(b) flat (continuous) fins on an array of tubes

Σχετικά έγγραφα
Rektangulär fläns, Rectangular fin

(a) Individually finned tubes (b) flat (continuous) fins on an array of tubes

Areas and Lengths in Polar Coordinates

Homework 8 Model Solution Section

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Areas and Lengths in Polar Coordinates

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Homework 3 Solutions

CRASH COURSE IN PRECALCULUS

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Chapter 7 Transformations of Stress and Strain

is like multiplying by the conversion factor of. Dividing by 2π gives you the

D-Wave D-Wave Systems Inc.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

2 Composition. Invertible Mappings

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Χρονοσειρές Μάθημα 3

Lecture 2. Soundness and completeness of propositional logic

4.6 Autoregressive Moving Average Model ARMA(1,1)

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Other Test Constructions: Likelihood Ratio & Bayes Tests

Matrices and Determinants

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

[1] P Q. Fig. 3.1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Finite Field Problems: Solutions

Α Ρ Ι Θ Μ Ο Σ : 6.913

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

ECE 222b Applied Electromagnetics Notes Set 3a

CYLINDRICAL & SPHERICAL COORDINATES

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Solutions to Exercise Sheet 5

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Review Exercises for Chapter 7

A Simple Version of the Lucas Model

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

3.5 - Boundary Conditions for Potential Flow

C.S. 430 Assignment 6, Sample Solutions

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Example Sheet 3 Solutions

Notes on the Open Economy

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Lecture 26: Circular domains

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Durbin-Levinson recursive method

5.4 The Poisson Distribution.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

derivation of the Laplacian from rectangular to spherical coordinates

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Module 5. February 14, h 0min

14 Lesson 2: The Omega Verb - Present Tense

Parametrized Surfaces

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6


F19MC2 Solutions 9 Complex Analysis

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

EE512: Error Control Coding

Approximation of distance between locations on earth given by latitude and longitude

Math 6 SL Probability Distributions Practice Test Mark Scheme

On local motion of a general compressible viscous heat conducting fluid bounded by a free surface

Chapter 29. Adjectival Participle

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ ΑΡΥΗΣΔΚΣΟΝΗΚΖ ΣΧΝ ΓΔΦΤΡΧΝ ΑΠΟ ΑΠΟΦΖ ΜΟΡΦΟΛΟΓΗΑ ΚΑΗ ΑΗΘΖΣΗΚΖ

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

The Jordan Form of Complex Tridiagonal Matrices

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Application of Object Oriented Programming to a Computational Fluid Dynamics

3 Frequency Domain Representation of Continuous Signals and Systems

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Linearized Lifting Surface Theory Thin-Wing Theory

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

STUDY OF FINS SHAPES' EFFECT ON NATURAL THERMAL CONVECTION

Trigonometric Formula Sheet

5. Choice under Uncertainty

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Transcript:

(a) Individually finned ues () fla (coninuous) fins on an array of ues

Eample Fins

Fins on Segosaurus 3

Rekangulär fläns, Recangular fin. Z d f 4

Rekangulär fläns, Recangular fin. Z d f d αc d λ ( f ) (3 3) m αc λ α Z λz α λ Randvillkor, Boundary condiions: : f d : λ α ( f ) d unn och lång fläns, long and hin fin d d 5

Rekangulär fläns, recangular fin ösning, Soluion: m m C e + Ce C3 cosh m + C4 sinh m e (cosh m e sinh m m m m + e e m ) 6

Rekangulär fläns, recangular fin f f cosh m( ) cosh m (3 38) För, for cosh m från flänsen, from he fin? m d λ d λ αc λ sinh m ( m) cosh m αcλ αλ Z anh m anh m (3 4) 7

Rekangulär fläns, recangular fin Cu, λ 385 W/m K.8 6.6 Rosfri sål, λ 7 W/m K.4. Glas, λ.8 W/m K 4 6 8 [cm] α 5 W/m K, cm, cm 8

Rekangulär fläns, recangular fin Om vi använder villkore, If he condiion elow is used d λ α d fås isälle, one has cosh m( ) + cosh m + och, and α sinh m( ) mλ α sinh m mλ (3 4) (3 4) α cosh m + sinh m mλ och, and α + anh m m mλ λ (3 43) α + anh m mλ 9

Rekangulär fläns, recangular fin funkion funcion ( ) ( ). Z lönsam, preferale if d d > Fig. 3-3. rrangemang av rekangulära flänsar. arrangemen of recangular fins

önsamheskrav, crierion for enefi: d > d α + anh m m m λ λ α + anh m mλ d d d d + m α ( + anh m) cosh m mλ mλ N α m α anh m m + λ cosh m mλ N > α α anh m m λ m λ α > m λ m λ eller, or α anh m > mλ

Rekangulär fläns, recangular fin m α C λ α λ nag, assume α α eller, or α λ α λ α > λ λ α > > (3 46) Tumregel, rule of hum: λ α > 5 (3 47)

Flänsverkningsgrader, fin effeciveness, fin efficiency : η η från flänsen från asyan uan fläns from he fin from he asearea wihou he fin : ϕ ϕ från flänsen få från en likadan fläns med λ from he fin from a similar fin u wih λ 3

Opimal fläns, opimal fin Krierium, Crierion: Ma. värmeflöde vid given vik, maimum hea flow a a given weigh Z M ρ Z ρ Z, Z, ρ givna, are given. Sök ma, find maimum för, for konsan, consan. (3-4): αcλ anh m C Z, Z m αc λ α λ α αλ Z anh λ 4

Opimal rekangulär fläns, opimal recangular fin Villkor, condiion d d ger opimum, gives opimum några M mellan räkningar ger; afer some algera one oains /.49 λ α (3 55) 5

Flänsarrangemang, Fin arrangemen m λ anh m αλ Z anh α λ (3 5) { α u (3 58) λ anh u 3u cosh (3 54) u ( 3 54) ur villkore, from he condiion d / d } Efer lie räknearee finner man; afer some algera one finds: 3 u (3 6a) 3 3 Z anh u 4 α λ 6

Flänsens vik, Weigh of he fin M ρ Zρ Z λ ρ 3 3 4 h u Z ρ/λ maerialparameer, is he maerial parameer λ α 3 4 u anh Z se aell 3-, see Tale 3-. 7

Rak kriangulär fläns, Sraigh riangular fin f δ d f Värmealans, Hea alance d + d d d α λ ösning, Soluion: α λ ( ) + BK ( ) I K då (3 6) Z B y, as ändlig, finie för, for ( ) I 8

riangulär fläns, riangular fin ) ( I 65) (3 ) ( I ) ( I d d λ d ) ( di ) ( I Z λ 9

riangulär fläns, riangular fin ξ Inför inroduce,. ξ ξ ξ ξ d d d d d d d d Inför / inroduce, ξ ξ d ) ( di / d ) ( di ) ( I ) ( I / λ α 66) (3 ) ( I Z αλ 66) (3 ) ( I ) ( Z αλ

Triangular fin Opimal riangulär fläns, opimal riangular fin. Ma. värmeflöde vid given vik, maimum hea flu a given weigh. /.39 λ α (3 67)

Sammansällning rekangulär och riangulär fläns, summary of formulae for recangular and riangular fins f f cosh m( ) cosh m (3 38) I ( I( ) ) (3 65) m α λ α λ αλ Z anh m η λ anh m α ϕ anh m m (3 4) η ϕ I ( αλ Z I( λ I ( α I( I( ) ) ) / I( ) ) ) / Opimal fläns, opimal fin (ma värmeflöde vid given vik) λ.49 (3 55) α Opimal fläns, opimal fin (ma värmeflöde vid given vik).39 / λ α (3 67)

Formler för flänsverkningsgrader. Formulas for fin efficiencies Några enkla räkningar ger följande resula, Some simple calculaions give: Rekangulär fläns, recangular fin η λ α anh m ϕ anh m m Triangulär fläns, riangular fin η λ α I I ( ( ) ) I( ) / I( ϕ ) 3

Cirkulära flänsar, circular or annular fins r r Värmeledande yan, hea conducing area πr Konvekiv omkres, convecive perimeer C πr 4πr 4

Fin efficiency circular fins 8 ϕ (%) r c /r 6 r c r + / c + / 4 3 4 r r.5.5.5 c α/( λ) 5

nvändning av flänsverkningsgraden ϕ, nvändning av flänsverkningsgraden ϕ, How o use he fin efficiency in engineering calculaions fläns s flänsar area oflänsad fin unfinned area + + ) ( ) ( ) ( f fläns fi f flänsar f + + α λ ϕ α ϕ α 3 { ) ( ) ( f fins fins f + α λ ϕ α { } ) 7 (3 ) ( + fläns f ϕ α 6 { } ) 7 (3 ) ( + fins f ϕ α