Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

Σχετικά έγγραφα
The Student s t and F Distributions Page 1

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

FORMULAS FOR STATISTICS 1

Biostatistics for Health Sciences Review Sheet

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

5.4 The Poisson Distribution.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

ο),,),--,ο< $ι ιι!η ι ηι ι ιι ιι t (t-test): ι ι η ι ι. $ι ι η ι ι ι 2 x s ι ι η η ιη ι η η SE x

Solution Series 9. i=1 x i and i=1 x i.

p n r

Χρονοσειρές Μάθημα 3

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

ω = radians per sec, t = 3 sec

$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Εισαγωγή στην Ανάλυση Διακύμανσης

Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

τατιςτική ςτην Εκπαίδευςη II

Common Families of Distributions

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

τατιστική στην Εκπαίδευση II

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

t-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΣΕΙΡΩΝ

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

The canonical 2nd order transfer function is expressed as. (ω n

Harold s Statistics Probability Density Functions Cheat Sheet 30 May PDF Selection Tree to Describe a Single Population

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Μηχανική Μάθηση Hypothesis Testing

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

χ 2 test ανεξαρτησίας

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Γ. Κορίλη, Μοντέλα Εξυπηρέτησης

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

The conditional CAPM does not explain assetpricing. Jonathan Lewellen & Stefan Nagel. HEC School of Management, March 17, 2005

Probability and Random Processes (Part II)

Second Order Partial Differential Equations

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Άσκηση 10, σελ Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

1. Hasil Pengukuran Kadar TNF-α. DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm

Quadratic Expressions

1991 US Social Survey.sav

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Table A.1 Random numbers (section 1)

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

( ) ( ) STAT 5031 Statistical Methods for Quality Improvement. Homework n = 8; x = 127 psi; σ = 2 psi (a) µ 0 = 125; α = 0.

794 Appendix A:Tables

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

If we restrict the domain of y = sin x to [ π 2, π 2

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

6.3 Forecasting ARMA processes

CRASH COURSE IN PRECALCULUS

Homework 8 Model Solution Section

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Repeated measures Επαναληπτικές μετρήσεις

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Λυμένες Ασκήσεις για το μάθημα:

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

Approximation of distance between locations on earth given by latitude and longitude

Congruence Classes of Invertible Matrices of Order 3 over F 2

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA)

Solutions to Exercise Sheet 5

Matrices and Determinants

Homework 3 Solutions

Fourier Series. Fourier Series

Generalized additive models in R

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Second Order RLC Filters

Transcript:

64_INS.qxd /6/0 :56 AM Page Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER Class Widh = round up o nex convenien number Maximum daa enry - Minimum daa enry of Number of classes Lower class limi + Upper class limi Midpoin = Class frequency Relaive Frequency = = f Sample sie n Populaion Mean: Sample Mean: Weighed Mean: Mean for Grouped Daa: Range Populaion Variance: Populaion Sandard Deviaion: Sample Variance: Sample Sandard Deviaion: Sample Sandard Deviaion for Grouped Daa: s = C gx - x f n - m = gx N x = gx n x = gx # w gw s = s = C gx - m N s = s = x = gx # f n = Maximum enry - Minimum enry gx - m gx - x n - Empirical Rule (or 68-95-99.7 Rule) For daa wih a (symmeric) bell-shaped disribuion. Abou 68% of he daa lies beween m - s and m + s.. Abou 95% of he daa lies beween m - s and m + s. 3. Abou 99.7% of he daa lies beween m - 3s and m + 3s. N s = s = C gx - x n - Chebychev s Theorem The porion of any daa se lying wihin k sandard deviaions k 7 of he mean is a leas - k. Sandard Score: CHAPTER 3 Classical (or Theoreical) Probabiliy: PE = Empirical (or Saisical) Probabiliy: Frequency of even E PE = = f Toal frequency n Probabiliy of a Complemen: Probabiliy of occurrence of boh evens A and B: PA and B = PA # PBƒA PA and B = PA # PB if A and B are independen Probabiliy of occurrence of eiher A or B or boh: PA or B = PA + PB - PA and B PA or B = PA + PB if evens are muually exclusive. Permuaions of n objecs aken r a a ime: np r = Disinguishable Permuaions: n alike, n alike, Á, alike: n k n! n! # n! # n! Á n k! where n + n + n 3 + Á + n k = n. Combinaion of n objecs aken r a a ime: nc r = Number of oucomes in E Toal number of oucomes in sample space n! where r n. n - r!, n! n - r!r! = value - mean sandard deviaion = x - m s PE = - PE

64_INS.qxd /6/0 :56 AM Page Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER 4 Mean of a Discree Random Variable: Variance of a Discree Random Variable: s = gx - m Px Sandard Deviaion: Expeced Value: Binomial Probabiliy of x successes in n rials: Px = n C x p x q n - x = Populaion Parameers of a Binomial Disribuion: Mean: m = np s = s Ex = m = gxpx n! n - x!x! px q n - x Variance: s = npq m = gxpx CHAPTER 6 c-confidence Inerval for m: x - E 6 m 6 x + E s where E = c if s is known and he populaion is n s normal or n Ú 30, and E = c if he populaion is n normal, s is unknown, and n 6 30. Minimum Sample Sie o Esimae : n = a cs m E b Poin Esimae for p, he populaion proporion of successes: pn = x n c-confidence Inerval for Populaion Proporion p (when np Ú 5 and nq Ú 5: pn - E 6 p 6 pn + E, where Sandard Deviaion: s = npq Geomeric Disribuion: The probabiliy ha he firs success will occur on rial number x is Px = pq x -, where q = - p. pnqn E = c B n. Minimum Sample Sie o Esimae p: n = pnqn a c E b Poisson Disribuion: The probabiliy of exacly x occurrences in an inerval is Px = mx e -m, where e L.788. x! CHAPTER 5 Sandard Score, or -Score: = value - mean sandard deviaion = x - m s c-confidence Inerval for Populaion Variance s : n - s x R n - 6 s s 6 x L c-confidence Inerval for Populaion Sandard Deviaion s: n - s n - s 6 s 6 C x R C x L Transforming a -Score o an x-value: x = m + s m x = m Cenral Limi Theorem (Mean of he Sample Means) s x = s n Cenral Limi Theorem (Sandard Error) = x - m x s x = x - m s> n Cenral Limi Theorem

64_INS.qxd /6/0 :56 AM Page 3 Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER 7 - Tes for a Mean m : = x - m for s known wih a s> n, normal populaion, or for n Ú 30. - Tes for a Mean m : = x - m for s unknown, x s> n, normally disribued, and n 6 30. -Tes for a Proporion p (when np Ú 5 and nq Ú 5: = Chi-Square Tes for a Variance or Sandard Deviaion: CHAPTER 8 Two-Sample -Tes for he Difference Beween Means: (Independen samples; n and n Ú 30 or normally disribued populaions) where Two-Sample -Tes for he Difference Beween Means: (Independen samples from normally disribued populaions, or n 6 30) If populaion variances are equal, d.f. = n + n - and pn - p pq>n n - x s = s n = x - x - m - m s x - x If populaion variances are no equal, d.f. is he smaller of n - or n - and d.f. = n - = x - x - m - m s x - x, s x - x = C n - s + n - s n + n - s x - x = B s n + s n. -Tes for he Difference Beween Means: (Dependen samples) d.f. = n - s x - x # = B s n + s n +. B n n = d - m d s d > n, where and d.f. = n -. Two-Sample -Tes for he Difference Beween Proporions: Noe: n p, n q, n p, and n q mus be a leas 5. = pn - pn - p - p, where CHAPTER 9 Correlaion Coefficien: r = -Tes for he Correlaion Coefficien: = B p qa + b n n r - r B n - (d.f. = n - ) Equaion of a Regression Line: ngxy - gxgy where m = and ngx - gx b = y - mx = gy n d = gd n, ngxy - gxgy ngx - gx ngy - gy - m gx n Coefficien of Deerminaion: explained variaion r = oal variaion Sandard Error of Esimae: = gyn i - y gy i - y c-predicion Inerval for y is yn - E 6 y 6 yn + E, where E = c s e C + n + nx 0 - x ngx - gx. ngd - gd s d =, C nn - p = x + x n + n. yn = mx + b s e = C gy i - yn i n - d.f. = n -

64_INS.qxd /6/0 :56 AM Page 4 Key Formulas From Larson/Farber Elemenary Saisics: Picuring he World, Second Ediion 00 Prenice Hall CHAPTER 0 Chi-Square: Goodness-of-Fi Tes: Tes of Independence: d.f. N = n -, and d.f. D = n - One-Way Analysis of Variance Tes: F = MS B MS W, O - E x = g E where MS B = and MS W = SS W N - k = gn i - s i. N - k ( d.f. N = k -, d.f. D = N - k) d.f. = k - d.f. = no. of rows - no. of columns - Two-Sample F-Tes for Variances: s Ú s SS B k - = gn i ax i - gx N b k - F = s s CHAPTER Tes Saisic for Sign Tes: When n 7 5, x + 0.5-0.5n =, where x is he smaller number of 0.5n + or - signs and n is he oal number of + and - signs. When n 5, he es saisic is he smaller number of + or - signs. Tes Saisic for Wilcoxon Rank Sum Tes: = R - m R, s R where R = sum of he ranks for he smaller sample, m R = n n + n +, n n. Tes Saisic for he Kruskal-Wallis Tes: Given hree or more independen samples, he es saisic for he Kruskal-Wallis es is H = n n n + n + s R =, B NN + a R + R + Á + R k b - 3N +. n n n k and d.f. = k - The Spearman Rank Correlaion Coefficien: r s = - 6gd nn -

64_INS.qxd /6/0 :56 AM Page 5 Table 4 Sandard Normal Disribuion Area 0.09.08.07.06.05.04.03.0.0.00 3.4.000.0003.0003.0003.0003.0003.0003.0003.0003.0003 3.3.0003.0004.0004.0004.0004.0004.0004.0005.0005.0005 3..0005.0005.0005.0006.0006.0006.0006.0006.0007.0007 3..0007.0007.0008.0008.0008.0008.0009.0009.0009.000 3.0.000.000.00.00.00.00.00.003.003.003.9.004.004.005.005.006.006.007.007.008.009.8.009.000.00.00.00.003.003.004.005.006.7.006.007.008.009.0030.003.003.0033.0034.0035.6.0036.0037.0038.0039.0040.004.0043.0044.0045.0047.5.0048.0049.005.005.0054.0055.0057.0059.0060.006.4.0064.0066.0068.0069.007.0073.0075.0078.0080.008.3.0084.0087.0089.009.0094.0096.0099.00.004.007..00.03.06.09.0.05.09.03.036.039..043.046.050.054.058.06.066.070.074.079.0.083.088.09.097.00.007.0.07.0.08.9.033.039.044.050.056.06.068.074.08.087.8.094.030.0307.034.03.039.0336.0344.035.0359.7.0367.0375.0384.039.040.0409.048.047.0436.0446.6.0455.0465.0475.0485.0495.0505.056.056.0537.0548.5.0559.057.058.0594.0606.068.0630.0643.0655.0668.4.068.0694.0708.07.0735.0749.0764.0778.0793.0808.3.083.0838.0853.0869.0885.090.098.0934.095.0968..0985.003.00.038.056.075.093..3.5..70.90.0.30.5.7.9.34.335.357.0.379.40.43.446.469.49.55.539.56.587 0.9.6.635.660.685.7.736.76.788.84.84 0.8.867.894.9.949.977.005.033.06.090.9 0.7.48.77.06.36.66.96.37.358.389.40 0.6.45.483.54.546.578.6.643.676.709.743 0.5.776.80.843.877.9.946.98.305.3050.3085 0.4.3.356.39.38.364.3300.3336.337.3409.3446 0.3.3483.350.3557.3594.363.3669.3707.3745.3783.38 0..3859.3897.3936.3974.403.405.4090.49.468.407 0..447.486.435.4364.4404.4443.4483.45.456.460 0.0.464.468.47.476.480.4840.4880.490.4960.5000 Criical Values Level of Confidence c c 0.80.8 0.90.645 0.95.96 0.99.575 c = 0 c c

64_INS.qxd /6/0 :56 AM Page 6 Table 4 Sandard Normal Disribuion (coninued) Area 0.00.0.0.03.04.05.06.07.08.09 0.0.5000.5040.5080.50.560.599.539.579.539.5359 0..5398.5438.5478.557.5557.5596.5636.5675.574.5753 0..5793.583.587.590.5948.5987.606.6064.603.64 0.3.679.67.655.693.633.6368.6406.6443.6480.657 0.4.6554.659.668.6664.6700.6736.677.6808.6844.6879 0.5.695.6950.6985.709.7054.7088.73.757.790.74 0.6.757.79.734.7357.7389.74.7454.7486.757.7549 0.7.7580.76.764.7673.7704.7734.7764.7794.783.785 0.8.788.790.7939.7967.7995.803.805.8078.806.833 0.9.859.886.8.838.864.889.835.8340.8365.8389.0.843.8438.846.8485.8508.853.8554.8577.8599.86..8643.8665.8686.8708.879.8749.8770.8790.880.8830..8849.8869.8888.8907.895.8944.896.8980.8997.905.3.903.9049.9066.908.9099.95.93.947.96.977.4.99.907.9.936.95.965.978.99.9306.939.5.933.9345.9357.9370.938.9394.9406.948.949.944.6.945.9463.9474.9484.9495.9505.955.955.9535.9545.7.9554.9564.9573.958.959.9599.9608.966.965.9633.8.964.9649.9656.9664.967.9678.9686.9693.9699.9706.9.973.979.976.973.9738.9744.9750.9756.976.9767.0.977.9778.9783.9788.9793.9798.9803.9808.98.987..98.986.9830.9834.9838.984.9846.9850.9854.9857..986.9864.9868.987.9875.9878.988.9884.9887.9890.3.9893.9896.9898.990.9904.9906.9909.99.993.996.4.998.990.99.995.997.999.993.993.9934.9936.5.9938.9940.994.9943.9945.9946.9948.9949.995.995.6.9953.9955.9956.9957.9959.9960.996.996.9963.9964.7.9965.9966.9967.9968.9969.9970.997.997.9973.9974.8.9974.9975.9976.9977.9977.9978.9979.9979.9980.998.9.998.998.998.9983.9984.9984.9985.9985.9986.9986 3.0.9987.9987.9987.9988.9988.9989.9989.9989.9990.9990 3..9990.999.999.999.999.999.999.999.9993.9993 3..9993.9993.9994.9994.9994.9994.9994.9995.9995.9995 3.3.9995.9995.9995.9996.9996.9996.9996.9996.9996.9997 3.4.9997.9997.9997.9997.9997.9997.9997.9997.9997.9998

64_INS.qxd /6/0 :56 AM Page 7 Table 5 -Disribuion c-confidence inerval Lef-ailed es Righ-ailed es Two-ailed es Level of confidence, c 0.50 0.80 0.90 0.95 0.98 0.99 One ail, 0.5 0.0 0.05 0.05 0.0 0.005 d.f. Two ails, 0.50 0.0 0.0 0.05 0.0 0.0.000 3.078 6.34.706 3.8 63.657.86.886.90 4.303 6.965 9.95 3.765.638.353 3.8 4.54 5.84 4.74.533.3.776 3.747 4.604 5.77.476.05.57 3.365 4.03 6.78.440.943.447 3.43 3.707 7.7.45.895.365.998 3.499 8.706.397.860.306.896 3.355 9.703.383.833.6.8 3.50 0.700.37.8.8.764 3.69.697.363.796.0.78 3.06.695.356.78.79.68 3.055 3.694.350.77.60.650 3.0 4.69.345.76.45.64.977 5.69.34.753.3.60.947 6.690.337.746.0.583.9 7.689.333.740.0.567.898 8.688.330.734.0.55.878 9.688.38.79.093.539.86 0.687.35.75.086.58.845.686.33.7.080.58.83.686.3.77.074.508.89 3.685.39.74.069.500.807 4.685.38.7.064.49.797 5.684.36.708.060.485.787 6.684.35.706.056.479.779 7.684.34.703.05.473.77 8.683.33.70.048.467.763 9.683.3.699.045.46.756 q.674.8.645.960.36.576

64_INS.qxd /6/0 :56 AM Page 8 Table 6 Chi-Square Disribuion χ χ χ L χ R χ Righ ail Two ails Degrees of freedom 0.995 0.99 0.975 0.95 0.90 0.0 0.05 0.05 0.0 0.005 0.00 0.004 0.06.706 3.84 5.04 6.635 7.879 0.00 0.00 0.05 0.03 0. 4.605 5.99 7.378 9.0 0.597 3 0.07 0.5 0.6 0.35 0.584 6.5 7.85 9.348.345.838 4 0.07 0.97 0.484 0.7.064 7.779 9.488.43 3.77 4.860 5 0.4 0.554 0.83.45.60 9.36.07.833 5.086 6.750 6 0.676 0.87.37.635.04 0.645.59 4.449 6.8 8.548 7 0.989.39.690.67.833.07 4.067 6.03 8.475 0.78 8.344.646.80.733 3.490 3.36 5.507 7.535 0.090.955 9.735.088.700 3.35 4.68 4.684 6.99 9.03.666 3.589 0.56.558 3.47 3.940 4.865 5.987 8.307 0.483 3.09 5.88.603 3.053 3.86 4.575 5.578 7.75 9.675.90 4.75 6.757 3.074 3.57 4.404 5.6 6.304 8.549.06 3.337 6.7 8.99 3 3.565 4.07 5.009 5.89 7.04 9.8.36 4.736 7.688 9.89 4 4.075 4.660 5.69 6.57 7.790.064 3.685 6.9 9.4 3.39 5 4.60 5.9 6.6 7.6 8.547.307 4.996 7.488 30.578 3.80 6 5.4 5.8 6.908 7.96 9.3 3.54 6.96 8.845 3.000 34.67 7 5.697 6.408 7.564 8.67 0.085 4.769 7.587 30.9 33.409 35.78 8 6.65 7.05 8.3 9.390 0.865 5.989 8.869 3.56 34.805 37.56 9 6.844 7.633 8.907 0.7.65 7.04 30.44 3.85 36.9 38.58 0 7.434 8.60 9.59 0.85.443 8.4 3.40 34.70 37.566 39.997 8.034 8.897 0.83.59 3.40 9.65 3.67 35.479 38.93 4.40 8.643 9.54 0.98.338 4.04 30.83 33.94 36.78 40.89 4.796 3 9.6 0.96.689 3.09 4.848 3.007 35.7 38.076 4.638 44.8 4 9.886 0.856.40 3.848 5.659 33.96 36.45 39.364 4.980 45.559 5 0.50.54 3.0 4.6 6.473 34.38 37.65 40.646 44.34 46.98 6.60.98 3.844 5.379 7.9 35.563 38.885 4.93 45.64 48.90 7.808.879 4.573 6.5 8.4 36.74 40.3 43.94 46.963 49.645 8.46 3.565 5.308 6.98 8.939 37.96 4.337 44.46 48.78 50.993 9 3. 4.57 6.047 7.708 9.768 39.087 4.557 45.7 49.588 5.336 30 3.787 4.954 6.79 8.493 0.599 40.56 43.773 46.979 50.89 53.67 40 0.707.64 4.433 6.509 9.05 5.805 55.758 59.34 63.69 66.766 50 7.99 9.707 3.357 34.764 37.689 63.67 67.505 7.40 76.54 79.490 60 35.534 37.485 40.48 43.88 46.459 74.397 79.08 83.98 88.379 9.95 70 43.75 45.44 48.758 5.739 55.39 85.57 90.53 95.03 00.45 04.5 80 5.7 53.540 57.53 60.39 64.78 96.578 0.879 06.69.39 6.3 90 59.96 6.754 65.647 69.6 73.9 07.565 3.45 8.36 4.6 8.99 00 67.38 70.065 74. 77.99 8.358 8.498 4.34 9.56 35.807 40.69