CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Σχετικά έγγραφα
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

1. For each of the following power series, find the interval of convergence and the radius of convergence:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS


Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

α β

Math221: HW# 1 solutions

Homework for 1/27 Due 2/5

Fourier Series. Fourier Series

Bessel function for complex variable

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

IIT JEE (2013) (Trigonomtery 1) Solutions

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Solve the difference equation

Fourier Analysis of Waves

Example Sheet 3 Solutions

Presentation of complex number in Cartesian and polar coordinate system

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Differential equations

Trigonometric Formula Sheet

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

2 Composition. Invertible Mappings

Areas and Lengths in Polar Coordinates

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Section 9.2 Polar Equations and Graphs

Section 8.3 Trigonometric Equations

Uniform Convergence of Fourier Series Michael Taylor

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

EN40: Dynamics and Vibrations

physicsandmathstutor.com

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

The Heisenberg Uncertainty Principle

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

Homework 4.1 Solutions Math 5110/6830

SOLUTIONS TO RAINVILLE S SPECIAL FUNCTIONS (1960)

Inverse trigonometric functions & General Solution of Trigonometric Equations

Math 6 SL Probability Distributions Practice Test Mark Scheme

4.6 Autoregressive Moving Average Model ARMA(1,1)

Review Exercises for Chapter 7

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Lecture 26: Circular domains

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Solutions: Homework 3

B.A. (PROGRAMME) 1 YEAR

Second Order Partial Differential Equations

The Neutrix Product of the Distributions r. x λ

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Degenerate Perturbation Theory

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Areas and Lengths in Polar Coordinates

C.S. 430 Assignment 6, Sample Solutions

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

F19MC2 Solutions 9 Complex Analysis

B.A. (PROGRAMME) 1 YEAR

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Statistical Inference I Locally most powerful tests

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Section 8.2 Graphs of Polar Equations

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Srednicki Chapter 55

Homework 8 Model Solution Section

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CRASH COURSE IN PRECALCULUS

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Inertial Navigation Mechanization and Error Equations

Homework 3 Solutions

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Section 7.6 Double and Half Angle Formulas

On Generating Relations of Some Triple. Hypergeometric Functions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

( ) 2 and compare to M.

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Probability and Random Processes (Part II)

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

4. ELECTROCHEMISTRY - II

Solutions to Exercise Sheet 5

1 String with massive end-points

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Name: Math Homework Set # VI. April 2, 2010

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Derivation of Optical-Bloch Equations

Spherical Coordinates

Transcript:

CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period. The square wave show is a eve fuctio sice it is symmetrical about the f(x) axis. Hece, the Fourier series is give by: f(x) a + a cos x (i.e. the series cotais o sie terms) a a f ( x )dx / { d x d x + / { / / [ x] + [ x] [ () + [( ) ( )] ] f ( x )cos x d x / { cos x d x cos x d x + / 56 4, Joh Bird

/ si x si x + / si( / ) si( / ) + si( / ) 4 si Whe is eve, a 4 Whe is odd, a 4 ad a for, 5, 9,... for 3, 7,,... Hece, a 4, a 4 4 3, a5, ad so o 3 5 Hece the Fourier series for the above waveform is give by: f(x) 4 cos x cos 3x+ cos 5x cos 7 x+... 3 5 7. Obtai the Fourier series of the fuctio defied by: f(t) t+, t t, t which is periodic of period. Sketch the give fuctio. The periodic fuctio is show i the diagram below. Sice it is symmetrical about the origi, the fuctio is odd, ad f ( t) b si t 57 4, Joh Bird

{ b f ( t)si t d t ( t )si t d t ( t )si t dt + + t cos t si t cos t t cos t si t cos t + + + + by itegratio by parts cos cos + + cos( ) cos( ) + + + + + cos( ) cos( ) cos cos + + Hece, b, b, b 3, b 4, ad so o 3 4 i.e. f(t) i.e. si t si t si 3t si 4 t... 3 4 f( t) si t+ si t+ si 3t+ si 4 t+... 3 4 3. Determie the Fourier series defied by f(x). x, x + x, x which is periodic of period The periodic fuctio is show i the diagram below. Sice it is symmetrical about the f(x) axis, the fuctio is eve, ad f ( x) a a cos x + a f( x)d x f( x)dx due to symmetry x ( ) d + + + + x x x ( ) { a f ( x)cos x d x ( x)cos x d x ( x)cos x d x + + 58 4, Joh Bird

{ cos x x cos x d x cos x x cos x d x ( ) + ( + ) si x xsi x cos x si x xsi x cos x + + + by itegratio by parts cos( ) cos + + + + + cos( ) cos + + ( cos ) Whe is eve, a 4 () Whe, a ( ) 4 (3) (3) Whe 3, a3 ( ) Whe 5, a5 ( ) f ( x) a a cos x + 4 (5) (5) ad so o 4 4 4 + cos x cos3x cos5 x... (3) (5) sice cos( ) cos i.e. f(x) 4 + cos x+ cos3x+ cos5 x+... 3 5 4. I the Fourier series of Problem 3, let x ad deduce a series for /8 Whe x i the series of Problem 3, f(x), 4 cos cos hece, + cos + + +... 3 5 4 i.e. + + + + +... 3 5 7 i.e. ad 4 + + + +... 3 5 7... 8 3 5 7 + + + + 5. Show that the Fourier series for the triagular waveform show is give by: y 8 siθ si 3θ + si 5θ si 7 θ +... 3 5 7 59 4, Joh Bird

The fuctio is periodic of period The equatio of the fuctio betwee ad / is of the straight lie form y mθ + c where gradiet, m ad itercept, c / Hece, equatio of the lie betwee ad / is y θ The equatio of the fuctio betwee / ad 3/ is of the straight lie form y mθ + c where gradiet, m Whe θ, ad y ad sice y mθ + c the + c from which, c. Hece, equatio of lie betwee / ad 3/ is y θ + The equatio of the fuctio betwee 3/ ad is of the straight lie form y mθ + c where gradiet, m Whe θ, ad y ad sice y mθ + c the / () + c from which, c 4. Hece, equatio of lie betwee 3/ ad is y θ 4 The triagular wave is a odd fuctio sice it is symmetrical about the origi Hece, the Fourier series is give by: f(θ) ( b si θ) i.e. a a b f ( x )si x d x θ si θdθ + + si θd θ / θ / θ cos θ si θ θ cos θ si θ cos θ + + / / / 53 4, Joh Bird

( /)cos / si / + ( ) ( )cos si ( / )cos / si / + + cos cos / Thus, b b b 3 b 5 4 4 + + 4 4 4 4 8 + + 4 4 + 4 4 + 3 4 b 4 b 6 b 8, ad so o 4 4 + 3 3 3 3 4 4 4 4 8 + 3 3 3 3 3 4 4 + + 5 5 5 5 4 4 4 4 8 + + 5 5 5 5 5 It follows that b 7 8 7 ad so o Thus, y b si θ 8 8 8 8 siθ si 3θ + si 5θ si 7 θ +... 3 5 7 8 i.e. y siθ si 3θ + si 5θ si 7 θ +... 3 5 7 53 4, Joh Bird

EXERCISE 365 Page 79. Determie the half-rage sie series for the fuctio defied by: f(x) x, x, x The periodic fuctio is show i the diagram below. Sice a half-rage sie series is required, the fuctio is symmetrical about the origi ad f ( x) b si x / { / ( )si d x x x si d by itegratio by parts cos si b f x x x x x x + cos si Hece, b + +, b cos si + ( ) cos si + +, 4 4 3 3 cos si b3 + 3 3 3, (3) 53 4, Joh Bird

b 4 cos si + + 4 4, ad so o 8 8 Hece, i.e. f ( x) b si x si x+ si x si 3x si 4 x+... 4 3 8 f( x) si x+ si x si 3x si 4 x+... 4 9 8. Obtai (a) the half-rage cosie series ad (b) the half-rage sie series for the fuctio f(t), t, t (a) The periodic fuctio is show i the diagram below. Sice a half-rage cosie series is required, the fuctio is symmetrical about the f(t) axis ad f ( t) a a cos t + a dt [ t] / / si si si t a cos d t t / / Whe is eve, a 3 5 si si si ad a, a 3 3 3, a5, ad so o 5 5 Thus, f ( t) a + a cos t cost + cos3t cos5 t +... 3 5 533 4, Joh Bird

i.e. f( t) cost cos3t+ cos5 t... 3 5 (b) The periodic fuctio is show i the diagram below. Sice a half-rage sie series is required, the fuctio is symmetrical about the origi ad f ( x) b si x cos t b si t d t cos cos / /, Hece, b cos cos ( ) Thus, b ( cos cos) ( ), 3 b3 cos 3 cos ( ), 3 3 3 b4 ( cos 4 cos ) ( ) 4 4, b 5 5 cos 5 cos ( ), 5 5 5 b6 ( cos 6 cos3) ( ), ad so o 6 6 3 f ( t) b si t si t si t+ si 3t+ + si 5t si 6 t+... 3 5 3 i.e. f( t) si t si t+ si 3t+ si 5t si 6 t+... 3 5 3 3. Fid the half-rage Fourier sie series for the fuctio f(x) si x i the rage x. Sketch the fuctio withi ad outside of the give rage. The periodic fuctio is show i the diagram below. Sice a half-rage sie series is required, 534 4, Joh Bird

the fuctio is symmetrical about the origi ad f ( x) b si x b si xsi x d x ( cos x)si x d x (si x cos xsi x)d x si x si( x ) si( x ) d x ( + ) cos x cos( + x ) cos( x ) + ( + ) ( ) cos cos( + ) cos( ) + + ( + ) ( ) ( + ) ( ) Hece, 8 8 b + + + (3) () (3) () 3 3 b + + + b b b (4) () (4) () 4 6 8 ad so o 3 5 8 b3 + + + 3 (5) ( ) 3 (5) ( ) 3 5 (3)(5) (3)(5) b 5 4 5 35 8 + + + 5 (7) ( 3) 5 (7) ( 3) 5 7 3 (3)(5)(7) (3)(5)(7) 8 It follows that b7 ad so o (5)(7)(9) Thus, f ( x) b si x 8 8 8 8 si x si 3x si 5x si 7x 3 (3)(5) (3)(5)(7) (5)(7)(9) 535 4, Joh Bird

8 si x si 3x si 5x si 7x i.e. f( x) si x... ()(3) ()(3)(5) (3)(5)(7) (5)(7)(9) 4. Determie the half-rage Fourier cosie series i the rage x to x for the fuctio defied by: f(x) x, x ( x), x The periodic fuctio is show i the diagram below. Sice a half-rage cosie series is required, the fuctio is symmetrical about the f(x) axis ad f ( x) a a cos x + / { d ( )d / / x x a x x+ x x x + / { cos d ( )cos d / a x x x + x x x / + 8 8 + + 8 8 8 4 / x si x cos x si xsi x cos x + + / si cos si si cos cos + + + 536 4, Joh Bird

cos si si cos + cos cos Whe is odd, a 8, () 4 4 ad a ( cos cos ) ( ) a4 ( cos cos 4) ( ) (4) 6, 8 a, 6 a 8, ( cos3 cos 6 ) ( ) (6) 36 36 (3) 8 a, ad so o ( cos 5 cos ) ( ) () (5) Thus, f ( x) a + a cos x cos x cos 6x cos x +... 4 (3) (5) i.e. cos 6x cosx f( x) cos x+ + +... 4 3 5 537 4, Joh Bird