UNIVERSITÀ DEGLI STUDI DI BOLOGNA. DIPARTIMENTO DI INGEGNERIA ELETTRICA Viale Risorgimento n BOLOGNA (ITALIA)

Σχετικά έγγραφα
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Το άτομο του Υδρογόνου

Α Ρ Ι Θ Μ Ο Σ : 6.913

Determination of an Accurate Current Transformer Model for the Analysis of Electromagnetic Transient During Electrical Faults

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

HONDA. Έτος κατασκευής

Appendix A. Stability of the logistic semi-discrete model.

Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Multi-dimensional Central Limit Theorem

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

!"!# ""$ %%"" %$" &" %" "!'! " #$!

Multi-dimensional Central Limit Theorem

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

Αλληλεπίδραση ακτίνων-χ με την ύλη

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Stochastic Fusion Dynamics of Heavy-Ions

Chapter 1 Fundamentals in Elasticity

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

K r i t i k i P u b l i s h i n g - d r a f t

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων: ημήτρης Πλεξουσάκης

A R ID CRO P J O U RNAL O F NA TU RAL R ESO U RC ES

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων: ημήτρης Πλεξουσάκης

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Parts Manual. Trio Mobile Surgery Platform. Model 1033

! " #$% & '()()*+.,/0.

Συστήματα αλουμινίου νέας γενιάς Ευφυΐα υψηλής ενεργειακής απόδοσης

D Alembert s Solution to the Wave Equation

ITU-R P (2009/10)

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Τιμοκατάλογος αυτοκινήτων NISSAN

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

!!"#$"%&'()%*$& !! )!+($,-./,0. !! )!"% $&)#$+($1$ !!2)%$34#$$)$ !!+(&%#(%$5$( #$%

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

MIDWEEK CYBET REGULAR COUPON

? 9 Ξ : Α : 4 < ; : ; 4 ϑ Α Λ Χ< : Χ 9 : Α Α Χ : ;: Ψ 8< ;: 9 : > Α ϑ < > = 8 Α;< 4 <9 Ξ : 9 : > Α 4 Α < >

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU:

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

LAPLACE TRANSFORM TABLE

(... )..!, ".. (! ) # - $ % % $ & % 2007

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Vn 1: NHC LI MT S KIN TH C LP 10

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Derivation of Optical-Bloch Equations

ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014

Erkki Mäkinen ja Timo Poranen Algoritmit

Example Sheet 3 Solutions

Na/K (mole) A/CNK


Ορυκ υ το κ λο το γ λο ί γ α ΓΥΨΟΣ ΚΑΙ ΑΝΥΔΡΙΤΗΣ 2

Electronic Supplementary Information (ESI)

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA

Ax = b. 7x = 21. x = 21 7 = 3.

Original Lambda Lube-Free Roller Chain

AcO. O OAc OCH 3. Compound Number. (chloroform) Notes: M. Mozuch #36/46/Ac 21 mg. Acetone DMSO. CDCl 3. Atom

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

Sheet H d-2 3D Pythagoras - Answers

ALFA ROMEO. Έτος κατασκευής

Cable Systems - Postive/Negative Seq Impedance

Equilibrium pka Table (DMSO Solvent and Reference)

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

LOWER LEAGUES CYBET REGULAR COUPON

tel , version 1-7 Feb 2013

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA

Chương 12: Chu trình máy lạnh và bơm nhiệt

General theorems of Optical Imaging systems

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε.

POISSON PROCESSES. Ανάλυση και Μοντελοποίηση Δικτύων - Ιωάννης Σταυρακάκης / Αντώνης Παναγάκης (ΕΚΠΑ) 1 COUNTING (ARRIVAL) PROCESS

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.

Kocaeli Üniversitesi 41380, Kocaeli, Türkiye

ECE 222b Applied Electromagnetics Notes Set 3b


Matrices and Determinants

Fractional Colorings and Zykov Products of graphs

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

Parts Manual. Wide Transport Stretcher Model 738

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

CYLINDRICAL & SPHERICAL COORDINATES

Transcript:

UNVESTÀ EG STU OOGN PTMENTO NGEGNE EETTC Val orgno n - 4 OOGN (T N NYTC SOUTON FO THE CUENT STUTON N TWO -STNS UTHEFO CES COUPE WTH ESSTVE JONT M. Fabbr brac Ulzng gorcal ror of auo/uual nducon coffcn ar aong rand of a -rand urford cabl, oluon for gnral lnar ca of wo cabl conncd roug a r jon gn. PPOTO NTENO EU SETTEME

nd. nroducon..... Cabl Modl.... 5. Jon Modl.... frnc..... nroducon Condr, a own n fgur, wo ual -rand cabl of lng conncd roug a r jon. Moror, au a flowng currn ually drbud on r nu rand and on r ouu rand. (/ (/ (/ NPUT CE ( ( ( ( ( JONT ( ( ( ( ( OUTPUT CE (/ (/ (/ T longudnal ranc (r of rand an rnal olag ( ald o cabl ar aud o b zro. T currn and olag on rnal bwn nu cabl and jon and bwn jon and ouu cabl ar labld w and, rcly.. Cabl Modl Condr, a own n fgur, nu -rand cabl w flowng currn ually drbud on nu rand and forally nown on ouu rand. (/ (/ (/ ( ( ( T longudnal ranc (r and rnal olag ( ar aud o b zro. Conunly, currn flowng n -rand cabl ar dcrbd by followng y: E/UNO/ Sbr d

(P [ G][ M] (, (, (, (, (, (, (, ( ( w,, >, < < w ( and (, and wr [M] and [G] ar followng conan-coffcn crculan yrc ar: [ M ] [ G ] g g g g g g g g g fnng oronoral cral ba b, w,,, a a for [M] and [G]: b ar [M] and [G] can b wrn a b / / b T T T T T T [ M] λ b b λbb λ b b [ G] b b bb b b w gnalu gn by λ λ λ g. - T doan Currn coo and a follow No a (coably condon Probl (P ad a: (P (, (, b (, b (, b ( ( b ( b ( b [ ] ( T ( b ( ( ( ( [ G][ M] (, (, (, (, ( (, ( b w >, < < E/UNO/ Sbr d

fnng g (P u u u u u u (, (, [ G][ M] (, (, [ G][ M] (, (, (, u ( ( b b ( ( w >, < < wr r dno dffrnaon w rc o argun. coong u a follow u (, µ (, b µ (, b (, b Probl (P u ly ddd n followng r robl: (P u µ µ (, µ (,, µ (, µ (, w >, < < (P u λ µ µ µ (, (, λ ( (,, µ (, µ (, w >, < < (P u µ λ µ µ (, (, λ ( (,, µ (, µ (, Probl (P u a l oluon (, µ ± ± λ ± µ ± w >, < < µ, wl robl (P u± can b wrn coacly a: µ ± (, (, λ ( (,, µ (, µ (, ± wc a bn alrady rad [] and g: ± ± µ ± ± wr Γ a wo ualn rrnaon []: ± ± ξ, (, dξ dτ ( τ Γ(, ξ τ w >, < < or Γ (, ξ; n nπ λ nπ nπξ n n E/UNO/ Sbr d

Γ λ (, ξ; 4 π n λ ξ n λ ξ n (T nd a bn drod fro gnalu nc λ λ and. Tu nc ( µ (, T (, b ( (, ( ( ( (, wc l (, (, b ( (, ( T ± ± ± ± ± µ (, ( ( ± ± ξ (, ± ( dξ dτ ( τ Γ(, ξ, τ w >, < < and currn n nl cabl ar (for >, < < : (, ( [ ( b ( b ] dξ dτ ( τ b ( τ ξ [ ] Γ(, ξ τ b b, No a currn n nl cabl ar colly nown f funcon ± ar aalabl. For wa concrn currn n oul cabl, nc forally yrc o nl on, oluon for, and for ± alo, can b oband cangng w and condrng nad of, a follow (* : ± ± (, ξ (, ± ( dξ dτ ( τ Γ(, ξ, τ w >, < < ( and currn n oul cabl ar (for >, < < : (, ( [ ( b ( b ] dξ dτ ( τ b ( τ ξ [ ] Γ(, ξ τ b b, gan, no a currn n oul cabl ar colly nown f funcon ± ar aalabl.. - T doan Volag (* T corrondnc ly donrad, nc dfnng ', on bco ', on bco ', and dra rul o b: ladng uaon naran and boundary condon corrcly ac. and. Tu E/UNO/ Sbr 4 d

For wa concrn olag n nl cabl, ang no accoun a and dcoong a follow followng rlaon ar oband: Moror, nc ψ ψ w >, < < [ G] (, (, (, ψ (, b ψ(, b ψ (, b ± ± ψ ± (, (, w >, < < (, b (, [ (, (, ] T T (, b (, (, (, (, (, (, (, and ( (,, ( (, olag a nd of nl cabl can b ad a: ( ψ (, ( ψ (, ψ (, Now, nc olag ( and ( a nd of nl cabl ar gn n r of ψ ± (,, a ar rlad o aal dra of ± (, wc ar dndn fro currn a nd of nl cabl (rd n r of ± (, aarn a obl o oban a olag- currn caracrc of nl cabl, a can b n a an ac rolar coonn. For wa concrn olag n oul cabl, nc forally yrc o nl on, oluon for ( and (, can b oband cangng w and condrng nad of, a follow: ( ψ (, ( ψ (, ψ (, (wr ψ ± a o b aluad rfrrng o aal dra of ± aluad for oul cabl To oban olag-currn caracrc for nl cabl, dfn: ξ (, ξ Γ( ξ d,, Tu, ubuon g: w >, < < E/UNO/ Sbr 5 d

± ψ ± ± (, (, ( dξ dτ ( τ Γ(, ξ, τ ± ± ( dτ ( τ (, τ τ [ ] ( dτ ( τ (, τ ( τ ± ± and, nc ± (, g: ± ± ± ξ τ >, < < ± (, τ ( τ ( τ d, w >, < < ψ ± ± Moror, n a way olag-currn caracrc for oul cabl, ar oband: ± (, τ ( τ ( τ d, w >, < < ψ ± ± ( gn du o -dffrnaon: foono a. 4 Fnally, olag a nd of nl cabl can b ad a:, ( dτ ( τ ( τ [ ] ( τ ( dτ ( τ ( τ, (wr nd on a bn drod for bry and olag a bgnnng of oul cabl rul o b:, ( dτ ( τ ( τ [ ] ( τ, ( dτ ( τ ( τ. - alac doan Currn wa own, currn flowng n nl -rand cabl ar dcrbd by followng robl (P: (P [ G][ M] (, (, (, (, ( b (, ( E/UNO/ Sbr d w >, < <

coo and a follow w coably condon (, (, b (, b (, b ( ( b ( b ( b [ ] ( T ( b ( ( ( ( Probl (P ly ddd n followng r robl: (P (, (P λ, (P,, λ (,, (, (, ( (, ( ( (,, (, ( (, (, (,, (,, (, ( Probl (P a l oluon (, (P ± ± ± λ ± ± ± (, (, ( w >, < < w >, < < w >, < <, wl robl (P ± can b wrn coacly a: (,, (,, (, ( lyng alac ranfor o robl (P ± g: (P ± ± ± λ ± ± ± ± ± (, (, (,, (, ( ± ± ± n wc can b aly old o g: (, ( Condr now oluon for ± (, gn bfor: ± ± n ± ( ± λ ± ( λ ± ± ± w < < w >, < < ξ (, ± ( dξ dτ ( τ Γ(, ξ, τ w >, < < Nong a ngraon of conoluon nd can b aly alac-ranford: E/UNO/ Sbr 7 d

ξ ξ ± ± ± ± (, ( ( dξ Γ(, ξ, ( dξ Γ(, ξ, y coaron can b dducd a n( λ (, ξ, n( λ ξ dξ Γ wr nd a bn drod for bry. To oban alac-ranfor of caracrc funcon, dffrna la uaon w rc o : Tang no accoun dfnon and nc { } / wr (, { (, }, rul: co( λ (, ξ, λ n( λ ξ ξ Γ d ξ (, ξ Γ( ξ d,, ( λ ( λ. Tu, fnally (, co λ n (, co( λ co( λ (, λ (, λ n( λ n( λ.4 - alac doan Volag wa own bfor, olag a nd of nl cabl and a bgnnng of oul cabl can b ad a -conoluon. Trfor, y can b aly ranford n alac doan: ( ( (, [ ] (, ( ( ( ( ( (, [ ] (, ( ( (.5 Pror of funcon wa own bfor, currn-olag caracrc of nl and oul cabl ar uarzd n funcon. n con o ror of funcon ar gn. Sarng fro dfnon: Γ (, ξ; n nπ λ nπ nπξ n n ( < ξ < and < < and ang no accoun a ξ (, ξ Γ( ξ d,, E/UNO/ Sbr 8 d

ξ nπξ dξ n ( nπ nπξ nπξ nπξ n co co nπ ( nπ g λ ( λ (, co co nπ co co( nπ n nπ nπ n nπ nπ, < < n ordr o oban a dffrn (and w far conrgnc rrnaon of funcon condr a co ( co( [ co( co( ] and a llc a funcon ϑ ad followng rrnaon (wr uaon r ar non-ocllang[]: Trfor ϑ ( u, n n co nu π n ( u nπ a g (, n ϑ π λ π nπ λ n, con π π λ λ n n ϑ π λ π n nπ λ, π λ con π λ n ( λ λ λ n n,, < < π n n arcular, (, bco: ( λ, (, n nπ Corrondngly, n alac doan (, n (, nπ λ (, n λ π n λ ( n a followng r dffrn rrnaon []: λ λ n ( λ co ( λ, n λ ( E/UNO/ Sbr 9 d

. Jon Modl. T doan Modl Condr, a own n fgur, r jon w flowng currn nown forally on nu and on ouu rand. ( ( ( ( ( ( ( ( ( ( T KC on cnral nod g: and, dfnng ( ( ( ( ( ( ( ( ( ( ( ( ( [ Ω] KC can b coacly wrn a: Now no a ( ( ( [ Ω] ( [ Ω ] b b [ ] Ω b b b [ ] Ω b b b coong, and a follow and nong a (coably condon followng uaon old: ( ( b ( b ( b ( ( b ( b ( b ( ( b ( b ( b ( ( ( E/UNO/ Sbr d

E/UNO/ Sbr d ( ( ( ( ( ( ( ( ( ( T y can b aly old for ±, ladng o: ( ( [ ] ( ( [ ] T KT on lf and rg d of jon g: ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( and, dfnng ( ( [ ] [ ] [ ] { },, dag, KT can b coacly wrn a: ( [ ] ( [ ] ( ( [ ] ( [ ] ( Moror, no a [ ] [ ] T T b b ( ( ( ( ( ( T la rory ld u o wr: ( b b ( a ru for Tu, dcoong and a follow ( ( ( ( β β β b b b ( ( ( ( β β β b b b can b aly ron n β β β β β β Fnally, dfnng [ ] T, b b ρ, w,,,, and,,

KT can b wrn a: β ρ, ρ, ρ, ρ, ρ, ρ, β ρ, ρ, ρ, ρ, ρ, ρ, β ρ, ρ, ρ, ρ, ρ, ρ, β ρ, ρ, ρ, ρ, ρ, ρ, ρ, ρ, ρ, No a, nc ± wa rd n r of ± and ±, and la uaon can b daly old for, rulng y of four uaon, conanng ±, ± and β ±, β ±, can b old rodng currn-olag,.. -β, caracrc of nu and ouu cabl. For wa concrn coffcn, a l bu cubro calculaon lad o (w, : ρ, (, ρ ρ, ρ, ( ρ, ρ, Furror, can b aly donrad, nc [ ] yrc, an ρ, ρ,. Trfor: ρ, ( ρ ρ,, ( ρ, ρ, ( ρ, ( 4 To rduc z of olng y la uaon old for : ρ, ρ, ρ ρ Conunly, dfnng (for, ±,, ρ, ρ,, ρ, ρ, and ubung, followng rducd y (conanng only ±, ± and,,, found:,, ρ, ρ, ρ, [ ( ( ] [( ( ],, ρ, ρ, ρ, [ ( ( ] ( (,, ρ, ρ, ρ, [ ( ( ] [( ( ],, ρ, ρ, ρ, ( ( For wa concrn coffcn, a l bu cubro calculaon lad o: (, ( ( 4,,, lr for can b oband nroducng ar-ualn ranc: [ ] [ ] [( ( ] E/UNO/ Sbr d

Y nd u, Y Y ( Y ( Y Y Y,, Y Y, Y. Sy oluon n alac doan Coulng jon uaon, wrn n alac doan a follow,, ρ ρ ρ,,, [ ( ( ] [( ( ],, ρ ρ ρ,,, [ ( ( ] [( ( ],, ρ ρ ρ,,, [ ( ( ] [( ( ],, ρ, ρ, ρ, [ ( ( ] [( ( ] w nu and ouu cabl caracrc lad o (afr rordrng,,,,,,,,,, ρ ρ ρ,,,,,,,,, ρ,, ρ, ρ,,,,,,,, ρ,,, ρ ρ ρ,,,,,,,,,,, ρ ρ ow ow ow ow ; rd n ordr o ylfy ar, l u rfor followng oraon: ( ( ; nd ( ( ( ow ( ow4 ; 4 ( ow4 ( ow. T lad o: E/UNO/ Sbr d

ρ ρ,, ρ ρ,,,,,,,,,,,,,, ρ, ρ, ρ ρ,,,,, E/UNO/ Sbr 4 d,,,,,,,,,,,,,,,,,,,,,,,, ρ ρ ρ ρ,,,,,,,,,, ρ, ρ, ρ ρ,,, Forunaly, nold coffcn can b ly rd n r of rnc, a follow,, 4Y Y Y,,,, Y, Y (w, 4 ρ, ρ, ρ,,,,, ρ, ρ, ρ, ρ ρ ρ ρ,,,, ρ ρ ρ ρ,,,, ( ρ, ( ρ ρ ( ρ, ρ, (,,, ρ T ron can b furr lfd dfnng followng an ranc Y Y

E/UNO/ Sbr 5 d Y Y Y Y Fnally, ullyng all row by /, followng y oband: ( ( ( ( ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ( ( ( ( ( ( ( ( ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Now dfnng (,, oluon of y can b aly found followng Crar rul: ( ( ( ( ( (,,, w, and ± wr funcon ar dfnd a follow (all ar drnan:

E/UNO/ Sbr d ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

( ( ( ( ( ( ( ( ( Y ( ( ( ( Y ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ( ( Y Y ( Y Y ( Y Y ( Y Y ( ( ( ( Y ( ( ( ( Y ( ( ( ( Y Y Y Y Y Y Y Y Y Y aarn fro dfnon a ( a olynoal of four dgr n, wl ( ar olynoal of rd dgr n. Moror, condrng uaon ( wc clarly nold n nron of alac ranforaon of oluon found, can b n a can b wd a cular uaon for a yrc ral ar. Trfor, gnalu ar l ral. To lfy followng calculaon aud a gnalu (dnod by,,, 4 ar dnc,.. d ( for,,, 4 d Moror, Grgorn or [4] rod bound on,.. for ac gnalu on of followng rlaon afd (w, : ( ( ( ( Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y E/UNO/ Sbr 7 d

for gong on w bac-ranforaon of oluon found, l u udy uaon co( λ (, λ n λ T cang of arabl λ lad o uaon co ( wr can b condrd a a ral o unnown, nc λ own n fgur (wr aud a <, oluon of uaon, dnod by ξ ( for,,,, ar boundd a π < ξ ( < ( π, for < and,,, f o a lar uaon occur; an dffrnc daaranc of roo ξ ( f >. T or oluon, dnod a bfor by ξ ( for,,, ar boundd a π < ξ ( < π, for > and,, n any way, rul a: lξ ( π. No a cal ca, a lad o an lc oluon for ξ (, anngl, nc a null gnalu of ar l ngulary and u a robl ll-od. 5 4 8 4-5 E/UNO/ Sbr 8 d

. Soluon n doan ( (, fnng Ψ (, w, and ± ( (, oluon n alac doan wrn a: ( ( Ψ (, w, and ± and forally nrd n doan a follow ( ( τ To rfor nron of funcon ( auon ad, lad o: dτ Ψ ( τ, w, and ± ( ( Ψ no a y afy Jordan a [5]. Tu, w ξ 4 λ Ψ (, w, and ± d u( [ (, ] ξ ( d λ wr (nfn rdu a bn drcly aluad w ad of Hoal rul, nc ngnalu wa aud o b dnc. T funcon u( dfnd a, f < and orw. T nold dffrnal ly aluad a: d d (ang no accoun a Ψ ( ( [ ( ] ( d d, ξ [ λ] ξ ( [ co ] ξ ( λ λ n ξ ξ ( ( d λ λ ξ λ ( ξ λ [ co - ( co ] ξ ( co ξ ( ( n ξ ( n ξ ( λ co ξ co ξ ( and fnally d ( ( ( ( ( n ξ ξ ξ n ξ ( ξ 4 ( ξ ( ( co u λ ( n ξ ( ξ ( n ξ ( ξ ( No a, nc ol caracrz an analycal funcon, of funcon ( Ψ ad alo followng rrnaon: Ψ ( λ ( (, w, and ± ξ ( n ξ ( ( co ξ ( n ξ ( ξ ( ξ ( 4 u w, and ± λ, E/UNO/ Sbr 9 d

To col ran, l u rrn currn n nl and oul cabl (roug r - coonn. Condr fr nl cabl. wa own bfor a (, dτ ( τ (, τ [ ( (, ]( ψ w >, < < and ± (, d ψ (, w >, < < and ± wr ar dno conoluon oraon. Furror, dffrnaon of a rou rul lad o []: ( τ ( dτ Ψ ( τ Ψ ( ( w ± and ubung: ( ( ψ, ( (, ( Ψ w >, < < and ± Subung agan: ( (, d ( (, ( Ψ w >, < < and ±, : (o Trfor, w bgn aluang conoluon of Ψ ( w ( [ Ψ ( (, ]( λ λ λ n 4 4 4 ( ( ( ( ( ( nπ co co u u u ( co ξ ( co ξ ( co ( nπ ξ ( ( n ξ ( ( n ξ ( ξ ( ξ ( n ξ ( ( n ξ ( ξ ( ξ ( λ ( n ξ ( ξ ( n ξ ( ξ ( 4 λ ( ( u ξ n n nπ co co nπ co co co n ( n ξ ( ( n ξ ( ξ ( ξ nπ ( co( nπ ( nπ ( nπ ( co ξ nπ ξ ( ( λ λ λ ( ξ λ ( ξ λ λ ( nπ ( ( nπ ( ξ ξ λ nπ λ nπ λ λ nπ λ No a r n brac wa rouly dlod a rrnaon of Ψ ( and (, Trfor. dτ, rodd α β α β (o α β ατ β No a [ ] ( τ α β E/UNO/ Sbr d

[ Ψ ( (, ]( λ Now ang no accoun a g (,,, [ Ψ ( (, ]( Saal ngraon now g d [ Ψ ( (, ]( Fnally, dfnng lad o F (, 4 n ( ( for u ( co nπ co co ( ξ, λ for λ 4 4 4 ( ( 4 nπ ( ( ( ( ( ( ( ( u ξ, n u ( u ( ξ co ξ ( u ( λ ( n ξ ( ξ ( n ξ ( ξ ( ( nπ Ψ λ ξ nξ coξ nξ ( ( τ co ξ co ξ nπ λ ( co Ψ ( ξ nπ λ [ ξ ( / ] n ξ ( ( co[ ξ ( / ] ( nξ ( ξ ( ( n[ ξ ( / ] ( ( nξ ( ξ ( ( n[ ξ ( / ] ( nξ ( ξ ( co ξ ( co ξ ( ξ, λ and nπ, for,n λ (, for ( ξ ( λ ( ξ λ ( n[ ξ ( / ] ( n ξ ( ξ ( ( ξ λ ( ( ( ξ λ (, dτ F (, τ w >, < < and ± ( ( ( ( For wa concrn oul cabl, nc forally yrc o nl on, oluon for ±, can b oband cangng w and condrng nad of, a follow ( ( ( ( τ (, dτ F (, τ w >, < < and ± frnc [] M. Fabbr, nalycal Soluon for currn drbuon n a urford cabl w N rand, nrnal or E-U (,. []. Couran,. Hlbr, Mod of Maacal Pyc, nrcnc, NY,9, ol.,. ; ol.,. 75. [].S. Gradyn,.M. yz, Tabl of ngral, Sr, and Produc, cadc Pr, ondon, 98,. 45. [4] Y. Saad, ra Mod for ar nar Sy, nrnaonal Toon Publng, ondon, 99,. 9. [5] G. rfn, Maacal Mod for Pyc, cadc Pr, ondon, 985,. 4-48. [] G. oc, Gud o alcaon of alac Tranfor,. Van Norand d., ondon, 9,.8. E/UNO/ Sbr d