Φυσική για Μηχανικούς

Σχετικά έγγραφα
Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

1 η Ενότητα Κλασική Μηχανική

Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)

Φυσική για Μηχανικούς

1 η Ενότητα Κλασική Μηχανική

Κεφάλαιο 1. Κίνηση σε μία διάσταση

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

Φυσική για Μηχανικούς

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

2 ο Μάθημα Κίνηση στο επίπεδο

ΣΥΝΟΨΗ 1 ου Μαθήματος

Κεφάλαιο 3. Κίνηση σε δύο ή τρεις διαστάσεις

Φυσική για Μηχανικούς

ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

ΦΥΣΙΚΗ. Ενότητα 2: Ταχύτητα - Επιτάχυνση

Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β.

ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση

ΦΥΣΙΚΗ. Ενότητα 4: ΚΙΝΗΣΗ ΣΕ 2 ΔΙΑΣΤΑΣΕΙΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Κίνηση κατά μήκος ευθείας γραμμής

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

ΣΥΝΟΨΗ 2 ου Μαθήματος

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση

Φυσική για Μηχανικούς

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Φυσική για Μηχανικούς

Θέση-Μετατόπιση -ταχύτητα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Φυσική για Μηχανικούς

Κίνηση σε δύο διαστάσεις

ΠΕΡΙΛΗΨΗ ΘΕΩΡΙΑΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; O.T.

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

Φυσική για Μηχανικούς

1. Εισαγωγή στην Κινητική

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc.

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

Φυσική για Μηχανικούς

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων


400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6)

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Μηχανική - Ρευστομηχανική

Φυσική για Μηχανικούς

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Η ΚΙΝΗΣΗ ΣΩΜΑΤΙΟ Ή ΥΛΙΚΟ ΣΗΜΕΙΟ Ή ΣΗΜΕΙΑΚΟ ΑΝΤΙΚΕΙΜΕΝΟ

y = u i t 1 2 gt2 y = m y = 0.2 m

ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 2015

Φυσική για Μηχανικούς

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται

Κεφάλαιο 8. Ορμή, ώθηση, κρούσεις

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ

Κίνηση σε μια διάσταση

2 ο Μάθημα Κίνηση στο επίπεδο

ΠΕΙΡΑΜΑ 5. Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης.

Κεφάλαιο 5. Ενέργεια συστήματος

Χρησιμοποιούμε έναν άξονα (π.χ. τον άξονα x x) για να παραστήσουμε τη θέση κάποιου σώματος του οποίου την κίνηση θέλουμε να μελετήσουμε.

Φυσική για Μηχανικούς

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ

Έργο Δύναμης Έργο σταθερής δύναμης

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ

Κεφάλαιο M2. Κίνηση σε μία διάσταση

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

dx cos x = ln 1 + sin x 1 sin x.


Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3)

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ευθύγραμμη Κίνηση

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η

ΦΥΣΙΚΗ. Ενότητα 3: ΚΙΝΗΣΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Transcript:

Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του να το προσγειώσει με ασφάλεια. Ποσότητες που ορίζονται τόσο από το μέτρο τους όσο και από την κατεύθυνσή τους (όπως η ταχύτητα) λέγονται διανυσματικές ποσότητες. (Mark Wagner/Getty Images) Διανύσματα Κίνηση σε Δυο Διαστάσεις

Διανύσματα Αναλυση σε συνιστώσες R = Α + Β R = A x i + A y j + B x i + B y j R = A x + B x i + A y + B y j με R x = A x + B x R y = A y + B y Πρόσθεση όλων των x-συνιστωσών και όλων των y- συνιστωσών Πολική μορφή R = R x 2 + R y 2 = A x + B x 2 + (A y + B y ) 2 tan θ = R y R x = A y+b y A x +B x

Διανύσματα Παράδειγμα Ένα ρομπότ αεροδρομίου προχωρά 25m ΝA από το σημείο αφετηρίας του. Ο αλγόριθμος αναγνώρισης εμποδίων του το σταματά και το «στέλνει» 40m σε διεύθυνση 60 ο ΒΑ, όπου και βρίσκει τον πύργο ελέγχου του. (Δείτε το σχήμα) A. Αναλύστε τις συνιστώσες του ρομπότ για κάθε κίνησή του. B. Ορίστε τις συνιστώσες της συνολικής μετατόπισης R του ρομπότ. Βρείτε μια έκφραση για το R με όρους μοναδιαίων διανυσμάτων. C. Τι θα συνέβαινε αν το ρομπότ έπρεπε να επιστρέψει στο σημείο αφετηρίας του, μετά την επαφή του με τον πύργο ελέγχου του; Ποιες συνιστώσες θα περιέγραφαν την πορεία του; Ποια θα ήταν η κατεύθυνση του ρομπότ;

Διανύσματα Παράδειγμα (Λύση) Ένα ρομπότ αεροδρομίου προχωρά 25m ΝA από το σημείο αφετηρίας του. Ο αλγόριθμος αναγνώρισης εμποδίων του το σταματά και το «στέλνει» 40m σε διεύθυνση 60 ο ΒΑ, όπου και βρίσκει τον πύργο ελέγχου του. (Δείτε το σχήμα) A. Αναλύστε τις συνιστώσες του ρομπότ για κάθε κίνησή του.

Διανύσματα Παράδειγμα (Λύση) Ένα ρομπότ αεροδρομίου προχωρά 25m ΝA από το σημείο αφετηρίας του. Ο αλγόριθμος αναγνώρισης εμποδίων του το σταματά και το «στέλνει» 40m σε διεύθυνση 60 ο ΒΑ, όπου και βρίσκει τον πύργο ελέγχου του. (Δείτε το σχήμα) B. Ορίστε τις συνιστώσες της συνολικής μετατόπισης R του ρομπότ. Βρείτε μια έκφραση για το R με όρους μοναδιαίων διανυσμάτων.

Διανύσματα Παράδειγμα (Λύση) Ένα ρομπότ αεροδρομίου προχωρά 25m ΝA από το σημείο αφετηρίας του. Ο αλγόριθμος αναγνώρισης εμποδίων του το σταματά και το «στέλνει» 40m σε διεύθυνση 60 ο ΒΑ, όπου και βρίσκει τον πύργο ελέγχου του. (Δείτε το σχήμα) C. Τι θα συνέβαινε αν το ρομπότ έπρεπε να επιστρέψει στο σημείο αφετηρίας του, μετά την επαφή του με τον πύργο ελέγχου του; Ποιες συνιστώσες θα περιέγραφαν την πορεία του; Ποια θα ήταν η κατεύθυνση του ρομπότ;

Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί τρείς) διαστάσεις. Κίνηση σε Δυο Διαστάσεις

Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί τρείς) διαστάσεις. Κίνηση σε Δυο Διαστάσεις

Μελέτη κίνησης σε δυο διαστάσεις Μήκος + Πλάτος (ή ύψος) Χρήσιμη σε πολλές εφαρμογές Κίνηση ρομπότ στο επίπεδο Κίνηση ηλεκτρονίων σε ηλεκτρικό πεδίο Κίνηση δορυφόρου σε τροχιά

Είδαμε σε προηγούμενη διάλεξη την κίνηση σε μια διάσταση (οριζόντιος άξονας x) Ας επεκτείνουμε τις ιδέες μας στο χώρο x-y Χώρος επιπέδου Θα κάνουμε εκτεταμένη χρήση διανυσμάτων

Στη μια διάσταση, μας αρκούσε ένα μονόμετρο μέγεθος (αριθμ. τιμή) για να ορίσουμε τη θέση ενός σωματιδίου Στις δυο διαστάσεις, χρειαζόμαστε το διάνυσμα θέσης r Ξεκινά από το (0,0) και φτάνει ως τη θέση του σωματιδίου στο επίπεδο xy Διάνυσμα μετατόπισης Δr Διαφορά μεταξύ αρχικής και τελικής θέσης Δr = r f r i

Ορίζουμε τη Διανυσματική Μέση Ταχύτητα σε ένα χρονικό διάστημα Δt: v avg = Δ r Δt Διάνυσμα με ίδια διεύθυνση και φορά με το Δ r Θυμηθείτε από την κίνηση σε μια διάσταση: u avg Δ x Δt Διάνυσμα ανεξάρτητο της διαδρομής!! Γιατί; Εξαρτάται μόνο από το Δ r Που εξαρτάται μόνο από την αρχική και την τελική θέση του σωματιδίου

Ας θεωρήσουμε ένα σωματίδιο που κινείται ανάμεσα σε 2 σημεία, Α και Β. Παρατηρούμε το σωματίδιο σε όλο και μικρότερα χρονικά διαστήματα (Β, Β, Β ) Η κατεύθυνση του Δ r πλησιάζει την εφαπτομένη της καμπύλης στο σημείο Α.

Διανυσματική Στιγμιαία Ταχύτητα v Δr v = lim = dr Δt 0 Δt dt Η κατεύθυνση της σε οποιοδήποτε σημείο βρίσκεται στην εφαπτομένη της καμπύλης στο εκάστοτε σημείο Ταχύτητα u = v Θυμηθείτε: Δx u x lim = dx Δt 0 Δt dt

Διανυσματική Μέση Επιτάχυνση a avg a avg = Δv Δt = v f v i t f t i Διάνυσμα: έχει την ίδια κατεύθυνση με την διανυσματική διαφορά ταχυτήτων Δv Θυμηθείτε: a avg Δu Δt = u f u i t f t i Παράδειγμα: Βρείτε το διάνυσμα a avg

Διανυσματική Στιγμιαία Επιτάχυνση a Δv a = lim = dv Δt 0 Δt dt Θυμηθείτε: Δu a lim = du Δt 0 Δt dt

Τι αλλαγές συμβαίνουν σε ένα σωματίδιο που επιταχύνει; Αλλαγή στο μέτρο της ταχύτητας Αλλαγή στην κατεύθυνση της ταχύτητας Αλλαγή και των δυο παραπάνω Παράδειγμα: Αυτοκίνητο με γκάζι, φρένο, τιμόνι. Ποια από αυτά προκαλούν την επιτάχυνσή του;

Μας ενδιαφέρει η κίνηση σε δυο διαστάσεις με σταθερή επιτάχυνση όμοια με ό,τι κάναμε στην κίνηση στη μια διάσταση Θα σκεφτόμαστε με βάση την παρακάτω «αρχή»: Η κίνηση σε δυο διαστάσεις μπορεί να μοντελοποιηθεί ως δυο ανεξάρτητες κινήσεις σε δυο κάθετους άξονες: Τον άξονα των x Τον άξονα των y Έτσι, η κίνηση στον έναν άξονα δεν επηρεάζει την κίνηση στον άλλο (και αντίστροφα)

Διάνυσμα θέσης r = x i + y j με i, j τα μοναδιαία διανύσματα του επιπέδου Αν ξέρουμε το r, μπορούμε να βρούμε την ταχύτητα v, ως d r v = dt = d dt x i + y j = u x i + u y j

Ας γράψουμε τις δυο εξισώσεις κίνησης σε δυο διαστάσεις με σταθερή επιτάχυνση v f = v i + at r f = r i + v i t + 1 2 at2

Παράδειγμα Ένα σωματίδιο κινείται στο xy επίπεδο, ξεκινώντας από το (0,0) και με αρχική ταχύτητα 20m/s στον x-άξονα, και 15m/s στον y-άξονα. Το σωματίδιο υφίσταται επιτάχυνση μόνο στον x-άξονα με μέτρο a x = 4m/s 2. A) Βρείτε το συνολικό διάνυσμα της ταχύτητας κάθε χρονική στιγμή. Β) Βρείτε την ταχύτητα σε μέτρο και κατεύθυνση όταν t = 5s και τη γωνία του διανύσματος της ταχύτητας με τον άξονα των x. Γ) Βρείτε τις x,y συντεταγμένες του σωματιδίου για κάθε χρονική στιγμή t, και το διάνυσμα θέσης r.

Λύση: Ένα σωματίδιο κινείται στο xy επίπεδο, ξεκινώντας από το (0,0) και με αρχική ταχύτητα 20m/s στον x-άξονα, και 15m/s στον y- άξονα. Το σωματίδιο υφίσταται επιτάχυνση μόνο στον x-άξονα με μέτρο a x = 4m/s 2. A) Βρείτε το συνολικό διάνυσμα της ταχύτητας κάθε χρονική στιγμή.

Λύση: Ένα σωματίδιο κινείται στο xy επίπεδο, ξεκινώντας από το (0,0) και με αρχική ταχύτητα 20m/s στον x-άξονα, και 15m/s στον y- άξονα. Το σωματίδιο υφίσταται επιτάχυνση μόνο στον x-άξονα με μέτρο a x = 4m/s 2. Β) Βρείτε την ταχύτητα σε μέτρο και κατεύθυνση όταν t = 5s και τη γωνία του διανύσματος της ταχύτητας με τον άξονα των x.

Λύση: Ένα σωματίδιο κινείται στο xy επίπεδο, ξεκινώντας από το (0,0) και με αρχική ταχύτητα 20m/s στον x-άξονα, και 15m/s στον y- άξονα. Το σωματίδιο υφίσταται επιτάχυνση μόνο στον x-άξονα με μέτρο a x = 4m/s 2. Γ) Βρείτε τις x,y συντεταγμένες του σωματιδίου για κάθε χρονική στιγμή t, και το διάνυσμα θέσης r.

Μια κλασική κίνηση σε δυο διαστάσεις είναι η βολή. Το μόνο που αλλάζει είναι A. Η επιτάχυνση της βαρύτητας g, που θεωρείται σταθερή και κάθετη (προς τα κάτω) στον άξονα x. B. Επίσης, η αντίσταση του αέρα θεωρείται αμελητέα. Υπό αυτές τις συνθήκες, η ανάλυση τέτοιων προβλημάτων είναι απλή

Ας γράψουμε τις δυο εξισώσεις βολής v f = v i + gt r f = r i + v i t + 1 2 gt2 Ίδιες με αυτές της Διαφ. 20 (7 slides πριν)! Προσοχή! Είναι διανυσματικές εξισώσεις!

Τέλος Διάλεξης