60 C (6/ (/! ((B (1B (") 1#" A@5A?@ )00 C /") (#B (BB (!# ()/ ((# A@5A?@ ))0 C /66 //# /(# /1# /"( (B! A@5A?@ 610 C )(! )10 )"0 )00 /B" /)( A@5A?@ 6#0 C )B! )!0 )60 ))0 )(0 )00 6.1.6 BS EN 10 028 Part 7 steels *> "0 01B A!D ; ")0" A (D (! 56

Table 37 Elevated temperature material properties for BS 1501 Part 3 corrosion and heat resisting steels &10: 0& 4&& 47& 0&& 07& 5&& 57& 6&& 67& 7&& 77& 8&& 87& 9&& (0/ "" "B0 "1" "0B #B #0 B1!6!/!"!0 6B 6! 2 2 (0/ (" "#) "(1 "10 "0# "00 #( B! B/ B"!#!B!6 2 2 (0/ )" "#) "(1 "10 "0# "00 #( B! B/ B"!#!B!6 2 2 (0/ 6" 1!0 "#6 "6# ")) "/( "() "1# "1( ""# "") ""( ""0 "0B "06 (0# "6 10) "/0 "1B ""6 "0B "00 #/ #" B6 B) B/ B1 2 2 ("0 "6 10) "/0 "1B ""6 "0B "00 #/ #" B6 B) B/ B1 2 2 ("6 "" "#0 "/1 "(0 "10 "0# "0" #6 #0 B! B/ B"!#!B!! ("6 "( "#0 "/1 "(0 "10 "0# "0" #6 #0 B! B/ B"!#!B!! ("6 (" 10) ")) "// "(1 "1" ""( "0! "0" #B #) #1 #0 B# BB ("6 (( 10) ")) "// "(1 "1" ""( "0! "0" #B #) #1 #0 B# BB ("6 )" 10) ")) "// "(1 "1" ""( "0! "0" #B #) #1 #0 B# BB ("6 )( 10) ")) "// "(1 "1" ""( "0! "0" #B #) #1 #0 B# BB ("6 6" 1B0 10/ "!B "6/ ")/ "/6 "/0 "(6 "(1 "1# "16 "1/ "11 ""B ("6 6( 1B0 10/ "!B "6/ ")/ "/6 "/0 "(6 "(1 "1# "16 "1/ "11 ""B (10(" 1"0 "6) ")0 "(! "1B "11 ""! ""1 "0# "0) "01 "00 #! #6 (1" (" 100 ")/ "/# "// "(# "() "1# "1/ ""# ""6 """ "0B "0) "01 (1" )" "!) "1B "1( ""! ""/ ""0 "0) "00 #) #( #0 BB B6 B/ (/! (" 10) "!" "61 ")( "/! "(# "(( "1# "16 "1/ "11 "1" 2 2 (/! )" 10) "!" "61 ")( "/! "(# "(( "1# "16 "1/ "11 "1" 2 2 ("B "( /B0 (60 (() ("0 1#) 1B) 2 2 2 2 2 2 2 2 #0/ "( 110 "!) "6) ")) "/) "() "(0 "1) "10 ""0 "0) 2 2 2 6.1.7 Commentary on vessel steels * E 2 @ ))03 E 7 (003 5,A'@. E 2 01J,A>@. 1003 01J ' 1!" X4X 2 % E,AC@. 6#0 >5 * (003 * /003 57

* 1!" E 7 (B 700 0.2% Proof Strength N/mm 2 600 500 400 300 200 100 271/281 P 355 NH P 460 QH P 690 QH 0 0 50 100 150 200 250 300 350 400 450 500 Temperature C Figure 38 Elevated temperature material properties for a selection of pressure vessel steels 6.2 PIPING STEELS A )? *> "010B 7 (60" 3 (601 3 (60( 3 (60/ 7 (60) @ (601 (60/ 01J (60) "0J (B /0 7 (# 58

Table 38 Elevated temperature material properties for BS 3602 Part 1 pipe steels &10: 0& 7& 4&& 47& 0&& 07& 5&& 57& 6&& 67& )00> (/( ((( ("( 1#" 16! "// 111 10( "BB "!! 4 Table 39 Elevated temperature material properties for BS 3604 pipe steels &10: 0& 7& 4&& 47& 0&& 07& 5&& 57& 6&& 67& 7&& 77& 61#2)#0 (#B (B6 (6( (/B ((/ ((0 (16 (11 ("6 ("" 1#0 1()!61 //B /(1 /06 (BB (!/ (60 (/B (/0 (16 (0# 1B" 1/( )#" 2 2 /11 /"1 /01 (#1 (B1 (!( (/( 2 2 2 0 610 2 2 1B0 1!0 1)B 1/! 11B 1") 1"" 106 2 2 61" 2 2 (") (0) 1#" 1B0 166 1)) 1)" 1/) 2 2 611 2 2 1#1 1B( 1!) 166 160 1)1 1/) 1(" 2 2 Table 40 Elevated temperature material properties for selected BS 3605 pipe steels 41&: 4&& 47& 0&& 07& 5&& 57& 6&& 67& 7&& 77& 8&& 87& (0/ "" "6B ")0 "(! "1B "11 ""6 ""0 "0B 2 2 2 2 (0/ ("5)" "!B "60 "/! "(# "(1 "1) "10 ""! 2 2 2 2 ("6 ""5"( "!! "6" "/# "(# "(( "1! "1( ""# 2 2 2 2 ("6 ("5((5)"5) "B# "!1 ")# ")0 "/( "(! "(( "1# "1) "1" ""# ""6 Min 0.2% Proof Strength N/mm 2 500 450 400 350 300 250 200 B S 3602-500Nb B S 3604-629-590 B S 3604-762 B S 3604-591 150 0 100 200 300 400 500 600 Temperature C Figure 39 Elevated temperature material properties for a selection of pipeline steels 59

60

7 EXISTING MATERIAL PROPERTY DATA AT HIGH STRAIN RATES "#B6 3 * ',3*'. 7 * A ; 9 * * + * + @ + + 3 + * + 3 * >*, > *. "#B02"##B 4?=' "#B02"##B = A Q= M *8A?=+* Q % +M 3 9 + ;, +;. 7.1 STRUCTURAL CARBON STEELS,., 1/021!) >5., (/)2/60 +A. 3 :, *> "001). 3 ' 7 * A "##" /(60 ' )04 "##" /(60 *> "001) 0!"#" %,2 E., /)0+A. 61

7.1.1 Strain rate sensitivity in structural steels 2, 1/) +A. E2 "0 @ 7 /0 2 2 Figure 40 Effects of strain rate on the behaviour of mild steel ; 2 4 = 7 /", + (6 1)0 +A. E, + )"/!60 +A. 62

Dynamic increase factor 1.7 1.6 1.5 1.4 1.3 1.2 1.1 A 36 A514 1 0.001 0.01 0.1 1 10 Strain rate s -1 Figure 41 Dynamic increase factor for yield strength of mild and high strength steel versus strain rate 7.2 COWPER-SYMONDS RELATIONSHIP ; 32 D d " 1 q 4 E 7 E 4R /0 ER),12/J. 4R(00 ER1) )J 3 3 4R6B// ER(#" 4 4 E 63

7 1 + ED t 1)1"0 1 q,+a. 4 E ()) +A!"#"D' /)0 *+ *> "001)D /10 /60 7.3 STAINLESS STEELS A 3 2 4 E E ' (0/ 4R "00 ER"0 ; 9? 3 I ' "//0/,("6?. ' "/(61, 7 1(0/. ' "//61,110). I, 01J. 7 /1 /( 2 "//0/,("6?. "//61,110). 0 10J ε ε ε ε Figure 42 Effect of strain rate on the stress-strain characteristics of grade 1.4404 (316L) 64

ε ε ε ε Figure 43 Effect of strain rate on the stress-strain characteristics of grade 1.4462 (2205) 7 // 2 2 ε ε Figure 44 Typical strain-time curve for a dynamic tensile test on stainless steel 01J "J,* *.,*. *> "00BBD A 1 QM *> "0001D A " *> "0001D A " D S1)"0 * * * SB0"0 "0J 65

7 01J * @ D dyn y,2 SR. 0.2 /",G. 2 01J Table 41 Strain rate enhancement factor, (K SR ) 0.2 4166&6 548) 416580 05&6 416680 00&7 @ D @ D @ D 017&E4& 4 017&E4& 4 017&E4& 4 F; F; F; B6("0 "0/ ))0"0 "01 ))("0 "01 "!B"0 "0! """"0 "0( ""1"0 "0( BB0"0 ""( 0" "0! 0"1 "0#!/1 "1B )(# "") 6/B ""B 3 2,!1. 7 /) 01J 32 ("6? 71(0/ 110) 0.2% Proof stress 800 750 700 650 600 550 500 450 400 350 300 250 0.0001 0.001 0.01 0.1 1 10 Strain rate s -1 316 S AF 2304 2205 D=240s -1; q=4.74 D=3489s -1; q=5.77 D=5958s - 1;q=6.36 Figure 45 Variation of 0.2% proof stress with strain rate and the Cowper-Symonds relationship which best describe the effect for 316L, SAF22304 and 2205 stainless steels 66

32 4 E E /1 ("6? 0"J Table 42 Cowper - Symonds constants for stainless steels? C /!" )!6 16( 01J 1/0 /!/ 1!! 7 1(0/ 0"J 110 6(),. 1)" /0/,. )"6 01J (/B# )!! )1! 110),("B. 0"J!6# )"( )// 01J )#)B 6(6 )!) /( // G 0"J 01J "J,,G.,G.,G.. 2 : G,,G.. 2 9 /( // H 2 2 2,>?7*. 7 /6 H 2 σ σ Figure 46 Linearized stress strain curve allowing for strain rate effects 67

Table 7.3 Strain rate enhancement for 0.1%, 0.2% and 1.0 % proof strengths D D D "//0/,("6?. "/(61,1(0/. "//61,110). 00000 16# 0#( 1!6 0#1 ("6 0#/ 000"! 1B! 0## 1#6 0## ((1 0## 0001) 1#" "00 (00 "00 (() "00 000B6 (0/ "0/ ("( "0/ (/6 "0( 00"!B ("" "0! (1" "0! ()1 "0) 00BB0 (1! ""1 ((B ""( (66 "0#!/100 (!1 "1B (B) "1B /0/ "1" "(B20/ )1) 0#! )/B 0#6 6") 0#! 00000 )(6 0## )61 0#B 616 0## 0001) )/( "00 )!1 "00 6(/ "00 000)) )/# "0" )B" "01 6/" "0" 00""" ))) "01 )BB "0( 6/! "01 0"000 )!1 "0) 6"( "0! 666 "0) )(#00 60/ """ 6)6 "")!00 ""0 00000 )6) 0#) )#6 0#) 6B0 0#6 0001/ )#" "00 61! "00!0) "00 0001) )#1 "00 61! "00!0) "00 000)) 60" "01 6(B "01!") "0" 00""1 6"0 "0( 6/B "0(!1( "0( 0"1(0 6(# "0B 6B1 "0#!)" "0! 6/B00 6BB ""6!(! ""B!#! ""( "//0/,("6?. "/(61,1(0/. "//61,110). Table 44 Strain rate enhancement for ultimate tensile strength D )G 8& : 0000( )#! 0#! )B! 000B0 6") "00 2 00")# 6"# "0" /#( 00#6( 61B "01 )0( 0"!#0 6(1 "0( )00 "!000 6// "0) )"0 1"1000 6)B "0! )1! 0000(!(# 0#B (60 000B0!)/ "00 2 00"66!)B "0" 1B0 00#)/!66 "01 160 0"B10!6# "01 1#! "!!00!!# "0( 1#0 "6!000!#0 "0) (0! 0000( B"( 0#! (/( 000B0 B/" "00 2 00"61 B/! "0" 1#0 00#/# B61 "0( 1#( 0"B"0 B6! "0( (00 "!600 BB! "0) (00 ")6000 #0) "0B 1B( 68

8 NEW ELEVATED TEMPERATURE MATERIAL PROPERTY FOR BS 7191 GRADE 355EM(Z) AND 450EM(Z) STEELS!"#"D ())*+,-. /)0*+,-. )#)0DA B 8.1 MATERIAL AND SPECIMEN PREPARATION D!"#"D()) *+,-. 2!"#"D/)0*+,-. E 3 ())*+,-. "1 (0 60 2 "") 3 /)0*+,-. "0 /0 60 3 7 "0 /0 60 2 E 8.2 TEST PROGRAMME *> "0001DA " H * 3 3 > @ *> "0001DA ), 5 01J. "0 35 69

)26J LL,. 8.3 RESULTS AND DISCUSSION FOR GRADE 355EM(Z) STEEL /" 7 /! )0 2 6J 8.3.1 Strength factors vs temperature 7 I 7,. 01J 7 0) )0J /1 /) 7 )" )/ 0)J ")J 10J 2 @ "0J (0J )0J )J 7 /! )0 4 )J 7 )) 0)J 10J )J /6 7 )6 : /6 6( "1 +3; /) 7 /! 10 10 "1 "0J 10 70

8.3.2 Comparison of strength factors with existing data in BS 5950: Part 8 )#)0DA B 7 )! /(60D' /( )0 +3; 8.3.3 Stress strain relationships 7 7 )B 6"!00 3 /! )0 7 7 +3; 10 8.4 RESULTS AND DISCUSSION FOR GRADE 450EM(Z) STEEL )" 7 61 6/ 2 6J 8.4.1 Strength factors vs temperature 7 I 7,. 01J 7 0)J )J )1 )/ 7 6) 6! 7 0)J ")J 10J 2 @ "0J (0J )0J )J 7 61 6/ 4 )J "0 6 "6 7 /0 60 /") 71

>5 1) S!) )0 @ 0)J 10J )0J 7 6B /0 60 7 1J 6J /0 60 /0 60 7 6# )) 8.4.2 Comparison of strength factors with existing data in BS 5950: Part 8 7!0,. )#)0D A B /(60 ' /( )0 = ' /)0 /( )0 6)03 ' /)0 8.4.3 Stress strain relationships 7 7!"!(!003 )6 )B 7 /0 60 ' /)0 1) S!) 7!/ )# 8.5 CONCLUSIONS!"#"D' ())*+,-. +3;!"#"D'/)0*+,-. E D 8.5.1 355 EM(Z) steel. 1003!00 3 7 6(. "1 +3; E 10 7 10 +3; "0J 72

. +3; )#)0DA B.!00 3 8.5.2 450 EM(Z) steel.!003 9 01J. /0 60 ' /)0 1) S!). = 2 )#)0D A B ' /)0 E.!003 /0 60 1) S!) 73

Table 41 Ambient temperature tensile properties of the plates supplied &10: # - : "1!"# /0B ()) )1/ /602610 1! 10 (0!"# (B/ (/) )"! /602610 (! 10 60!"# (#1 (/0 /## /602610 (# 10 "1!$%&'# /"# ()) )0/ /602610 (0 10 Table 42 Strength factors at various critical strains for Grade 355EM(Z), 12mm plate (Normalised) # ( H &17: 41&: 417: 01&: 51&: 71&: 10 0#BB 0#BB 0#B# 0#B# 0##( "0#" )0 0#"0 0#/( 0#)( 0#)) 0##" "0)0 "00 0B11 0B)) 0B60 0B!/ 0#B0 "0)0 ")0 0B0) 0B0! 0B"0 0B6) 0#6) "0)0 100 0!)) 0!!) 0!#( 0B)/ 0#)) "0)0 1)0 06#B 0!)0 0!B0 0B/! 0#)0 "0)0 (00 06(# 0!10 0!B( 0B/0 0#/) "0/) ()0 06"! 0!"1 0!)( 0B"B 0#(0 "0(( /00 0)!) 0661 0!1B 0!B6 0B#0 "00) /)0 0)16 060! 06)( 0!0( 0!!6 0BB! )00 0/)B 0)11 0)6) 0)#! 06() 06B1 ))0 0(6/ 0/"# 0//# 0/!1 0)0( 0)/! 600 016! 0(0! 0((" 0(/# 0(!( 0(#) 6)0 0"B6 01"6 01(" 01/1 01)# 01!B!00 0""! 0"/1 0")# 0"!0 0"!# 0"#1 74

Table 43 Strength factors at various critical strains for Grade 355EM(Z), 30mm plate (Normalised) # ( H &17: 41&: 417: 01&: 51&: 71&: 10 "000 "000 "000 "000 "01( ""61 )0 0#/B 0#)! 0#61 0#61 "0"0 """) "00 0#"( 0#1/ 0#1) 0#1! 0##) ""0" ")0 0B/) 0B)B 0B)! 0#"1 0##) "0## 100 0!B/ 0!#B 0B0/ 0#0B 0##) "0#/ 1)0 0!10 0!B/ 0B0! 0B#! 0#B0 "0#1 (00 06!! 0!)B 0B"0 0B!! 0#)) "0B0 ()0 06/" 0!(1 0!B) 0B/B 0#() "0!) /00 060# 06#0 0!)" 0B01 0B#/ "0)) /)0 0)6) 06() 06B! 0!(" 0B0! 0#1B )00 0/#! 0)6" 0601 06(1 06!/ 0!1( ))0 0(#6 0/)1 0/B6 0)0B 0)(B 0)!B 600 01B/ 0((0 0()B 0(!) 0(#) 0/1/ 6)0 0"!B 01"( 01(/ 01/# 01!/ 0(00!00 0"0( 0"(1 0"/6 0")) 0"6B 0"B" Table 44 Strength factors at various critical strains for Grade 355EM(Z), 60mm plate (Normalised) # ( H &17: 41&: 417: 01&: 51&: 71&: 10 0#!) 0#!) 0#!) 0#!) "0/B ""!1 )0 0#"" 0#"B 0#(" 0#/0 0##0 ""!0 "00 0B/( 0B)B 0B61 0B6) 0#B1 ""!0 ")0 0!!) 0!B) 0!#B 0B/B 0#6# ""6# 100 0!"0 0!"! 0!6) 0B(( 0#6" ""6B 1)0 06)0 06#) 0!)B 0B1/ 0#)/ ""6) (00 0601 06#0 0!)0 0B") 0#/) ""60 ()0 0)!/ 06!1 0!1# 0!B# 0#") ""(" /00 0))! 06(6 06#B 0!60 0B!) ""00 /)0 0)11 0)#( 06/1 06B) 0!6( 0BB/ )00 0/)# 0)"" 0)/B 0)6# 061) 06B0 ))0 0(!B 0/1( 0/)0 0/!0 0)00 0)/0 600 01!0 0("1 0((/ 0(/# 0(!( 0/0/ 6)0 0"!# 0106 011) 01(B 01)B 01!(!00 0"0/ 0"1( 0"(B 0")0 0"61 0"!B 75

Table 45 Strength factors at various critical strains for Grade 355EM(Z), 12mm plate (TMCR) # ( H &17: 41&: 417: 01&: 51&: 71&: 10 0#B0 0#B1 0#B6 0##0 0##0 "0B0 )0 0)10 0#)! 0#)# 0#60 0#6" "0)0 "00 0#(B 0#/( 0#// 0#/) 0#/6 "0)0 ")0 0#"B 0#1" 0#1" 0#11 0#/0 "0)0 100 0BBB 0B#" 0B#/ 0B#6 0#(/ "0)0 1)0 0B0B 0B/! 0B!1 0B#/ 0#(0 "0() (00 0!"B 0!#1 0B/1 0B!0 0#1! "010 ()0 06#0 0!60 0B11 0B)) 0#"1 "00) /00 0666 0!(/ 0!B) 0B16 0BBB 0##0 /)0 06") 06B/ 0!1# 0!66 0B"! 0B#6 )00 0)1# 060/ 06/0 066# 0!00 0!/) ))0 0/"6 0/6( 0/#/ 0)10 0))6 0)#) 600 0((1 0(60 0(!B 0(#( 0/"0 0/(0 6)0 016/ 01B# 0(00 0(0B 0(11 0(((!00 0"#! 01"6 011) 01(1 01/" 01)6 Table 46 Strength factors for Grade 355EM(Z), (Normalised) applicable to plates up to 63mm # ( H &17: 41&: 417: 01&: 51&: 71&: 10 0#!) 0#!) 0#!) 0#!) 0##( "0#" )0 0#"0 0#"B 0#(" 0#/0 0##0 "0)0 "00 0B11 0B)) 0B60 0B6) 0#B0 "0)0 ")0 0!!) 0!B) 0B"0 0B/B 0#6) "0)0 100 0!"0 0!"! 0!6) 0B(( 0#)) "0)0 1)0 06)0 06#) 0!)B 0B1/ 0#)0 "0)0 (00 0601 06#0 0!)0 0B") 0#/) "0/) ()0 0)!/ 06!1 0!1# 0!B# 0#") "0(( /00 0))! 06(6 06#B 0!60 0B!) "00) /)0 0)11 0)#( 06/1 06B) 0!6( 0BB/ )00 0/)B 0)"" 0)/B 0)6# 061) 06B0 ))0 0(6/ 0/"# 0//# 0/!0 0)00 0)/0 600 016! 0(0! 0((" 0(/# 0(!( 0(#) 6)0 0"!B 0106 01(" 01(B 01)B 01!(!00 0"0( 0"1( 0"(B 0")0 0"61 0"B" 76

Table 47 Stress strain data from transient tests for Grade 355 EM(Z), 12 mm plate (Normalised) I. : 0& 4&& 0&& 5&& 6&& 67& 7&& 77& 8&& 87& 9&& 0000 00 00 00 00 00 00 00 00 00 00 00 00!B 2 2 2 2 2 2 2 2 2 2 "6! 00B! 2 2 2 2 2 2 2 2 2 ((! 2 00#1 2 2 2 2 2 2 2 2 )B6 2 2 00#6 2 2 2 2 2 "16! "06) B"! 2 2 2 0"00 2 2 2 2 "/)6 2 2 2 2 2 "#) 0"1( 2 2 2 10/" 2 2 2 2 2 2 2 0"1) 2 2 2 2 ")"6 "(!! "")/ #"1 6)! /0) 1"! 0"(" 2 2 1)1" 2 2 2 2 2 2 2 2 0"(# 2 1!6# 2 2 2 2 2 2 2 2 2 0")0 2 2 1)B/ 10#) ")66 "/(B "11) #6#!"0 /// 1(6 0"!" ())0 2 2 2 2 2 2 2 2 2 2 0"!) ()0! 1#/! 16"6 1"1( "6"1 "/#" "1B) "0")!/6 /!1 1)/ 0100 ()0! 1#!B 16(/ 1"// "6)/ ")(! "((B "0)"!!0 /#! 1!" 011) ()0! 1##( 16/) 1")B "6#( ")B0 "(BB "0!#!#1 )"B 1B! 01)0 ()0! (000 16)1 1"6# "!(1 "611 "/1! ""0/ B0# )/0 (01 01!) ()0! (000 16)) 1"B0 "!6B "6)B "/)6 ""1) B1! ))! ("6 0(00 ()0! (000 16)# 1"#0 "B0( "6#0 "/B0 ""/! B/) )!) ((0 0()0 ()0! (00( 166( 110B "B!" "!)0 ")1! ""B6 B!! 60/ ()) 0/00 ()0! (00! 1666 1111 "#() "!#6 ")66 "11) #0) 61) (!6 0/)0 ()0! (0"0 16!( 11(! "##1 "B() ")#B "160 #(0 6/( (#B 0)00 ()0! (0"/ 16B0 116B 10/" "B6! "616 "1#1 #/B 660 /") 0600 ()0! (0"B 16#" 1(1# 1"1( "#() "6!# "()( #B( 6B# /// 0!00 ()0! (01) 1!0) 1(B6 1"#0 "### "!1# "(## "0")!"/ /61 0B00 ()0! (01B 1!"# 1//1 11/! 10)) "!!) "/(/ "0//!() /!6 0#00 ()0! (0(1 1!(/ 1/#6 1(00 1"0# "B"B "/6( "06#!)( /#0 "000 ()0! (0() 1!)" 1)/) 1()0 1")) "B)( "/B! "0#0!6! )0/ "1)0 ()"" (0/1 1!B! 1666 1/!" 11)/ "#() ")// ""/0!#) )(6 ")00 ()"" (0)( 1B") 1!B0 1)B/ 1(/" 1006 ")#/ ""!) B10 )6/ "!)0 ()"" (0!B 1#(1 1BB( 16#" 1/10 10!0 "6(! "10! B/" )B6 1000 ()"" ("0( (0(1 1#B1 1!#0 1/#6 1""# "6!6 "1(# B)# 60/ 1)00 ()") (1#/ (110 ("!/ 1#B1 16(/ 1"#/ "!/0 "1#1 BBB 61" (000 ()") (/!# ((#0 (()) ("60 1!)) 11)/ "!B6 "(1/ #"1 6() ("00 ()"B 2 2 2 2 2 2 2 2 2 2 (100 ())0 2 2 2 2 2 2 2 2 2 2 ()00 (6/1 (60( (/#! (/#! ((0# 1B!6 1("" "B(1 "(/# #(! 6)0 /000 (!6( (!1B ()#( (6"0 (/// 1#!) 1(6" "B!" "(6! #)# 66 )000 (B!( (!1B (!1B (!"0 ()6B ("/# 1/1" "#/1 "/01 #B! 6B1 77

Table 48 Stress strain data from transient tests for Grade 355 EM(Z), 30 mm plate (Normalised) I. : 0& 4&& 0&& 5&& 6&& 67& 7&& 77& 8&& 87& 9&& ( ( ( ( ( ( ( ( ( ( )* + ( ( ( ( ( ( ( ( (, ( - ( ( ( ( ( ( ( ( ( ( * ( ( ( ( ( ( ( ** ( ( (,- ( ( ( ( ( ( * ( ( ( (,* ( ( ( ( ( )), ( ( ( ( ( ( ( ( ( ( ( (,-, + )+, ( ( ( ( - ( ( ( ( ( ( ( ( ( *+ ( ( ( ( ( ( ( + ( ( ( ( ( ( ( ( ( ( ( - ( ( ( ( ( ( ( ( ( ( ( ( +* -*- ++, ), - ( *,, ), ), ) -- ) + ( ( ( ( ( ( ( ( ( ( ( + )- ( ( ( ( ( ( ( ( ( ( ( *- ),*,- +* )+), - --, - )--), -, *, +++ -* ) -+, (,,- *+ * --, + * -** +) (, +*,- *, - -* *) * ) ( ) +, )*,* ) * *- *) ) ( ) +, ),-, -, * *++ ),) ) ( )+ +-+ )*,* *-+ +,-, ) - ( ), + ), ** +- )*,) * )* - ( )+ +, ), +, +* )),,+, )- ( ) ))+,-, )++,* +- ) + ( )+, )+) + - ) - +- )* ( )*- -) - + * -+ + +) - * ( )*- * *+) -,- * +, -*, ( )** ) + )) -,, * - * -)+ ( )** ) + )*,,), ), ) - ( ), +) )+ -, *- +,- ) -*) ( ), - *-), ) + ) * - + ( (, ( ( ( ( ( ( ( ( ( ), ))+,), +*- - )+ * *) ( ),* ))) )+ + * ),- *, ) ( ),* ), )+-,, + + ** )),-, + ( ) ( ( ( ( ( ( ( ( ( ( )) ( ( ( ( ( ( ( ( ( *) )--) ( ( ( ( ( ( ( ( ( ( ) ), )-)) )-)) ), )*- *- ) *+ )+),- * ) )+,* ), )- )-+ ))), ),) ),,+,, - )*+ ), )+ ), )) ), -,) -*,,- + -, ),* )- )+ )+- ) -,-,,- -+) ) +- 78

Table 49 Stress strain data derived from transient tests for Grade 355 EM(Z), 60 mm plate (Normalised) I. : 0& 4&& 0&& 5&& 6&& 67& 7&& 77& 8&& 87& 9&& 79

Table 50! "" #$%& ' ($) I. : 0& 4&& 0&& 07& 5&& 6&& 67& 7&& 77& 8&& 87& 9&& 80

Table 51 *+, -.! " #$% ' &10: # - : "0 /B/ )6/ 1B /0 /!B ))( 10 60 //B) )// (" Table 52 Strength factors v temperature at various critical strains for 10 mm Grade 450 EMZ plate # ( H &17: 41&: 417: 01&: 51&: 71&: 10 "00/ "010 "0/! "06/ ""00 ""/1 )0 0##" "0") "0(0 "0/! "0)0 "0)0 "00 0#!B "0"" "010 "0(0 "0)0 "0)0 ")0 0#60 "00/ "0"B "01B "0)0 "0)0 100 0#)" "000 "0") "01) "0)0 "0)0 1)0 0#(0 0##) "0"0 "010 "0)0 "0)0 (00 0#"( 0#B6 "000 "0"0 "0)0 "0)0 ()0 0B#/ 0#60 0#!) 0##0 "0)0 "0)0 /00 0B)" 0#11 0#)) 0#!) "00) "0)0 /)0 0!#) 0B6" 0BB( 0#00 0#16 0#/) )00 06## 0!6) 0!B/ 0B00 0B"/ 0B(0 ))0 0))! 061! 06)6 06!0 06B! 0!0B 600 0/06 0/6B 0/#) 0)0B 0)1! 0))0 6)0 01)! 0(0# 0((( 0()0 0(!) 0(#1!00 0"// 0"!6 0"#/ 01"0 0116 01)0 81

Table 53 Strength factors v temperature at various critical strains for 40 mm Grade 450 EMZ plate # ( H &17: 41&: 417: 01&: 51&: 71&: 10 "0"0 "0)( "0)B "0)B ""0B ""!/ )0 0#60 "001 "00! "0(0 "0#/ ""00 "00 0#)" 0#60 0#6) "00) "0B0 ""00 ")0 0#/6 0#)) 0#61 0##0 "0!) ""00 100 0#(( 0#)" 0#6" 0#B0 "0!0 ""00 1)0 0#10 0#/6 0#)/ 0#!) "0)/ ""00 (00 0#0) 0#/0 0#)" 0#!0 "0/" ""00 ()0 0B!B 0#1! 0#/! 0#6) "010 ""00 /00 0B"! 0#0( 0#(( 0#)( 0#B) "0!B /)0 0!)/ 0B/( 0BB6 0#0B 0#(6 0#)# )00 06!1 0!/! 0!!B 0B06 0B1( 0B/0 ))0 0)!/ 06(6 06!" 06#0 0!0) 0!"! 600 0/)( 0)0( 0)(1 0))0 0)6( 0)B( 6)0 0(0! 0()# 0(B1 0(#) 0/"" 0/(0!00 0")! 010" 01"6 011B 01/# 01B0 Table 54 Strength factors v temperature at various critical strains for 60 mm Grade 450 EMZ plate # ( H &17: 41&: 417: 01&: 51&: 71&: 10 "000 "000 "000 "006 "0!) ""/6 )0 0#!" 0#!" 0#!" "00( "0!( ""00 "00 0#/( 0#/( 0#/( "000 "0!0 ""00 ")0 0#1B 0#1! 0#1B 0##! "06B ""00 100 0#"0 0#1( 0#1) 0##/ "06) ""00 1)0 0B#" 0#10 0#1( 0##0 "061 ""00 (00 0B6/ 0#0B 0#10 0#B1 "060 ""00 ()0 0B(6 0B#1 0#"/ 0#!0 "0/# "0B1 /00 0B0) 0B66 0B#B 0#)6 "011 "0)) /)0 0!)1 0B(0 0B61 0B#0 0#/0 "0"0 )00 06B) 0!)) 0!B0 0!## 0B(1 0B6# ))0 0)#/ 06)" 06!1 06B6 0!0! 0!(0 600 0/6" 0)"0 0)1! 0)/0 0))B 0)B" 6)0 0(11 0(!1 0(B# 0/00 0/") 0/(#!00 0"#0 011) 01/1 01)6 01!" 01B# 82

Table 55 Strength factors at various critical strains for Grade 450 EMZ, combined data from 40 mm and 60 mm plates for thickness range 25 mm < T 75 mm # ( H &17: 41&: 417: 01&: 51&: 71&: 10 "000 "000 "000 "006 "0!) ""/6 )0 0#!" 0#!" 0#!" "00( "0!( ""00 "00 0#/( 0#/( 0#/( "000 "0!0 ""00 ")0 0#1B 0#1! 0#1B 0##! "06B ""00 100 0#"0 0#1( 0#1) 0##/ "06) ""00 1)0 0B#" 0#10 0#1( 0##0 "061 ""00 (00 0B6/ 0#0B 0#10 0#B1 "060 ""00 ()0 0B(6 0B#1 0#"/ 0#!0 "0/# "0B1 /00 0B0) 0B66 0B#B 0#)6 "011 "0)) /)0 0!)/ 0B/( 0BB6 0#0B 0#(6 0#)# )00 06!1 0!/! 0!!B 0B06 0B1( 0B/0 ))0 0)!/ 06(6 06!" 06#0 0!0) 0!"! 600 0/)( 0)0( 0)(1 0))0 0)6( 0)B( 6)0 0(0! 0()# 0(B1 0(#) 0/"" 0/(0!00 0")! 010" 01"6 011B 01/# 01B0 83

Table 56 Stress strain data derived from transient tests for Grade 450 EM(Z), 10mm plate I. : 0& 4&& 0&& 5&& 6&& 67& 7&& 77& 8&& 87& 9&& 84

Table 57 Stress strain data derived from transient tests for Grade 450 EM(Z), 40mm plate. : 0& 4&& 0&& 5&& 6&& 67& 7&& 77& 8&& 87& 9&& 85

Table 58 Stress strain data derived from transient tests for Grade 450 EM(Z), 60mm plate. : 0& 4&& 0&& 5&& 6&& 67& 7&& 77& 8&& 87& 9&& 86

Table 59 Stress strain data for Grade 450 EM(Z), for plate thickness range 25mm < t 75mm derived from transient tests 0000 00 00 00 00 00 00 00 00 00 00 00 00B1 2 2 2 2 2 2 2 2 2 2 1(! 0"00 2 2 2 2 2 2 2 2 2 2 1)! 0"(# 2 2 2 2 2 2 2 2 2 )60 2 0")0 2 2 2 2 2 2 2 2 2 6/( ((1 0")6 2 2 2 2 2 2 2 2 "0!# 2 2 0")! 2 2 2 2 2 2 10)/ "6"# 2 2 2 0")# 2 2 2 2 2 11B( 2 2 2 2 2 0"6# 2 2 2 1BBB 2 2 2 2 2 2 2 0"!1 2 2 2 2 1)(1 2 2 2 2 2 2 0"!) 2 2 2 2 2 1(B6 1""! "!6/ "166!!6 (6) 0"!! 2 2 2 2 2 2 2 2 2 2 2 0"B0 2 ()#B ((!0 2 2 2 2 2 2 2 2 0100 /")0 (6// (/") 1##6 16)6 1/#0 1110 "B6B "(#0 B/! (#/ 011) /")0 (6#/ (/6) (0!) 1!(# 1)!! 11#" "#)# "/!( #"! /1! 01)0 2 (!(# ()0! (")0 1B"0 16)6 1(6" 10(/ ")/B #!) //B 01!) 2 (!B" ()/B (110 1B!6 1!1! 1/1/ 10#1 "6"0 "01# /!! 0(00 2 (B"0 ()B6 (1!# 1#(B 1!B# 1/!B 1"(! "660 "0!) )01 0()0 2 (B/! (660 ((B1 (0)/ 1B#! 1)6# 1110 "!/( ""/" )// 0/00 2 (BB0 (!(" (/6# ("61 1#BB 16)6 11#" "B0" ""#) )B" 0/)0 (#0) (!)6 ()(6 (1)B (06( 1!1! 1(/) "B/! "1/" 6"B 0)00 /")0 (#"( (!!! ()B6 ((/" ("1# 1!B# 1(B1 "BB0 "1!/ 6)1 0600 2 (#"B (B06 (6/B (/") (1(! 1BBB 1/// "#(B "(1B!"/ 0!00 2 2 (B"B (6B) (/6# ((10 1#6( 1/#B "#B/ "(!B!)) 0B00 2 2 (B11 (!"/ ()") ((#" (01" 1))1 101) "/"#!B# 0#00 2 2 (B16 (!/( ())! (//# (06! 1)#B 10)B "/)! B"( "000 /")0 (#"B (B(0 (!6B ()#/ (/#B ("00 16(# 10B! "/#0 B(/ "1)0 2 2 (B(# (B0" (66/ (601 ("!" 1!"B 1")B ")/B B!1 ")00 /")0 (#11 (B(# (B"B (!1! (6!! (11# 1!B) 110B ")B) B#6 "!)0 /")0 /0/6 /016 (#B/ (B16 (!1! (1!# 1B(0 11/# "6"# #1" 1000 /"!0 /")0 /"1) /0!) (#6! (!6B ((10 1B6/ 11B( "6(# #/6 1"00 /1!0 2 2 2 2 2 2 2 2 2 2 1)00 /(!0 2 2 /1(! /"1" (B(# ((!/ 1#0) 1("1 "6!! ##6 (000 //60 ///" //10 /(## /1/" (BB/ (/") 1#16 1((6 "!06 "0(( /000 /6(0 /)6) /)// //#0 /((! (#(B (/)( 1#)) 1(B1 "!)) ""0/ )000 /!)0 /)6) /)6) /)6) /(!B (#B0 (/B6 1#!6 1/"# "!B) ""60 87

Total Strain % 6 5 4 3 2 SR = 0.10 SR = 0.15 SR = 0.20 SR = 0.30 SR = 0.40 SR = 0.50 SR = 0.60 SR = 0.70 SR = 0.80 SR = 0.95 SR = 1.00 1 0 0 100 200 300 400 500 600 700 800 Temperature ( o C) Figure 47 Elevated temperature transient tests, Grade 355 EM(Z) 12 mm plate (Normalised) Total Strain % 6 5 4 3 2 SR = 0.07 SR = 0.1 SR = 0.15 SR = 0.2 SR = 0.3 SR = 0.4 SR = 0.5 SR = 0.6 SR = 0.7 SR = 0.8 SR = 0.91 SR = 0.96 SR = 1.052 SR = 1.101 1 0 0 100 200 300 400 500 600 700 800 Temperature ( o C) Figure 48 Elevated temperature transient tests, Grade 355 EM(Z) 30 mm plate (Normalised) 88

Total Strain % 6 5 4 3 2 SR = 0.07 SR = 0.10 SR = 0.15 SR = 0.20 SR = 0.30 SR = 0.40 SR = 0.50 SR = 0.60 SR = 0.70 SR = 0.80 SR = 0.96 SR = 1.178 SR = 1.106 SR = 1.080 1 0 0 100 200 300 400 500 600 700 800 Temperature ( o C) Figure 49 Elevated temperature transient tests, Grade 355 EM(Z) 60 mm plate (Normalised) Total Strain % 6 5 4 3 2 SR = 0.10 SR = 0.15 SR = 0.175 SR = 0.20 SR = 0.25 SR = 0.30 SR = 0.40 SR = 0.50 SR = 0.60 SR = 0.70 SR = 0.80 SR = 0.90 SR = 0.95 SR = 0.991 1 0 0 100 200 300 400 500 600 700 800 Temperature ( o C) Figure 50 Elevated temperature transient tests, Grade 355 EM(Z) 12 mm plate (TMCR) 89

1.2 1 Strength Factor 0.8 0.6 0.4 0.2 0.5% 1.0% 1.5% 2.0% 3.0% 5.0% 0 0 100 200 300 400 500 600 700 Temperature ( o C) Figure 51 Strength factors v temperature at various critical strains for 12 mm Grade 355 EMZ plate (Normalised) 1.2 1.0 Strength Factor 0.8 0.6 0.4 0.2 0.5% 1.0% 1.5% 2.0% 3.0% 5.0% 0.0 0 100 200 300 400 500 600 700 Temperature ( o C) Figure 52 Strength factors v temperature at various critical strains for 30 mm Grade 355 EMZ plate (Normalised) 90

1.2 1 Strength Factor 0.8 0.6 0.4 0.2 0.5% 1.0% 1.5% 2.0% 3.0% 5.0% 0 0 100 200 300 400 500 600 700 Temperature ( o C) Figure 53 Strength factors v temperature at various critical strains for 60 mm Grade 355 EMZ plate (Normalised) 1.2 1.0 Strength Factor 0.8 0.6 0.4 0.2 0.5% 1.0% 1.5% 2.0% 3.0% 5.0% 0.0 0 100 200 300 400 500 600 700 Temperature ( o C) Figure 54 Strength factors v temperature at various critical strains for 12 mm Grade 355 EMZ plate (TMCR) 91

1.2 1 Srength Factor 0.8 0.6 0.4 0.2 0 0.5% (12 mm) 2.0% (12 mm) 5.0% (12 mm) 0.5% (30 mm) 2.0% (30 mm) 5.0% (30 mm) 0.5% (60 mm) 2.0% (60 mm) 5.0% (60 mm) 0 100 200 300 400 500 600 700 Temperature ( o C) Figure 55 ( 40/ 5& 8& 1.2 1 Strength Factor 0.8 0.6 0.4 0.2 0 0.5% 1.0% 1.5% 2.0% 3.0% 5.0% 0 100 200 300 400 500 600 700 Temperature o C Figure 56Strength factors at elevated temperatures for Grade 355 EM)Z) Normalised plates up to 63mm 92