Orthogonal polynomials



Σχετικά έγγραφα
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

Oscillatory integrals

Solve the difference equation

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Homework for 1/27 Due 2/5

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Solutions_3. 1 Exercise Exercise January 26, 2017

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

C.S. 430 Assignment 6, Sample Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Areas and Lengths in Polar Coordinates

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics


3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Ψηφιακή Επεξεργασία Εικόνας

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

2 Composition. Invertible Mappings

Bessel function for complex variable

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Presentation of complex number in Cartesian and polar coordinate system

1. Matrix Algebra and Linear Economic Models

Example Sheet 3 Solutions

Math221: HW# 1 solutions

CRASH COURSE IN PRECALCULUS

Fractional Colorings and Zykov Products of graphs

Second Order Partial Differential Equations

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

4.6 Autoregressive Moving Average Model ARMA(1,1)

On Generating Relations of Some Triple. Hypergeometric Functions

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

The Neutrix Product of the Distributions r. x λ

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Tridiagonal matrices. Gérard MEURANT. October, 2008

Areas and Lengths in Polar Coordinates

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Other Test Constructions: Likelihood Ratio & Bayes Tests

EE512: Error Control Coding

Solutions: Homework 3

Srednicki Chapter 55

Finite Field Problems: Solutions

Section 8.3 Trigonometric Equations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Lecture 5: Numerical Integration

Congruence Classes of Invertible Matrices of Order 3 over F 2

derivation of the Laplacian from rectangular to spherical coordinates

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

A study on generalized absolute summability factors for a triangular matrix

Homework 4.1 Solutions Math 5110/6830

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

INTEGRAL INEQUALITY REGARDING r-convex AND

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials

Antonis Tsolomitis Laboratory of Digital Typography and Mathematical Software Department of Mathematics University of the Aegean

On Inclusion Relation of Absolute Summability

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Degenerate Perturbation Theory

Some definite integrals connected with Gauss s sums

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

SPECIAL FUNCTIONS and POLYNOMIALS

The Heisenberg Uncertainty Principle

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

1. Introduction and Preliminaries.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Homework 3 Solutions

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Every set of first-order formulas is equivalent to an independent set

Section 7.6 Double and Half Angle Formulas

ST5224: Advanced Statistical Theory II

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Solution Series 9. i=1 x i and i=1 x i.

Homework 8 Model Solution Section

α β

B.A. (PROGRAMME) 1 YEAR

Solution to Review Problems for Midterm III

The Simply Typed Lambda Calculus

Differentiation exercise show differential equation

Φύλλο1. ΠΕΡΙΟΧΗ ΠΡΟΣΛΗΨΗΣ ΑΒΡΑΜΙΔΟΥ ΜΑΡΙΚΑ ΔΗΜΗΤΡΙΟΣ Γ Αθηνών ΑΒΡΑΜΙΔΟΥ ΣΟΦΙΑ ΔΗΜΗΤΡΙΟΣ Λασίθι ΑΓΓΕΛΗ ΑΝΔΡΟΜΑΧΗ ΒΑΣΙΛΕΙΟΣ

ΠΑΥΛΙΝΑ ΠΕ11 25,5 ΚΑΒΑΛΑΣ ΑΝΑΤ. ΑΤΤΙΚΗ

F19MC2 Solutions 9 Complex Analysis

Probability and Random Processes (Part II)

The Normal and Lognormal Distributions

Transcript:

Orthogol polyomils We strt with Defiitio. A sequece of polyomils {p x} with degree[p x] for ech is clled orthogol with respect to the weight fuctio wx o the itervl, b with < b if { b, m wxp m xp x dx h δ m with δ m :, m. The weight fuctio wx should be cotiuous d positive o, b such tht the momets exist. The the itegrl µ : f, g : wx x dx,,,,... wxfxgx dx deotes ier product of the polyomils f d g. The itervl, b is clled the itervl of orthogolity. This itervl eeds ot to be fiite. If h for ech {,,,...} the sequece of polyomils is clled orthoorml, d if p x k x + lower order terms with k for ech {,,,...} the polyomils re clled moic. Exmple. As exmple we tke wx d, b,. Usig the Grm-Schmidt process the orthogol polyomils c be costructed s follows. Strt with the sequece {, x, x,...}. Choose p x. The we hve sice Further we hve sice d p x x, x, p x p x, p x p x, x x, x, dx d x, p x x x, p x p x, p x p x x, p x p x, p x p x x x,, x, x x, x x, x, x x x dx 3, x, x x dx x dx. x 3 x x x + 6, x x dx 4 6 x x + dx 4 3 + 4. The polyomils p x, p x x d p x x x + 6 re the first three moic orthogol polyomils o the itervl, with respect to the weight fuctio wx.

Repetig this process we obti d so o. p 3 x x 3 3 x + 3 5 x, p 4x x 4 x 3 + 9 7 x 7 x + 7, p 5 x x 5 5 x4 + 9 x3 5 6 x + 5 4 x 5, The orthoorml polyomils would be q x p x/ h, etceter. q x p x/ h 3x /, q x p x h 6 5 q 3 x p 3x 7 x 3 3 h3 x + 3 5 x, x x +, 6 All sequeces of orthogol polyomils stisfy three term recurrece reltio: Theorem. A sequece of orthogol polyomils {p x} stisfies where p + x A x + B p x + C p x,,, 3,..., A k +,,,,... d C A h,,, 3,.... k A h Proof. Sice degree [p x] for ech {,,,...} the sequece of orthogol polyomils {p x} is lierly idepedet. Let A k + /k. The p + x A xp x is polyomil of degree. Hece p + x A xp x c k p k x. The orthogolity property ow gives p + x A xp x, p k x This implies c m p m x, p k x c k p k x, p k x c k h k. m h k c k p + x A xp x, p k x p + x, p k x A xp x, p k x A p x, xp k x. For k < we hve degree [xp k x] < which implies tht p x, xp k x. Hece: c k for k <. This proves tht the polyomils stisfy the three term recurrece reltio p + x A xp x c p x + c p x,,, 3,.... Further we hve k h c A p x, xp x A h c A h. k A h This proves the theorem.

Note tht the three term recurrece reltio for sequece of moic k orthogol polyomils {p x} hs the form p + x xp x + B p x + C p x with C h h,,, 3,.... A cosequece of the three term recurrece reltio is Theorem. A sequece of orthogol polyomils {p x} stisfies p k xp k y k p+xp y p + yp x,,,,... h k h k + x y d {p k x} h k k h k + p +xp x p + xp x,,,,.... Formul is clled the Christoffel-Drboux formul d its cofluet form. Proof. The three term recurrece reltio implies tht d Subtrctio gives p + xp y A x + B p xp y + C p xp y p + yp x A y + B p yp x + C p yp x. p + xp y p + yp x A x yp xp y + C [p xp y p yp x]. This leds to the telescopig sum p k xp k y x y h k This implies tht k x y k p k+ xp k y p k+ yp k x A k h k p k xp k y p k yp k x A k h k k p +xp y p + yp x k x y. A h h p k xp k y h k p +xp y p + yp x A h k h k + p + xp y p + yp x, which proves. The cofluet form the follows by tkig the limit y x: p + xp y p + yp x lim y x x y lim y x p x p + x p + y p + x p x p y x y p xp +x p + xp x. 3

Zeros Theorem 3. If {p x} is sequece of orthogol polyomils o the itervl, b with respect to the weight fuctio wx, the the polyomil p x hs exctly rel simple zeros i the itervl, b. Proof. Sice degree[p x] the polyomil hs t most rel zeros. Suppose tht p x hs m distict rel zeros x, x,..., x m i, b of odd order or multiplicity. The the polyomil p xx x x x x x m does ot chge sig o the itervl, b. This implies tht wxp xx x x x x x m dx. By orthogolity this itegrl equls zero if m <. Hece: m, which implies tht p x hs distict rel zeros of odd order i, b. This proves tht ll zeros re distict d simple hve order or multiplicity equl to oe. Theorem 4. If {p x} is sequece of orthogol polyomils o the itervl, b with respect to the weight fuctio wx, the the zeros of p x d p + x seprte ech other. Proof. This follows from the cofluet form of the Christoffel-Drboux formul. Note tht This implies tht Hece h wx {p x} dx >,,,,.... k h k + p +xp x p + xp x {p k x} >. h k k k + p +xp x p + xp x >. Now suppose tht x,k d x,k+ re two cosecutive zeros of p x with x,k < x,k+. Sice ll zeros of p x re rel d simple p x,k d p x,k+ should hve opposite sigs. Hece we hve p x,k p x,k+ d p x,k p x,k+ <. This implies tht p + x,k p + x,k+ should be egtive too. The the cotiuity of p + x implies tht there should be t lest oe zero of p + x betwee x,k d x,k+. However, this holds for ech two cosecutive zeros of p x. This proves the theorem. Moreover, if {x,k } k d {x +,k} + k deote the cosecutive zeros of p x d p + x respectively, the we hve < x +, < x, < x +, < x, < < x +, < x, < x +,+ < b. 4

Guss qudrture If f is cotiuous fuctio o, b d x < x < < x re distict poits i, b, the there exists exctly oe polyomil P with degree such tht P x i fx i for ll i,,...,. This polyomil P c esily be foud by usig Lgrge iterpoltio s follows. Defie px x x x x x x d cosider px P x fx i x x i p x i fx i x x x x i x x i+ x x x i x x i x i x i x i+ x i x. i i Let {p x} be sequece of orthogol polyomils o the itervl, b with respect to the weight fuctio wx. The for x < x < < x we tke the distict rel zeros of the polyomil p x. If f is polyomil of degree, the fx P x is polyomil of degree with t lest the zeros x < x < < x. Now we defie fx P x + rxp x, where rx is polyomil of degree. This c lso be writte s This implies tht fx wxfx dx i p x fx i x x i p x i + rxp x. i wxp x fx i x x i p x i dx + wxrxp x dx. Sice degree[rx] the orthogolity property implies tht the ltter itegrl equls zero. This implies tht wxfx dx λ,i fx i with λ,i : i wxp x x x i p dx, i,,...,. x i This is the Guss qudrture formul. This gives the vlue of the itegrl i the cse tht f is polyomil of degree if the vlue of fx i is kow for the zeros x < x < < x of the polyomil p x. If f is ot polyomil of degree this leds to pproximtio of the itegrl: wxfx dx λ,i fx i with λ,i : i wxp x x x i p dx, i,,...,. x i The coefficiets {λ,i } i re clled Christoffel umbers. Note tht these umbers do ot deped o the fuctio f. These Christoffel umbers re ll positive. This c be show s follows. We hve λ,i wxl,i x dx with l,i x : 5 p x x x i p, i,,...,. x i

The l,i x l,ix is polyomil of degree which vishes t the zeros {x,k } k of p x. Hece l,ix l,i x p xqx for some polyomil q of degree. This implies tht wx l,ix l,i x dx by orthogolity. Hece we hve λ,i Now we c lso prove wxl,i x dx wxp xqx dx wx {l,i x} dx >. Theorem 5. Let {p x} be sequece of orthogol polyomils o the itervl, b with respect to the weight fuctio wx d let m <. The we hve: betwee y two zeros of p m x there is t lest oe zero of p x. Proof. Suppose tht x m,k d x m,k+ re two cosecutive zeros of p m x d tht there is o zero of p x i x m,k, x m,k+. The cosider the polyomil The we hve gx Now the Guss qudrture formul gives p m x x x m,k x x m,k+. gxp m x for x / x m,k, x m,k+. wxgxp m x dx λ,i gx,i p m x,i, where {x,i } i re the zeros of p x. Sice there re o zeros of p x i x m,k, x m,k+ we coclude tht gx,i p m x,i for ll i,,...,. Further we hve λ,i > for ll i,,..., which implies tht the sum t the right-hd side cot vish. However, the itegrl t the left-hd side is zero by orthogolity. This cotrdictio proves tht there should be t lest oe zero of p x betwee the two cosecutive zeros of p m x. i y..4.6.8 x The polyomils q x, q 3 x d q 4 x 6

Clssicl orthogol polyomils The clssicl orthogol polyomils re med fter Hermite, Lguerre d Jcobi: me p x wx, b Hermite H x e x, Lguerre Jcobi x e x x α, P α,β x x α + x β, Legedre P x, The Hermite polyomils re orthogol o the itervl, with respect to the orml distributio wx e x, the Lguerre polyomils re orthogol o the itervl, with respect to the gmm distributio wx e x x α d the Jcobi polyomils re orthogol o the itervl, with respect to the bet distributio wx x α + x β. The Legedre polyomils form specil cse α β of the Jcobi polyomils. These clssicl orthogol polyomils stisfy orthogolity reltio, three term recurrece reltio, secod order lier differetil equtio d so-clled Rodrigues formul. Moreover, for ech fmily of clssicl orthogol polyomils we hve geertig fuctio. I the sequel we will ofte use the Kroecker delt which is defied by {, m δ m :, m for m, {,,,...} d the ottio D d dx for the differetitio opertor. The we hve Leibiz rule D [fxgx] 3 D k fxd k gx,,,,... 4 k which is geerliztio of the product rule. The proof is by mthemticl iductio d by use of Pscl s trigle idetity + +, k,,...,. k k k 7

Hermite The Hermite polyomils re orthogol o the itervl, with respect to the orml distributio wx e x. They c be defied by mes of their Rodrigues formul: H x wx D wx e x D e x,,,,..., 5 where the differetitio opertor D is defied by 3. Sice D + D D, we obti D + wx D [D wx] D [wxh x] [ w xh x + wxh x ] which implies tht + wx [ xh x H x ],,,,..., H + x xh x H x,,,,.... 6 The defiitio 5 implies tht H x. The 6 implies by iductio tht H x is polyomil of degree. Further we hve tht H x is eve d H + x is odd d tht the ledig coefficiet of the polyomil H x equls k. The Hermite polyomils stisfy the orthogolity reltio π e x H m xh x dx δ m, m, {,,,...}. 7 To prove this we use the defiitio 5 to obti e x H m xh x dx H m xd e x dx. Now we use itegrtio by prts times to coclude tht the itegrl vishes for m <. For m we hve usig itegrtio by prts e x H xh x dx H xd e x dx k This proves the orthogolity reltio 7. e x dx π. I order to fid the three term recurrece reltio we strt with The we hve by usig Leibiz rule 4 which implies tht wx e x w x xwx. D H x e x dx D + wx D w x D [ xwx] xd wx D wx, H + x xh x H x,,, 3,.... 8 8

Combiig 6 d 8 we fid tht Differetitio of 6 gives Now we use 9 to coclude tht H x H x,,, 3,.... 9 H +x xh x + H x H x,,,,.... + H x xh x + H x H x,,,,..., which implies tht H x stisfies the secod order lier differetil equtio y x xy x + yx, {,,,...}. Filly we will prove the geertig fuctio We strt with The Tylor series for ft is e xt t H x ft e x t e x e xt t. ft with, by usig the substitutio x t u, [ ] [ d f d dt e x t t for,,,.... Hece we hve e x e xt t e x t ft This proves the geertig fuctio. f du e u ] t. t ux f D e x e x H x t e x H x t. 9

Lguerre The Lguerre polyomils re orthogol o the itervl, with respect to the gmm distributio wx e x x α. They c be defied by mes of their Rodrigues formul: x By usig Leibiz rule 4 we hve D [ e x x +α] k k Hece we hve where + α k This proves tht k + α k wx D [wx x ] ex x α D [ e x x +α],,,,.... D k e x D k x +α k e x + α + α α + k + x α+k e x x α k k x we lso hve for,,,... Note tht we hve Γ + α + Γk + α + xk. + α x k k,,,,..., k k! Γ + α + k! Γk + α + k + α + k, k,,,...,. k! x is polyomil of degree. Sice k α + α + k! α + k x α + k x k α + k k! + α k α + k, k,,,..., + α α +,,,,... d tht the ledig coefficiet of the polyomil x equls Further we hve d dx Lα x d dx k,,,,.... F α + ; x. 3 + α x k k + α x k k! k k k k! k + α x k k k k! Lα+ x,,, 3,.... 4

Now we c prove the orthogolity reltio e x x α m x Γ + α + x dx δ m, α > 5 for m, {,,,...}. First of ll, the itegrl coverges if the momets µ e x x +α dx exists for ll {,,,...}. This leds to the coditio α >. Note tht µ Γ+α+. Now we use to obti e x x α m x x dx We pply itegrtio by prts to obti m xd [ e x x +α] dx which equls zero for m <. For m we fid D xe x x +α dx k This proves the orthogolity reltio 5. m xd [ e x x +α] dx. D m xe x x +α dx e x x +α dx Γ + α +. The Lguerre polyomils c lso be defied by their geertig fuctio t α exp xt t xt. 6 The proof is strightforwrd. Strt with 3 d chge the order of summtio to obti xt α + t k x k α + k k! α + +k k x k t +k α + k k! k xt k xt k t α k t α k! α + k x k t α + k k! k! k! k! α + k + xt k. t t This proves 6. If we defie F x, t : t α exp xt, t the we esily obti x F x, t t t α exp xt t t F x, t + tf x, t x

d F x, t t { } α + t α + t α x t xt t exp xt t { α + x } t α exp xt, t t which implies tht The first reltio leds to or equivletly Hece we hve t F x, t + [x α + t] F x, t. t d t dx Lα d dx Lα xt d dx Lα + x d or equivletly, by usig 4, d dx Lα The secod reltio leds to or equivletly t dx Lα xt + t d dx Lα xt + + xt xt +. x + x,,,,... 7 x x L α+ x,,,,.... xt + x xt + [x α + t] xt + xt α + xt + xt + α + xt xt +. Equtig the coefficiets of equl powers of t we obti the three term recurrece reltio + + x + x α Lα x + + α x,,, 3,.... 8 Note tht this c lso be writte s [ x x + + + x Lα x ] [ + α ] x x,,, 3,....

Now we differetite d use 7 to obti x d dx Lα This implies tht x + x + x + + α x,,, 3,.... x d dx Lα x x + α x,,, 3,.... 9 Now we differetite 9 d use 7 d 9 to fid x d dx Lα x + d dx Lα x d dx Lα x + α d dx Lα x [ d + α dx Lα x d ] dx Lα x α d + α x α d x d dx Lα dx Lα x x α d x dx Lα x. dx Lα This proves tht the polyomil x stisfies the secod order lier differetil equtio xy x + α + xy x + yx, {,,,...}. x Filly, we use the geertig fuctio 6 to prove the dditio formul L α+β+ x + y The geertig fuctio 6 implies tht L α+β+ x + yt t α β x + yt exp This proves. t α exp xt k xtk k xlβ k y,,,,.... m t t β exp t L β m yt m yt t k xlβ k y t. 3

Jcobi The Jcobi polyomils re orthogol o the itervl, with respect to the bet distributio wx x α + x β. They c be defied by mes of their Rodrigues formul: P α,β x wx D [ wx x ] x α + x β D [ x +α + x +β] for,,,.... By usig Leibiz rule 4 we hve [ D x +α + x +β] k This implies tht P α,β x D k x +α D k + x +β k + α + α + α k + x +α k k + β + β β + k + + x β+k + α + β k x +α k + x β+k,,,,.... k k + α + β k x k + x k,,,,.... k k This shows tht P α,β x is polyomil of degree. Note tht we hve the symmetry d P α,β P α,β x P β,α x,,,,... 3 + α d + β P α,β,,,,.... I order to fid hypergeometric represettio we write for x x + α + β x + k P α,β x,,,,.... k x Now we hve for x x + k + k x x i ki i k i k i, k,,,.... i x Now we obti by chgig the order of summtios for x d,,,... x + α + β k i P α,β x k k i x x i + α + β i + k i k 4 i + k i i. x

Now we reverse the order i the first sum to fid for x d,,,... x + α + β i + k P α,β x x i i i + α i + k i + k i k i + β i + k x i k i Γ + α + i + k! Γi k + α + Γ + β + i k! Γ i + k + β + Γ + α + Γ + β + i i k i α k i + β + k k!. i i + k! i! k! i Γi + α + i! Γ i + β + i x i x Sice i {,,,..., } we hve by usig the Chu-Vdermode summtio formul i k i α k i, i α F i + β + k k! i + β + ; + α + β + i. i + β + i Hece we hve by usig Γ i + β + i + β + i Γ + β + P α,β Γ + α + i + α + β + i x i x Γi + α + i! i Γ + α + i + α + β + i x i,,,,.... Γα + α + i i! i This proves the hypergeometric represettio + α, + α + β + P α,β x F α + i ; x,,,,.... 4 Note tht this result lso holds for x. I view of the symmetry 3 we lso hve + β, + α + β + P α,β x F ; + x,,,,.... β + Note tht the hypergeometric represettio implies tht d + α + α + β + dx P α,β x α + + α + β + + α + β + ; x +, + α + β + F α + + α +, + α + β + F α + P α+,β+ x,,, 3,.... 5 ; x

Aother cosequece of the hypergeometric represettio is tht the ledig coefficiet of the polyomil P α,β x equls + α + α + β + k α + + α + β +,,,,.... Now it c be show tht the Jcobi polyomils stisfy the orthogolity reltio x α + x β P α,β m xp α,β x dx α+β+ Γ + α + Γ + β + + α + β + Γ + α + β + δ m for α >, β > d m, {,,,...}. This c be show by usig the defiitio d itegrtio by prts. The vlue of the itegrl i the cse m c be computed by usig the ledig coefficiet d the writig the itegrl i terms of bet itegrl: { x α + x β P x} α,β dx + α + β + [ P α,β xd x +α + x +β] dx D P α,β x x +α + x +β dx Γ + α + β + Γ + α + β + d by usig the substitutio x t x +α + x +β dx x +α + x +β dx x +α + x +β dx,,,,... t +α t +β dt +α+β+ t +α t +β dt +α+β+ B + α +, + β + +α+β+ Γ + α + Γ + β + Γ + α + β + +α+β+ Γ + α + Γ + β +,,,,.... + α + β + Γ + α + β + The Jcobi polyomils P α,β x stisfy the secod order lier differetil equtio x y x + [β α α + β + x] y x + + α + β + yx,,,,.... A geertig fuctio for the Jcobi polyomils is give by α+β R + R t α + R + t β P α,β xt, R xt + t. 6

Legedre The Legedre polyomils re orthogol o the itervl, with respect to the weight fuctio wx. They c be defied by mes of their Rodrigues formul: P x wx D [ wx x ] D [ x ],,,,.... 5 This is the specil cse α β of the Jcobi polyomils:, + P x P, x F ; x,,,,.... 6 Further we hve P x P x, P d P,,,,.... The ledig coefficiet of the polyomil P x equls k +!,,,,.... The orthogolity reltio is P m xp x dx + δ m, m, {,,,...}. 7 This c be show by usig the Rodrigues formul 5 d itegrtio by prts P m xp x dx P m xd [ x ] dx D P m x x dx, which vishes for m <. For m we hve D P x x dx k x dx! x dx. Filly we hve by usig the substitutio x t for,,,... x dx Hece we hve x + x dx t t dx + + Γ + Γ + B +, + + Γ + +!. {P x} dx! + +! This proves the orthogolity reltio 7.,,,,.... + 7

I order to fid geertig fuctio for the Legedre polyomils we use the hypergeometric represettio 6 to fid P xt k + k x k t k k! k + k x k t k! k! k k k + k + k x k t +k k! k! k! x k t k k + t k! k! k! x k t k t k k! k! [ ] / k [x t] k t k t x t / k! t [ t x t ] / xt + t / This proves the geertig fuctio xt + t. P xt. 8 xt + t If we defie F x, t xt + t /, the we hve This implies tht t F x, t xt + t 3/ x + t x t xt + t 3/. xt + t F x, t x tf x, t. t Now we use 8 to obti xt + t P xt x t P xt. This c lso be writte s P xt x P xt + P xt + x P xt P xt + or equivletly + P + xt x + P xt + + P xt +. This leds to P x xp x d the three term recurrece reltio + P + x + xp x + P x,,, 3,.... 9 8

Chebyshev For x [, ] the Chebyshev polyomils T x of the first kid d the Chebyshev polyomils U x of the secod kid c be defied by T x cosθ d U x The orthogolity property is give by si + θ, x cos θ,,,,.... 3 si θ d x / T m xt x dx x / U m xu x dx π π cosmθ cosθ dθ, m sim + θ si + θ dθ, m. Both fmilies of orthogol polyomils stisfy the three term recurrece reltio sice we hve d Note tht We lso hve sice P + x xp x P x,,, 3,..., T + x + T x cos + θ + cos θ cos θ cosθ xt x U + x + U x U x xu x si + θ + siθ si θ cos θ si + θ si θ T x U x, T x x d U x x. T x U x xu x,,, 3,..., si + θ cos θ siθ si θ si θ cosθ si θ xu x. cosθ T x. I order to fid geertig fuctio for the Chebyshev polyomils T x of the first kid, we multiply the recurrece reltio by t + d tke the sum to obti If we defie the we hve T + xt + x T xt + T xt +. F x, t T xt, t <, F x, t T xt T x xt [F x, t T x] t F x, t. 9

This implies tht xt + t F x, t T x + T xt xtt x + xt xt xt. Hece we hve the geertig fuctio T xt F x, t xt, t <. xt + t I the sme wy we hve for the Chebyshev polyomils U x of the secod kid: Gx, t U xt, t < where Hece we hve xt + t Gx, t U x + U xt xtu x + xt xt. U xt Gx, t, t <. xt + t This c be used, for istce, to prove tht T k xx k U x,,,,.... I fct, we hve for t < T k xx k t k T k xx k t T k xt k xt xt + t U xt. I similr wy we c prove tht P k xp k x U x,,,,..., T k xx t +k xt xt + t xt where P x deotes the Legedre polyomil. I fct, we hve for t < P k xp k x t P k xp k xt P k xp xt +k k P k xt k P xt xt + t U xt. xt + t xt + t