Κεφάλαιο 8. Ορμή, ώθηση, κρούσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 8. Ορμή, ώθηση, κρούσεις"

Transcript

1 Κεφάλαιο 8 Ορμή, ώθηση, κρούσεις

2 Στόχοι 8 ου Κεφαλαίου Ορμή και ώθηση. Διατήρηση της ορμής. Μη ελαστικές κρούσεις. Ελαστικές κρούσεις. Κέντρο μάζας.

3 Η μεταβολή της ορμής ενός σωματίου κατά τη διάρκεια ενός χρονικού διαστήματος είναι ίση με την ώθηση της ολικής δύναμης που δρα πάνω στο σώμα στο χρονικό αυτό διάστημα. Ορμή και ώθηση. Η ορμή είναι διανυσματική ποσότητα και ορίζεται ως: p = mυ p x = mυ x, p y = mυ y, p z = mυ z Έτσι ο δεύτερος νόμος του Νεύτωνα γίνεται: F = dp dt Για μια ολική δύναμη ΣF που δρα σ ένα σώμα για χρόνο Δt ορίζουμε ώθηση το γινόμενο: J = F t 2 t 1 t = F t Αν η ολική δύναμη F στο διάστημα tείναι σταθερή τότε dp επομένως η παράγωγος dp dt = p 2 p 1 t 2 t 1 dt και η ώθηση παίρνει τη μορφή: J = p 2 p 1 σταθερό και

4 Σε μερικές περιπτώσεις μπορούμε να πάρουμε τις συνιστώσες της ώθησης: t 2 J x = F x dt = F av x t 2 t 1 = p 2x p 1x = mυ 2x mυ 1x t 1 t 2 J y = F y dt = F av y t 2 t 1 = p 2y p 1y = mυ 2y mυ 1y t 1 Παράδειγμα. Πετάτε μια μπάλα μάζας 0,40 kg προς τον τοίχο. Η μπάλα κτυπά στον τοίχο ενώ κινείται προς τα αριστερά με ταχύτητα 30 m/s και αναπηδά επίσης οριζόντια προς τα δεξιά με ταχύτητα 20 m/s. α) Βρείτε την ώθηση της δύναμης που ασκήθηκε στην μπάλα από τον τοίχο. β) Αν η μπάλα βρίσκεται σε επαφή με τον τοίχο για 0,010 s, βρείτε τη μέση δύναμη που ασκείται πάνω στη μπάλα κατά την πρόσκρουση. a) J x = p 2x p 1x = mυ 2x mυ 1x = 20 N s b) F av x = J x t = 20 N 0,010 s

5 Παράδειγμα. Μια μπάλα ποδοσφαίρου έχει μάζα 0,40 kg. Αρχικά κινείται προς τα αριστερά με ταχύτητα 20 m/s, αλλά μια κλωτσιά της δίνει ταχύτητα 30 m/s με διεύθυνση 45 ο προς τα πάνω και δεξιά. Βρείτε την ώθηση της δύναμης και τη μέση τιμή της δύναμης, υποθέτοντας ότι ο χρόνος κρούσης είναι Δt=0,010 s. υ 1x = 20 m/s υ 1y = 0 υ 2x = υ 2y = 0, m/s = 21,2 m/s Σημειώνεται ότι cos45 o =sin45 o =0,707 J x = p 2x p 1x = mυ 2x mυ 1x = 16,5 kg m s J y = p 2y p 1y = mυ 2y mυ 1y = 8,5 kg m s F av x = J x t = 1650 N F av y = J y t = 850 N F av = 1650 N N 2 = 1, N 850 N θ = arc tan 1650 N = 27o

6 Διατήρηση της ορμής. Σ ένα σύστημα, οι δυνάμεις που ασκούνται μεταξύ των σωματίων που το αποτελούν ονομάζονται εσωτερικές δυνάμεις. Δυνάμεις που ασκούνται σε κάποιο μέρος του συστήματος από κάποιο σώμα εκτός του συστήματος ονομάζονται εξωτερικές. Αν για παράδειγμα το σώμα Α ασκεί στο Β μια δύναμη F AB τότε το Β ασκεί στο Α μια ίση και αντίθετη F ΒΑ. Τα Α και Β αποτελούν ένα σύστημα, και οι δυνάμεις αυτές είναι εσωτερικές για το σύστημα.τότε F AB + F BA = dp A dx + dp B dx = 0 Δηλαδή η ολική ορμή υπό την επίδραση των εσωτερικών δυνάμεων, δηλ. σε απομονωμένο σύστημα είναι σταθερή. Στην περίπτωση που υπάρχουν εξωτερικές δυνάμεις στο σύστημα αυτές προστίθενται στο αριστερό μέλος της παραπάνω εξίσωσης και τότε η ολική ορμή δεν είναι σταθερή. Όμως θα μπορούσαμε να εκφράσουμε την παραπάνω αρχή της διατήρησης της ορμής με το γενικότερο αποτέλεσμα: Αν το διανυσματικό άθροισμα των εξωτερικών δυνάμεων που ασκούνται πάνω σ ένα σύστημα είναι μηδέν, η ολική ορμή του συστήματος είναι σταθερή.

7 Παράδειγμα: Ανάκρουση καραμπίνας Ένας σκοπευτής κρατά χαλαρά μια καραμπίνα μάζας m K =3,00 kg, ώστε να την αφήσει να αναπηδήσει ελεύθερα όταν εκπυρσοκροτήσει. Ρίχνει μια σφαίρα μάζας m Σ =5,00 g η οποία κινείται οριζοντίως με ταχύτητα ως προς το έδαφος υ Σx =300 m/s. Ποια είναι η ταχύτητα ανάκρουσης υ Κx της καραμπίνας; Ποια είναι η τελική ορμή και η τελική κινητική ενέργεια της σφαίρας; Ποια είναι η τελική ορμή και η τελική κινητική ενέργεια της καραμπίνας; Ολική ορμή παραμένει σταθερή σύμφωνα με την αρχή διατήρησης της ορμής. Επομένως m Σ υ Σx + m K υ Κx = 0 υ Κx = 0,500 m s Τελική ορμή και κινητική ενέργεια για την σφαίρα: P Σx = m Σ υ Σx = 1,50 kg m/s K Σ = 1 2 m Συ Σx 2 = 225 J

8 Τελική ορμή και κινητική ενέργεια για τη καραμπίνα: P Κx = m Κ υ Κx = 1,50 kg m/s K K = 1 2 m Kυ Kx 2 = 0,375 J Παράδειγμα: Σύγκρουση πάνω σε ευθεία Δύο βαγόνια κινούνται το ένα προς το άλλο, χωρίς τριβές, πάνω σε μια ευθύγραμμη αεροτροχιά. Αφού συγκρουστούν, το Β απομακρύνεται με μια τελική ταχύτητα +2,0 m/s. Ποια είναι η τελική ταχύτητα του Α; Ποια σχέση έχουν οι μεταβολές στις ορμές και στις ταχύτητες των δύο βαγονιών; Πριν P x = m A υ A1x + m B υ B1x = 0,50 kg 2,0 m/s + 0,30 kg 2,0 m/s = 0,40 kg m s Μετά P x = m A υ A2x + m B υ B2x = 0,40 kg m s υ Α2x = 0,040 m/s Μεταβολή στην ορμή του Α και του B: m A υ A2x m A υ A1x = 1,2 kg m/s m B υ B2x m B υ B1x = +1,2 kg m/s

9 Παράδειγμα: Σύγκρουση πάνω σε οριζόντια επιφάνεια. Στο πιο κάτω σχήμα φαίνονται δύο ρομπότ που μονομαχούν. Το ρομπότ Α έχει μάζα 20 kg και αρχικά κινείται με ταχύτητα 2,0 m/s παράλληλα προς τον άξονα x. Συγκρούεται με το ρομπότ Β που έχει μάζα 12 kg και είναι αρχικά ακίνητο. Μετά τη σύγκρουση το ρομπότ Α κινείται με ταχύτητα 1,0 m/s σε κατεύθυνση που σχηματίζει γωνία α=30 ο με την αρχική κατεύθυνση κίνησης. Ποια είναι η τελική ταχύτητα του ρομπότ B; Η συνιστώσα της ταχύτητας του Β στον άξονα x είναι: m A υ A1x + m B υ B1x = m A υ A2x + m B υ B2x υ B1x = 0 υ A2x = 1,0 m/s cos a Βρίσκουμε υ 2Bx = 1,89 m/s Η συνιστώσα της ταχύτητας του Β στον άξονα x είναι: m A υ A1y + m B υ B1y = m A υ A2y + m B υ B2y υ B1y = 0 υ A2y = 1,0 m/s sin a β = arc tan 0,83 m/s 1,89 m/s = 24o Βρίσκουμε υ 2By = 0,83 m/s υ B2 = 1,89 m/s 2 + 0,83 m/s 2 = 2,1 m/s

10 Μη ελαστικές κρούσεις. Όταν κατά την κρούση οι δυνάμεις αλληλεπίδρασης ανάμεσα στα σώματα είναι διατηρητικές ώστε να μην υπάρχει μεταβολή της μηχανικής ενέργειας, η ολική κινητική ενέργεια του συστήματος είναι ίδια πριν και μετά την κρούση. Τότε η κρούση είναι ελαστική. Όταν η ολική κινητική ενέργεια μετά την κρούση μειώνεται τότε η κρούση ονομάζεται μη ελαστική. Στην περίπτωση της μη ελαστική κρούσης που τα συγκρουόμενα σώματα κολλάνε το ένα στο άλλο η κρούση ονομάζεται πλαστική ή τελείως μη ελαστική. Τελείως μη ελαστικές κρούσεις. Στην περίπτωση αυτή τα δύο σώματα μετά την κρούση κινούνται σαν ένα άρα: υ A2 = υ B2 = υ 2 m A υ A1 + m B υ B1 = m A + m B υ 2 Όταν υ B1 = 0, τότε m A υ 1 = m A + m B υ 2, υ 2 = m A m A +m B υ 1 Ενώ για τις κινητικές ενέργειες ισχύει: K 1 = 1 2 m Aυ 1 2, K 2 = 1 2 m A + m B υ 2 2 K 2 K 1 = m A m A + m B

11 Παράδειγμα: Μια τελείως μη ελαστική κρούση. Υποθέστε ότι στο παράδειγμα με τη σύγκρουση των δυο βαγονιών, τα δύο βαγόνια κολλάνε μετά την κρούση. Να βρεθεί η τελική ταχύτητα υ 2x και να συγκριθούν οι κινητικές ενέργειες πριν και μετά την κρούση. m A υ A1x + m B υ B1x = m A + m B υ 2x υ 2x = m Aυ A1x + m B υ B1x m A + m B = 0,50 m/s Πριν την κρούση: K A = 1 2 m Aυ A1x 2 = 1,0 J K B = 1 2 m Bυ B1x 2 = 0,60 J Μετά την κρούση: 1 2 m A + m B υ 2x 2 = 0,10 J

12 Παράδειγμα: Το βαλλιστικό εκκρεμές. Στο πιο κάτω σχήμα φαίνεται ένα βαλλιστικό εκκρεμές, ένα σύστημα για τη μέτρηση της ταχύτητας μιας σφαίρας. Η σφαίρα, που έχει μάζα m, πυροβολείται προς ένα κομμάτι ξύλο μάζας Μ, το οποίο είναι αναρτημένο σαν εκκρεμές. Η σφαίρα σφηνώνεται στο ξύλο, κάνοντας μια τελείως μη ελαστική (πλαστική) κρούση με αυτό. Μετά την πρόσκρουση της σφαίρας το ξύλο μετακινείται και ακολουθώντας κυκλική τροχιά, ανυψώνεται και μετατοπίζεται κατά διάστημα y. Με δεδομένες τις τιμές των y, m και Μ, ποια είναι η αρχική ταχύτητα της σφαίρας; Πριν: mυ x = m + M V x, υ x = m+m V m x Μόλις μετά την κρούση η σφαίρα σφηνώνεται στο ξύλο και το σύστημα σφαίρας-ξύλου αποκτά στιγμιαία ταχύτητα V x και ανυψώνεται στο ύψος y όπου στο ανώτερο σημείο σταματά στιγμιαία άρα η κινητική του ενέργεια στο σημείο αυτό μετατρέπεται πλήρως σε δυναμική: 1 m + M V 2 x 2 = m + M gy, V x = 2gy m + M υ x = 2gy m

13 Παράδειγμα: Ανάλυση μιας σύγκρουσης αυτοκινήτων. Σ ένα σταυροδρόμι ένα αυτοκίνητο μάζας 1000 kg που κινείται προς βορρά με ταχύτητα 15 m/s συγκρούεται με φορτηγό μάζας 2000 kg που κινείται ανατολικά με ταχύτητα 10 m/s. Α) Βρείτε την ολική ορμή λίγο πριν την σύγκρουση. Β) θεωρώντας πλαστική την κρούση βρείτε την ταχύτητα μετά την σύγκρουση (μέτρο και κατεύθυνση).

14 Θεωρούμε Α το αυτοκίνητο που κινείται προς τα θετικά του άξονα y. (υ Ax = 0, υ Ay = 10 m/s). Θεωρούμε B το φορτηγό που κινείται προς τα θετικά του άξονα x. (υ Bx = 15 m/s, υ By = 0). Οι συνιστώσες της ορμής είναι: P x = m A υ Ax + m B υ Bx = 2, kg m/s P y == m A υ Ay + m B υ By = 1, kg m/s P = P x 2 + P y 2 = 2, kg m/s, tan θ = P y = 0,75, θ=37 ο P x Τα δύο αυτοκίνητα μετά την σύγκρουση αποτελούν ένα σώμα μάζας M=3000 kg. Άρα λόγω της διατήρησης της ορμής η ολική ορμή μετά την κρούση θα είναι: P = MV. Επομένως η ταχύτητα θα έχει τη διεύθυνση της ορμής P και μέτρο: V = P = 8,3 m/s M

15 Ελαστικές κρούσεις. Στις ελαστικές κρούσεις διατηρείται η ορμή και η κινητική ενέργεια. Θεωρούμε δύο σώματα Α και Β που κινούνται στον άξονα x με ταχύτητες υ Α1x και υ Β1x τα οποία συγκρούονται ελαστικά και αποκτούν μετά την κρούση ταχύτητες υ Α2x και υ Β2x. Τότε ισχύει: 1 2 m Aυ A1x m Bυ B1x 2 = 1 2 m Aυ A2x m Bυ B2x 2 m A υ A1x + m B υ B1x = m A υ A2x + m B υ B2x Για ευκολία θεωρούμε ότι το σώμα Β αρχικά είναι ακίνητο, δηλ. υ B1x = 0. Τότε 1 2 m Aυ A1x 2 = 1 2 m Aυ A2x m Bυ B2x 2 Επομένως: m A υ A1x = m A υ A2x + m B υ B2x υ A2x = m A m B m A + m B υ A1x, υ B2x = 2m A m A + m B υ A1x Στην ειδική περίπτωση όπου m A = m B και υ B1x = 0 τότε υ A2x =0 και υ B2x = υ A1x υ A1x = υ B2x υ A2x

16 Γενικά υ B2x υ A2x = υ B1x υ A1x, σε μια ελαστική κρούση δύο σωμάτων πάνω σε ευθεία οι σχετικές τους ταχύτητες έχουν το ίδιο μέτρο αλλά αντίθετα πρόσημα. Παράδειγμα: Ελαστική κρούση σε ευθεία. Δύο βαγόνια κινούνται το ένα προς το άλλο, χωρίς τριβές, πάνω σε μια ευθύγραμμη αεροτροχιά. Αφού συγκρουστούν, το Β απομακρύνεται με μια τελική ταχύτητα +2,0 m/s. Ποιες είναι οι ταχύτητες των Α και Β μετά την κρούση; Η κρούση είναι ελαστική. m A υ A1 + m B υ B1 = m A υ A2 + m B υ B2 0,50υ A2 + 0,30υ B2 = 0,40 m/s επίσης από την ισότητα των σχετικών ταχυτήτων των δύο σωμάτων που συγκρούονται ελαστικά ισχύει: υ B2x υ A2x = υ B1x υ A1x υ A2x = 1,0 m/s, υ B2x = 3,0 m/s = 4,0 m/s

17 Παράδειγμα: Ελαστική κρούση σε δύο διαστάσεις. Στο πιο κάτω σχήμα φαίνεται μια ελαστική κρούση μεταξύ δύο λαστιχένιων δίσκων πάνω σε αεροτράπεζα χωρίς τριβές. Ο δίσκος Α έχει μάζα m A =0,500 kg και ο δίσκος Β μάζα m Β =0,300 kg. Ο δίσκος Α έχει αρχική ταχύτητα 4,00 m/s στη διεύθυνση των θετικών x και τελική ταχύτητα 2,00 m/s σε άγνωστη διεύθυνση. Ο δίσκος Β είναι αρχικά ακίνητος. Βρείτε την τελική ταχύτητα του δίσκου Β και τις γωνίες α και β του σχήματος. Ελαστική κρούση επομένως: 1 2 m Aυ A1 2 = 1 2 m Aυ A m Bυ B2 2 υ B2 = 4,47 m/s Για την εύρεση των γωνιών παίρνουμε τη διατήρηση των ορμών στους άξονες x και y: m A υ A1x + m B υ B1x = m A υ A2x + m B υ B2x

18 Άξονας x: 0,500 kg 4,00 m/s = 0,500 kg 2,00 m/s cos α + 0,300 kg 4,47 m/s cos β Άξονας y: 0 = m A υ A2y + m B υ B2y = 0,500 kg 2,00 m/s sin α 0,300 kg 4,47 m/s sin β λύνουμε τις εξισώσεις ως προς sinβ και cosβ, ισχύει sin β 2 + cos β 2 = 1, οπότε βρίσκουμε το α από την άλλη εξίσωση. Αφού βρούμε το α αντικαθιστούμε και βρίσκουμε το β. α=36,9 ο και β=26,6 ο.

19 Κέντρο μάζας. Έστω ένα σύστημα με μια κατανομή μαζών στο χώρο. Οι συντεταγμένες του κέντρου μάζας ορίζονται ως: x cm = m ix i i i m i Γενικότερα ισχύει: r cm = m ir i i i m i Το κέντρο μάζας είναι η σταθμισμένη μέση θέση των σωματίων, με στατιστικό βάρος τη μάζα τους.

20 Παράδειγμα: Κέντρο μάζας ενός μορίου νερού. Στο πιο κάτω σχήμα φαίνεται ένα μόριο νερού. Η απόσταση μεταξύ των ατόμων είναι d=9,57 x m. Κάθε άτομο έχει μάζα 16,0 u. Να βρείτε το κέντρο μάζας του μορίου. Το άτομο του οξυγόνου έχει συντεταγμένες (x,y)=(0,0) x cm = y cm = m ix i i i m i = 1,0u d cos 52,5o + 1,0u d cos 52,5 o + 16,0u 0 1,0u + 1,0u + 16u = 0,068 d = 6, m m ix i i i m i = 1,0u d sin 52,5o 1,0u d sin 52,5 o + 16,0u 0 1,0u + 1,0u + 16u = 0

21 Κίνηση του κέντρου μάζας. Οι συνιστώσες της ταχύτητας του κέντρου μάζας υ cm-x και υ cm-y είναι οι παράγωγοι ως προς το χρόνο των x cm και y cm. Άρα: υ cm x = υ cm y = i i m iυ ix i m i m iυ iy i m i Γενικότερα: υ cm = m iυ i i i m i Ολική ορμή του συστήματος των μαζών: Mυ cm = i m i υ i = P Υπενθυμίζουμε ότι όταν η ολική εξωτερική δύναμη είναι μηδέν, τότε η ολική ορμή P παραμένει σταθερή και επομένως σύμφωνα με την πιο πάνω εξίσωση η ταχύτητα του κέντρου μάζας παραμένει σταθερή.

22 Διελκυστίνδα πάνω στον πάγο. Ο Α στέκεται σε απόσταση 20,0 m από τον Β, πάνω στην λεία επιφάνεια παγωμένης λίμνης. Ο Β έχει μάζα 60,0 kg και ο Α 90 kg. Στο μέσο της απόστασης ανάμεσά τους υπάρχει ένα κύπελλο καφέ. Κρατάνε τη μια και την άλλη άκρη σκοινιού αμελητέας μάζας που είναι τεντωμένο. Όταν ο Α κινηθεί κατά 6,00 m προς το κύπελλο, κατά πόσο και σε ποια κατεύθυνση έχει κινηθεί ο Β; Στο σύστημα των Α και Β δεν ασκούνται εξωτερικές δυνάμεις αφού η επιφάνεια της λίμνης δεν έχει τριβές και είναι οριζόντια. Επομένως η ολική ορμή του συστήματος παραμένει σταθερή και άρα και η ταχύτητα του κέντρου μάζας είναι σταθερή. Αρχικά οι Α και Β είναι ακίνητοι άρα η ταχύτητα του κέντρου μάζας του συστήματος είναι μηδέν. Επομένως και μετά θα παραμείνει η ταχύτητα του κέντρου μάζας μηδέν παρ ολο που οι Α και Β μετακινήθηκαν. Άρα το κέντρο μάζας παραμένει το ίδιο. Οι αρχικές συντεταγμένες του Α και Β είναι αντίστοιχα -10,0 m και +10 m.

23 Άρα: x cm = 90 kg 10,0 m + 60 kg 10,0 m 90,0 kg+60,0 kg = 2,0 m Αφού ο Α μετακινήθηκε κατά 6,00 m προς το κύπελλο, η νέα συντεταγμένη του θα είναι -4,00 m. Άρα: x cm = 90 kg 4,0 m + 60 kg x 2 90,0 kg+60,0 kg Εξωτερικές δυνάμεις και κίνηση του κέντρου μάζας. = 2,0 m, x 2 = 1,0 m. Όταν πάνω σε ένα σώμα ή σύστημα σωμάτων ασκούνται εξωτερικές δυνάμεις, το κέντρο μάζας του σώματος ή του συστήματος κινείται σαν να ήταν όλη η μάζα συγκεντρωμένη στο κέντρο μάζας και πάνω της δρούσε μια δύναμη ίση με το άθροισμα των εξωτερικών δυνάμεων. Όλες οι εσωτερικές δυνάμεις στο σύστημα λόγω του τρίτου νόμου του Νεύτωνα αλληλοαναιρούνται και η ολική δύναμη στο σύστημα είναι το άθροισμα όλων των εξωτερικών δυνάμεων. Ma cm = m i a i = F iεξωτ i i

24 Μια οβίδα διασπάται στα δύο εν πτήσει. Αν αγνοηθεί η αντίσταση του αέρα, τότε το κέντρο μάζας των δύο θραυσμάτων θα ακολουθήσει την τροχιά που θα ακολουθούσε η οβίδα πριν διασπαστεί.

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 07 Ορμή Κρούσεις ΦΥΣ102 1

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 07 Ορμή Κρούσεις ΦΥΣ102 1 Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 07 Ορμή Κρούσεις ΦΥΣ102 1 Ορμή και Δύναμη Η ορμή p είναι διάνυσμα που ορίζεται από

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 3 ΟΡΜΗ-ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ

ΕΡΓΑΣΙΑ 3 ΟΡΜΗ-ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ ΕΡΓΑΣΙΑ 3 ΟΡΜΗ-ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ Παρατηρήσεις-Υποδείξεις Μετωπική λέγεται η κρούση κατά την οποία τα διανύσματα των ταχυτήτων πριν την κρούση των σωμάτων που συγκρούονται βρίσκονται στην ίδια ευθεία.

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 3 ΟΡΜΗ-ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ

ΕΡΓΑΣΙΑ 3 ΟΡΜΗ-ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ ΕΡΓΑΣΙΑ 3 ΟΡΜΗ-ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ Παρατηρήσεις-Υποδείξεις Μετωπική λέγεται η κρούση κατά την οποία τα διανύσματα των ταχυτήτων πριν την κρούση των σωμάτων που συγκρούονται βρίσκονται στην ίδια ευθεία.

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΜΗΧΑΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

Γ ΛΥΚΕΙΟΥ ΜΗΧΑΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΜΗΧΑΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΟΡΜΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΩΜΑΤΟΣ ΚΑΙ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ Το αποτέλεσμα μιας σύγκρουσης δύο σωμάτων εξαρτάται από τις ορμές τους. Όταν δύο κριάρια συγκρούονται και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: ΜΗΧΑΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΕΦΑΛΑΙΟ 1: ΜΗΧΑΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΚΕΦΑΛΑΙΟ : ΜΗΧΑΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κατηγορία Α (7 ΠΕΡΙΟΔΟΙ). α. Μπορείτε να τρέξετε αρκετά γρήγορα ώστε να αποκτήσετε την ίδια ορμή με ένα αυτοκίνητο που κινείται με ταχύτητα μέτρου

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ορμή

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ορμή ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. B Λυκείου Ύλη: Ορμή 13-11-2016 Θέμα 1 ο : 1) Κατά την πλαστική κρούση δύο σωμάτων: α) η κινητική ενέργεια και η ορμή του συστήματος των σωμάτων παραμένουν σταθερές β) η κινητική

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Σε κάθε κρούση ισχύει α. η αρχή διατήρησης της μηχανικής ενέργειας. β. η αρχή διατήρησης της ορμής. γ. η αρχή διατήρησης του ηλεκτρικού φορτίου. δ. όλες οι παραπάνω αρχές.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή: Είναι η κίνηση (παραβολική τροχιά) που κάνει ένα σώμα το οποίο βάλλεται με οριζόντια ταχύτητα U 0 μέσα στο πεδίο βαρύτητας

Διαβάστε περισσότερα

ΚΡΟΥΣΕΙΣ. γ) Δ 64 J δ) 64%]

ΚΡΟΥΣΕΙΣ. γ) Δ 64 J δ) 64%] 1. Μικρή σφαίρα Σ1, μάζας 2 kg που κινείται πάνω σε λείο επίπεδο με ταχύτητα 10 m/s συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Σ2 μάζας 8 kg. Να υπολογίσετε: α) τις ταχύτητες των σωμάτων μετά

Διαβάστε περισσότερα

Ερωτήσεις του τύπου Σωστό /Λάθος

Ερωτήσεις του τύπου Σωστό /Λάθος Ερωτήσεις του τύπου Σωστό /Λάθος Οδηγία: Για να απαντήσετε στις παρακάτω ερωτήσεις, αρκεί να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δεξιά απ αυτόν το γράμμα Σ αν την κρίνετε σωστή ή το

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 1 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 5) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Σύστηµα αναφοράς κέντρου µάζας

Σύστηµα αναφοράς κέντρου µάζας ΦΥΣ - Διαλ.6 Σύστηµα αναφοράς κέντρου µάζας Έστω σώµατα µάζας m και m κινούµενα µε ταχύτητες υ και υ Η ταχύτητα του ΚΜ δίνεται από τη σχέση: υ cm = m υ + m υ m + m Σε ένα σύστηµα το οποίο συνδέεται µε

Διαβάστε περισσότερα

ΚΡΟΥΣΗ. α. η ολική κινητική ενέργεια του συστήματος. β. η ορμή του συστήματος. 1. Σε κάθε κρούση ισχύει

ΚΡΟΥΣΗ. α. η ολική κινητική ενέργεια του συστήματος. β. η ορμή του συστήματος. 1. Σε κάθε κρούση ισχύει ΚΡΟΥΣΗ 1 ο ΘΕΜΑ Α. Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Σε κάθε κρούση ισχύει

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 5 η Παραδείγματα: (1) Δύο σώματα είναι δεμένα με σχοινί όπως στο σχήμα. Στο πρώτο σώμα μάζας m 1 = 2Κg ασκούμε δύναμη F = 4N. Αν η μάζα του σώματος (2) είναι m 2

Διαβάστε περισσότερα

ΘΕΜΑ Α: ΔΙΑΡΚΕΙΑ: 180min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ

ΘΕΜΑ Α: ΔΙΑΡΚΕΙΑ: 180min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ: 8min ONOM/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ:. ΘΕΜΑ ο ΘΕΜΑ ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ ΘΕΜΑ Α:. Σφαίρα μάζας m = m κινείται με ταχύτητα αλγεβρικής τιμής +υ και συγκρούεται

Διαβάστε περισσότερα

Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= 1 s ). Αν η ταχύτητα στη θέση x

Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= 1 s ). Αν η ταχύτητα στη θέση x Εισαγωγή στις Φυσικές Επιστήμες (4 7 09) Μηχανική ΘΕΜΑ Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= s ). Αν η ταχύτητα στη θέση x 0 = 0

Διαβάστε περισσότερα

Κεφάλαιο 6. Έργο και κινητική ενέργεια

Κεφάλαιο 6. Έργο και κινητική ενέργεια Κεφάλαιο 6 Έργο και κινητική ενέργεια Έργο. Το έργο είναι βαθμωτή ποσότητα και ορίζεται ως το γινόμενο της δύναμης F που ασκείται σ ένα σώμα και της απόστασης s που διανύει υπό την επίδραση αυτής της δύναμης.

Διαβάστε περισσότερα

Ορμή 2ος Νόμος Νεύτωνα

Ορμή 2ος Νόμος Νεύτωνα 2ος Νόμος Νεύτωνα - Ορμή Ορμή 2ος Νόμος Νεύτωνα 1. Ένα αντικείμενο μάζας m = 2kg κινείται σε ευθεία τροχιά. Αρχικά η ταχύτητα του έχει μέτρο υ 1 = 4m/s, ενώ στην συνέχεια αλλάζει και αποκτάει μέτρο υ 2

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΘΕΜΑ Α Α.1. δυο σφαίρες με διαφορετικές μάζες συγκρούονται κεντρικά και πλαστικά Αν αμέσως μετά την κρούση η κινητική ενέργεια του συστήματος μηδενίζεται τότε οι σφαίρες πριν την κρούση

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι:

ΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι: ΑΣΚΗΣΗ. Το διάνυσμα θέσης ενός σώματος μάζας =,k δίνεται από τη σχέση: 6. α Βρείτε την θέση και το μέτρο της ταχύτητας του κινητού την χρονική στιγμή. β Τι είδους κίνηση κάνει το κινητό σε κάθε άξονα;

Διαβάστε περισσότερα

ΦΥΣ 111 Γενική Φυσική Ι 8 η Εργασία Επιστροφή:

ΦΥΣ 111 Γενική Φυσική Ι 8 η Εργασία Επιστροφή: ΦΥΣ 111 Γενική Φυσική Ι 8 η Εργασία Επιστροφή: 09.11.18 1. Μία µάζα 3m που κινείται ανατολικά µε ταχύτητα υ, συγκρούεται πλαστικά µε µια µάζα 2m που κινείται βορειοανατολικά µε ταχύτητα 2υ. Ποιά είναι

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Β Λυκείου. ~ Ορμή Διατήρηση ορμής ~

Διαγώνισμα Φυσικής Β Λυκείου. ~ Ορμή Διατήρηση ορμής ~ Διαγώνισμα Φυσικής Β Λυκείου ~ Ορμή Διατήρηση ορμής ~ Θέμα Α Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση. 1) Σε μία πλαστική κρούση δύο σωμάτων: i) Κάθε σώμα υφίσταται μόνιμη παραμόρφωση και

Διαβάστε περισσότερα

Ορμή - Κρούσεις. ΦΥΣ Διαλ.23 1

Ορμή - Κρούσεις. ΦΥΣ Διαλ.23 1 Ορμή - Κρούσεις ΦΥΣ 111 - Διαλ.3 1 Χτύπημα καράτε ΦΥΣ 111 - Διαλ.3 q Σπάσιμο μιας σανίδας ξύλου με την ώθηση I = FΔt = Δp = mδυ Δt πολύ μικρό και Δp = σταθ. è F μεγάλη Ø Σώματα: ü Χέρι: M xεριού =3Kg,

Διαβάστε περισσότερα

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Νοεµβρίου-2008

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Νοεµβρίου-2008 η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 3 η Πρόοδος: 5-Νοεµβρίου-008 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Η εξέταση αποτελείται από µέρη. Το

Διαβάστε περισσότερα

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). ΦΥΣ. 111 2 η Πρόοδος: 24-Νοεµβρίου-2018 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας δίνονται 9 προβλήµατα

Διαβάστε περισσότερα

Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1

Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1 Ορμή - Κρούσεις, ΦΥΣ 131 - Διαλ.19 1 ΦΥΣ 131 - Διαλ.19 2 Κρούσεις σε 2 διαστάσεις q Για ελαστικές κρούσεις! p 1 + p! 2 = p! 1! + p! 2! όπου p = (p x,p y ) Δηλαδή είναι 2 εξισώσεις, µια για κάθε διεύθυνση

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Προτεινόμενες Λύσεις Πρόβλημα-1 (15 μονάδες) Μια

Διαβάστε περισσότερα

4η εργασία Ημερομηνία αποστολής: 1 Απριλίου 2007 (Τα θέματα κάθε άσκησης θεωρούνται ισοδύναμα)

4η εργασία Ημερομηνία αποστολής: 1 Απριλίου 2007 (Τα θέματα κάθε άσκησης θεωρούνται ισοδύναμα) 4η εργασία Ημερομηνία αποστολής: 1 Απριλίου 007 (Τα θέματα κάθε άσκησης θεωρούνται ισοδύναμα) Άσκηση 1 (10 μονάδες) A) Ένα βλήμα μάζας m που κινείται με ταχύτητα v διαπερνά τη σφαίρα ενός εκκρεμούς μάζας

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α Α.1. ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α Ακίνητο πυροβόλο όπλο εκπυρσοκροτεί (δ) Η ορµή του συστήµατος

Διαβάστε περισσότερα

Κεφάλαιο 9 Γραμμική Ορμή. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 9 Γραμμική Ορμή. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 9 Γραμμική Ορμή Περιεχόμενα Κεφαλαίου 9 Σχέση Ορμής και Δύναμης Διατήρηση της ορμής Κρούση και Ώθηση Διατήρηση ενέργειας και ορμής στις κρούσεις Ελαστικές κρούσεις σε μία διάσταση Ανελαστικές

Διαβάστε περισσότερα

Βασίλης Ζαρείφης Μαθήματα Φυσικής. The flipped class project ΚΡΟΥΣΕΙΣ

Βασίλης Ζαρείφης Μαθήματα Φυσικής. The flipped class project ΚΡΟΥΣΕΙΣ Μαθήματα Φυσικής The flipped class project ΚΡΟΥΣΕΙΣ Κρούσεις - Μάθημα Η ορμή ενός συστήματος σωμάτων είναι το διανυσματικό άθροισμα των ορμών των σωμάτων: p p p... Η κινητική ενέργεια ενός συστήματος σωμάτων

Διαβάστε περισσότερα

Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! 0 + 0 = mg " L & $ !

Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! 0 + 0 = mg  L & $ ! Παράδειγµα Ενέργειες Το ακόλουθο πρόβληµα µπορεί να λυθεί είτε µε χρήση των νόµων του Newton ( F=mα ) ή Διατήρηση ενέργειας. Ένα µικρό τµήµα σχοινιού κρέµεται προς τα κάτω µέσα από µια τρύπα σε λείο τραπέζι.

Διαβάστε περισσότερα

Λύση Ισχύει : ΔΡ 1 = Ρ 1 Ρ 1 ΔΡ 1 = m 1 υ 1 m 1 υ 1 m 1 υ 1 = ΔΡ 1 + m 1 υ 1 υ 1 = (ΔΡ 1 + m 1 υ 1 ) / m 1 υ 1 = [ (6)] / 1 υ 1 = 2 m / s. Η αρ

Λύση Ισχύει : ΔΡ 1 = Ρ 1 Ρ 1 ΔΡ 1 = m 1 υ 1 m 1 υ 1 m 1 υ 1 = ΔΡ 1 + m 1 υ 1 υ 1 = (ΔΡ 1 + m 1 υ 1 ) / m 1 υ 1 = [ (6)] / 1 υ 1 = 2 m / s. Η αρ 1)Σώμα μάζας m 1 = 0,3 kg που κινείται με οριζόντια ταχύτητα υ 1 = 100 m / s συγκρούεται πλαστικά με σώμα μάζας m 2 = 1,7 kg που βρίσκεται αρχικά ακίνητο πάνω σε λείο οριζόντιο επίπεδο. Να υπολογίσετε

Διαβάστε περισσότερα

Κεφάλαιο 4. Νόμοι κίνησης του Νεύτωνα

Κεφάλαιο 4. Νόμοι κίνησης του Νεύτωνα Κεφάλαιο 4 Νόμοι κίνησης του Νεύτωνα Στόχοι 4 ου Κεφαλαίου Δύναμη και αλληλεπιδράσεις. Η δύναμη σαν διάνυσμα και ο συνδυασμός δυνάμεων- Επαλληλία δυνάμεων. Πρώτος νόμος του Νεύτωνα- η έννοια της αδράνειας.

Διαβάστε περισσότερα

2) Ορμή και ρυθμός μεταβολής της στην κυκλική κίνηση. 3) Ένα σύστημα σωμάτων σε πτώση. 4) Ένα σύστημα επιταχύνεται. Γ) Ορμή και διατήρηση ορμής

2) Ορμή και ρυθμός μεταβολής της στην κυκλική κίνηση. 3) Ένα σύστημα σωμάτων σε πτώση. 4) Ένα σύστημα επιταχύνεται. Γ) Ορμή και διατήρηση ορμής Γ) Ορμή και διατήρηση ορμής 1) Στο ταβάνι, στον τοίχο ή στο πάτωμα; Βρισκόμαστε σε ένα δωμάτιο όπου ταβάνι τοίχος και δάπεδο έχουν φτιαχτεί από το ίδιο υλικό και κάνουμε το εξής πείραμα. Εκτοξεύουμε μπαλάκι

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

των δύο σφαιρών είναι. γ.

των δύο σφαιρών είναι. γ. ΘΕΜΑ B Σφαίρα µάζας κινούµενη µε ταχύτητα µέτρου υ συγκρούεται κεντρικά και ελαστικά µε ακίνητη σφαίρα ίσης µάζας Να βρείτε τις σχέσεις που δίνουν τις ταχύτητες των δύο σφαιρών, µετά την κρούση, µε εφαρµογή

Διαβάστε περισσότερα

ΕΡΩΣΗΕΙ ΣΙ ΚΡΟΤΕΙ. Φυσική Γ Λυκείου - Κρούσεις

ΕΡΩΣΗΕΙ ΣΙ ΚΡΟΤΕΙ. Φυσική Γ Λυκείου - Κρούσεις . Σε κάθε κρούση ισχύει α. η αρχή διατήρησης της μηχανικής ενέργειας. β. η αρχή διατήρησης της ορμής. γ. η αρχή διατήρησης του ηλεκτρικού φορτίου. δ. όλες οι παραπάνω αρχές. ΕΡΩΣΗΕΙ ΣΙ ΚΡΟΤΕΙ. Κατά την

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Προσανατολισμού Β Λυκείου Οριζόντια Βολή Ορμή Κρούσεις

Διαγώνισμα Φυσικής Προσανατολισμού Β Λυκείου Οριζόντια Βολή Ορμή Κρούσεις Διαγώνισμα Φυσικής Προσανατολισμού Β Λυκείου Οριζόντια Βολή Ορμή Κρούσεις Θέμα Α 1) Δύο σώματα ρίχνονται την ίδια χρονική στιγμή από το ίδιο σημείο με οριζόντιες ταχύτητες υ 1 και υ 2, με υ 1 > υ 2. Τα

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

ΣΧΟΛΙΚΟ ΕΤΟΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΛΟΚΑΙΡΙ ο ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ

ΣΧΟΛΙΚΟ ΕΤΟΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΛΟΚΑΙΡΙ ο ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΛΟΚΑΙΡΙ 2015 2 ο ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ: ΘΕΜΑ Α Στις Ερωτήσεις πολλαπλής επιλογής 1 έως 4 να γράψετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΡΟΥΣΗΣ. Ελαστική κρούση

ΑΣΚΗΣΕΙΣ ΚΡΟΥΣΗΣ. Ελαστική κρούση Ελαστική κρούση 1. Σώμα μάζας m 1 = 2 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου υ 1 = 4 m / s συγκρούεται κεντρικά και ελαστικά με άλλη σφαίρα μάζας m 2 = 4 kg που κινείται και αυτή προς τα δεξιά

Διαβάστε περισσότερα

4.1. Κρούσεις. Κρούσεις. 4.1.Ταχύτητες κατά την ελαστική κρούση Η Ορμή είναι διάνυσμα. 4.3.Κρούση και Ενέργεια.

4.1. Κρούσεις. Κρούσεις. 4.1.Ταχύτητες κατά την ελαστική κρούση Η Ορμή είναι διάνυσμα. 4.3.Κρούση και Ενέργεια. 4.1.. 4.1.Ταχύτητες κατά την ελαστική κρούση. Σε λείο οριζόντιο επίπεδο κινείται ένα σώμα Α μάζας m 1 =0,2kg με ταχύτητα υ 1 =6m/s και συγκρούεται κεντρικά και ελαστικά με δεύτερο σώμα Β μάζας m 2 =0,4kg.

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει

Διαβάστε περισσότερα

Απάντηση: α) 16,0 Ν, β) 10,2 Ν

Απάντηση: α) 16,0 Ν, β) 10,2 Ν Σώμα με μάζα m 1 τοποθετείται πάνω σε κεκλιμένο επίπεδο με γωνία κλίσεως α και είναι δεμένο με σχοινί με δεύτερο σώμα μάζας m 2 το οποίο κρέμεται, το σχοινί περνά, από μικρή άτριβη τροχαλία. Ο συντελεστής

Διαβάστε περισσότερα

[απ. α) =2 m/s, β) h=1,25 m, γ) =9 J, =8 J]

[απ. α) =2 m/s, β) h=1,25 m, γ) =9 J, =8 J] Ορµή 1. Ένα αυτοκίνητο μάζας 1000 kg κινείται με ταχύτητα 72 km/h. Κάποια στιγμή προσκρούει σε τοίχο και σταματάει. Αν η διάρκεια της σύγκρουσης είναι 0,2 s να βρείτε α) Την μεταβολή της ορμής του β) Τη

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗ ΠΡΟΕΤΟΙΜΑΣΙΑΣ Γ ΛΥΚΕΙΟΥ 25/12/2016 ΘΕΜΑ 1 Στις παρακάτω ερωτήσεις 1-7 να γράψετε στο τετράδιό σας τον αριθµό της

ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗ ΠΡΟΕΤΟΙΜΑΣΙΑΣ Γ ΛΥΚΕΙΟΥ 25/12/2016 ΘΕΜΑ 1 Στις παρακάτω ερωτήσεις 1-7 να γράψετε στο τετράδιό σας τον αριθµό της ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗ ΠΡΟΕΤΟΙΜΑΣΙΑΣ Γ ΛΥΚΕΙΟΥ 5//06 ΘΕΜΑ Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Διατήρηση Ορμής Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός htt://hyiccore.wordre.co/ Βασικές Έννοιες Μέχρι τώρα έχουμε ασχοληθεί με την μελέτη ενός σώματος και μόνο. Πλέον

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ o ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ.) Τ ι γνωρίζετε για την αρχή της ανεξαρτησίας των κινήσεων; Σε πολλές περιπτώσεις ένα σώμα εκτελεί σύνθετη κίνηση, δηλαδή συμμετέχει σε περισσότερες από μία κινήσεις. Για

Διαβάστε περισσότερα

ΠEΡΙΕΧΟΜΕΝΑ. Ενότητα 4: Φαινόμενο Doppler Θεωρία Μεθοδολογία Ερωτήσεις Πολλαπλής Επιλογής Πρόλογος... 5

ΠEΡΙΕΧΟΜΕΝΑ. Ενότητα 4: Φαινόμενο Doppler Θεωρία Μεθοδολογία Ερωτήσεις Πολλαπλής Επιλογής Πρόλογος... 5 ΠEΡΙΕΧΟΜΕΝΑ Πρόλογος......................................................... 5 Ενότητα : Κρούσεις Θεωρία Μεθοδολογία.............................................. 9 Ερωτήσεις Πολλαπλής Επιλογής.......................................

Διαβάστε περισσότερα

Κρούσεις. 5. Σε μια ελαστική κρούση δεν διατηρείται α. η ολική κινητική ενέργεια του συστήματος. β. η ορμή του συστήματος.

Κρούσεις. 5. Σε μια ελαστική κρούση δεν διατηρείται α. η ολική κινητική ενέργεια του συστήματος. β. η ορμή του συστήματος. ο ΘΕΜΑ Κρούσεις Α Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σε κάθε κρούση ισχύει α η

Διαβάστε περισσότερα

ΦΥΣ Τελική Εξέταση : 9-Δεκεμβρίου Υπεύθυνος Μαθήματος: Τζιχάντ Μούσα

ΦΥΣ Τελική Εξέταση : 9-Δεκεμβρίου Υπεύθυνος Μαθήματος: Τζιχάντ Μούσα ΦΥΣ. 131 Τελική Εξέταση : 9-Δεκεμβρίου-2015 Υπεύθυνος Μαθήματος: Τζιχάντ Μούσα Πριν αρχίσετε συμπληρώστε τα στοιχεία σας (ονοματεπώνυμο και αριθμό ταυτότητας). Επίθετο: ---------------------------------------

Διαβάστε περισσότερα

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

[50m/s, 2m/s, 1%, -10kgm/s, 1000N] ΚΕΦΑΛΑΙΟ 5 ο - ΜΕΡΟΣ Α : ΚΡΟΥΣΕΙΣ ΕΝΟΤΗΤΑ 1: ΚΡΟΥΣΕΙΣ 1. Σώμα ηρεμεί σε οριζόντιο επίπεδο. Βλήμα κινούμενο οριζόντια με ταχύτητα μέτρου και το με ταχύτητα, διαπερνά το σώμα χάνοντας % της κινητικής του

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Κεφάλαιο: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΡΟΥΣΕΙΣ Ονοματεπώνυμο Μαθητή: Ημερομηνία: Επιδιωκόμενος Στόχος: 70/100 Θέμα A Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης

Διαβάστε περισσότερα

= p), κινούνται σε. p p 2p = + =. Ερώτηση 3. Δύο σώματα με ορμές των οποίων τα μέτρα είναι ίσα ( p 1

= p), κινούνται σε. p p 2p = + =. Ερώτηση 3. Δύο σώματα με ορμές των οποίων τα μέτρα είναι ίσα ( p 1 Ερώτηση 3. Δύο σώματα με ορμές των οποίων τα μέτρα είναι ίσα ( p = p = p), κινούνται σε διευθύνσεις κάθετες μεταξύ τους και συγκρούονται πλαστικά. Το μέτρο της ορμής του συσσωματώματος μετά την κρούση

Διαβάστε περισσότερα

Κεφάλαιο 7. Δυναμική ενέργεια και διατήρηση της ενέργειας

Κεφάλαιο 7. Δυναμική ενέργεια και διατήρηση της ενέργειας Κεφάλαιο 7 Δυναμική ενέργεια και διατήρηση της ενέργειας Στόχοι 7 ου Κεφαλαίου Βαρυτική δυναμική ενέργεια. Ελαστική δυναμική ενέργεια. Δύναμη και δυναμική ενέργεια. Ενεργειακά διαγράμματα. Δυναμική ενέργεια.

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

Κρούσεις. Ομάδα Γ. Κρούσεις Ενέργεια Ταλάντωσης και Ελαστική κρούση Κρούση και τριβές Κεντρική ανελαστική κρούση

Κρούσεις. Ομάδα Γ. Κρούσεις Ενέργεια Ταλάντωσης και Ελαστική κρούση Κρούση και τριβές Κεντρική ανελαστική κρούση . Ομάδα Γ. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. Μια πλάκα μάζας Μ=4kg ηρεμεί στο πάνω άκρο ενός κατακόρυφου ελατηρίου, σταθεράς k=250ν/m, το άλλο άκρο του οποίου στηρίζεται στο έδαφος. Εκτρέπουμε

Διαβάστε περισσότερα

2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική. Πρόχειρες Λύσεις. Θέµα Α

2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική. Πρόχειρες Λύσεις. Θέµα Α 2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική Πρόχειρες Λύσεις Θέµα Α Α.1 Από ύψος h εκτοξεύονται οριζόντια µε ταχύτητες ίδιου µέτρου υ o δύο σώµατα διαφορετικής

Διαβάστε περισσότερα

των δύο σφαιρών είναι

των δύο σφαιρών είναι ΘΕΜΑ B. Μια μικρή σφαίρα μάζας συγκρούεται μετωπικά και ελαστικά με ακίνητη μικρή σφαίρα μάζας. Μετά την κρούση οι σφαίρες κινούνται με αντίθετες ταχύτητες ίσων μέτρων. Ο λόγος των μαζών των δύο σφαιρών

Διαβάστε περισσότερα

ΔΙΑΡΚΕΙΑ: 180min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ

ΔΙΑΡΚΕΙΑ: 180min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ: 80min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΜΟΝΑΔΕΣ ΘΕΜΑ ο ΘΕΜΑ ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΘΕΜΑ Α:. Κατά την διάρκεια της φθίνουσας ταλάντωσης ενός αντικειμένου, το

Διαβάστε περισσότερα

Κρούσεις. 1 ο ΘΕΜΑ.

Κρούσεις. 1 ο ΘΕΜΑ. ο ΘΕΜΑ Κρούσεις Α. Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε κάθε κρούση ισχύει

Διαβάστε περισσότερα

Ημερομηνία: Παρασκευή 27 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Παρασκευή 27 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /0/07 ΕΩΣ //07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 7 Οκτωβρίου 07 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης. Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 8 ο μάθημα 1 Κεφάλαιο 11 Συγκρούσεις 2 Συγκρούσεις Στις συγκρούσεις μεταξύ

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Απενεργοποιήστε τα κινητά σας τηλέφωνα!!! Παρακαλώ

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΜΑ 1ο Στις ερωτήσεις 1, 2 και3 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Α. ο σώμα αρχίζει να κινείται όταν η προωστική δύναμη γίνει ίση με τη δύναμη της τριβής. Έχουμε δηλαδή

Α. ο σώμα αρχίζει να κινείται όταν η προωστική δύναμη γίνει ίση με τη δύναμη της τριβής. Έχουμε δηλαδή Εισαγωγή στις Φυσικές Επιστήμες (8-7-007) Μηχανική Ονοματεπώνυμο Τμήμα ΘΕΜΑ A. Υλικό σώμα μάζας βρίσκεται σε οριζόντιο επίπεδο με μέγιστο συντελεστή στατικής τριβής η και συντελεστή τριβής ολίσθησης μ.

Διαβάστε περισσότερα

5. Να χαρακτηρίσετε σωστή ή λανθασμένη την παρακάτω διατύπωση. <<Στην κρούση σωμάτων η ορμή του κάθε σώματος διατηρείται σταθερή.

5. Να χαρακτηρίσετε σωστή ή λανθασμένη την παρακάτω διατύπωση. <<Στην κρούση σωμάτων η ορμή του κάθε σώματος διατηρείται σταθερή. Τεστ Αξιολόγησης : ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΕΦ 2 ο : ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΟΡΜΗΣ - 20 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Εισηγητής : Γεώργιος Φ. Σ ι ώ ρ η ς Φυσικός.

Διαβάστε περισσότερα

Κρούσεις. 1 ο ΘΕΜΑ. Φυσική Γ Θετ. και Τεχν/κης Κατ/σης. Θέματα εξετάσεων

Κρούσεις. 1 ο ΘΕΜΑ. Φυσική Γ Θετ. και Τεχν/κης Κατ/σης. Θέματα εξετάσεων ο ΘΕΜΑ Κρούσεις Α. Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε κάθε κρούση ισχύει

Διαβάστε περισσότερα

Παράδειγμα 1 ο. + U &' = mg(2r) k(2r)2! E µ"# = U #$%. = 2mgR + 2kR 2 U!". # K i + U i = K f + U f! U i = K f! 1 2 m" 2 f.

Παράδειγμα 1 ο. + U &' = mg(2r) k(2r)2! E µ# = U #$%. = 2mgR + 2kR 2 U!. # K i + U i = K f + U f! U i = K f! 1 2 m 2 f. Παράδειγμα ο ΦΥΣ 3 - speca Μια χάντρα μάζας m γλιστρά χωρίς τριβές σε ένα κατακόρυφο στεφάνι ακτίνας R. H χάντρα κινείται κάτω από την συνδιασμένη επιρροή της βαρύτητας και ενός ελατηρίου το ένα άκρο του

Διαβάστε περισσότερα

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). ΦΥΣ. 111 2 η Πρόοδος: 24-Νοεµβρίου-2018 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας δίνονται 9 προβλήµατα

Διαβάστε περισσότερα

προς ένα ακίνητο σωμάτιο α (πυρήνας Ηe), το οποίο είναι ελεύθερο να κινηθεί,

προς ένα ακίνητο σωμάτιο α (πυρήνας Ηe), το οποίο είναι ελεύθερο να κινηθεί, ΚΡΟΥΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 1. Σφαίρα Α μάζας 3m κινείται πάνω σε λείο οριζόντιο επίπεδο κατά τη θετική φορά και συγκρούεται κεντρικά και ελαστικά με άλλη σφαίρα Β μάζας m που κινείται κατά την

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. ΘΕΜΑ 3 ο. ΘΕΜΑ 4 ο ΦΥΣΙΚΗ ΘΕΜΑΤΑ. 1. Να διατυπωθούν οι τρεις νόμοι του Νεύτωνα.

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. ΘΕΜΑ 3 ο. ΘΕΜΑ 4 ο ΦΥΣΙΚΗ ΘΕΜΑΤΑ. 1. Να διατυπωθούν οι τρεις νόμοι του Νεύτωνα. ΦΥΣΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο 1. Να διατυπωθούν οι τρεις νόμοι του Νεύτωνα. ΘΕΜΑ 2 ο 1. Να διατυπώσετε το νόμο της παγκόσμιας έλξης. 2. Τι είναι το έργο και τι η ενέργεια; 3. Πως ορίζετε η μέση διανυσματική ταχύτητα

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας ΦΥΣ102 1 Δυναμική Ενέργεια και διατηρητικές δυνάμεις

Διαβάστε περισσότερα

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης.

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης. Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m / s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 05 Έργο και Κινητική Ενέργεια ΦΥΣ102 1 Όταν μια δύναμη δρα σε ένα σώμα που κινείται,

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις. Θέµα Α. (α) υ 2 = 0

Ενδεικτικές Λύσεις. Θέµα Α. (α) υ 2 = 0 ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.. Σε κάθε κρούση ανάµεσα σε δύο σώµατα µικρών διαστάσεων : (ϐ) η µεταβολή της ορµής του ενός είναι αντίθετη της µεταβολής της ορµής

Διαβάστε περισσότερα

Σελίδα 1 από 6 ΣΧΟΛΙΚΟ ΕΤΟΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:...

Σελίδα 1 από 6 ΣΧΟΛΙΚΟ ΕΤΟΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... Σελίδα 1 από 6 ΣΧΟΛΙΚΟ ΕΤΟΣ 2012-2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... TMHMA: ΘΕΜΑ Α Στις Ερωτήσεις πολλαπλής επιλογής 1 εώς 4 να γράψετε

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα

ΚΡΟΥΣΕΙΣ. the flipped class project. Διαφάνειες μαθήματος

ΚΡΟΥΣΕΙΣ. the flipped class project. Διαφάνειες μαθήματος ΚΡΟΥΣΕΙΣ Διαφάνειες μαθήματος Ορμή Κάθε κινούμενο σώμα έχει ορμή και κινητική ενέργεια Η ορμή είναι διανυσματικό μέγεθος Σχέση Κινητικής ενέργειας Ορμής : K K K Kg Σχέση Δύναμης- Ορμής : Η δύναμη (αίτιο)

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Προτεινόμενες Λύσεις Πρόβλημα - ( μονάδες) Ένα όχημα, μαζί με ένα κανόνι που είναι ακλόνητο πάνω σε αυτό,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ Α. Δ. Ο. (Αρχή Διατήρησης Ορμής)

ΑΣΚΗΣΕΙΣ ΣΤΗΝ Α. Δ. Ο. (Αρχή Διατήρησης Ορμής) ΑΣΚΗΣΕΙΣ ΣΤΗΝ Α. Δ. Ο. (Αρχή Διατήρησης Ορμής) 1. Δύο παγοδρόμοι, Α και Β, με μάζες 60 kg και 80 kg αντίστοιχα, βρίσκονται σε απόσταση L, σε οριζόντιο παγοδρόμιο. Στα χέρια τους κρατάνε ένα τεντωμένο σχοινί.

Διαβάστε περισσότερα

Ο µαθητής που έχει µελετήσει το κεφάλαιο διατήρησης της ορµής πρέπει:

Ο µαθητής που έχει µελετήσει το κεφάλαιο διατήρησης της ορµής πρέπει: Ο µαθητής που έχει µελετήσει το κεφάλαιο διατήρησης της ορµής πρέπει: Να γνωρίζει ποιες δυνάµεις λέγονται εσωτερικές και ποιες εξωτερικές ενός συστήµατος σωµάτων. Να γνωρίζει ποιο σύστηµα λέγεται µονωµένο.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 5 0 Κεφάλαιο

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 5 0 Κεφάλαιο Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 5 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ασκήσεις Ο ΚΡΟΥΣΕΙΣ ΟΡΜΗ ΣΩΜΑΤΟΣ Ορμή ενός σώματος είναι το διανυσματικό

Διαβάστε περισσότερα

Άσκηση 8 Ελαστικές και μη ελαστικές κρούσεις Αρχή διατήρησης της ορμής

Άσκηση 8 Ελαστικές και μη ελαστικές κρούσεις Αρχή διατήρησης της ορμής Άσκηση 8 Ελαστικές και μη ελαστικές κρούσεις Αρχή διατήρησης της ορμής Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι η πειραματική επαλήθευση της Αρχής διατήρησης της ορμής σε ελαστική και μη ελαστική

Διαβάστε περισσότερα

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ DOPPLER 2012 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1. Μια

Διαβάστε περισσότερα

Φυσική Γ' Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης. Κρούσεις

Φυσική Γ' Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης. Κρούσεις Κρούσεις 1. Μια μπάλα του τένις ολισθαίνει σε λείο οριζόντιο επίπεδο χωρίς να περιστρέφεται, όπως φαίνεται στο σχήμα 1. Η μπάλα συγκρούεται με κατακόρυφο ακλόνητο τοίχο και γυρίζει πίσω, όπως φαίνεται

Διαβάστε περισσότερα

Ερωτήσεις στις κρούσεις

Ερωτήσεις στις κρούσεις Ερωτήσεις στις κρούσεις 1. Η έννοια της κρούσης έχει επεκταθεί και στο µικρόκοσµο όπου συµπεριλαµβάνει και φαινόµενα όπου τα συγκρουόµενα σωµατίδια δεν έρχονται σε επαφή.. Ονοµάζουµε κρούση κάθε φαινόµενο

Διαβάστε περισσότερα

γ. η κρούση είναι ανελαστική και κατά την κρούση η κατεύθυνση της κίνησης της πρώτης σφαίρας αναστρέφεται

γ. η κρούση είναι ανελαστική και κατά την κρούση η κατεύθυνση της κίνησης της πρώτης σφαίρας αναστρέφεται 1. Δυο σφαίρες Α και Β με Μ Α =2kg και Μ Β =4Κg κινούνται σε λείο οριζόντιο επίπεδο με ταχύτητες μέτρων υ Α =10m/s και υ Β =20m/s, σε αντίθετες κατευθύνσεις. Οι δυο σφαίρες συγκρούονται κεντρικά. Μετά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου.

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου. Κεφάλαιο : Μετασχηματισμοί Γαλιλαίου.. Γεγονότα, συστήματα αναφοράς και η αρχή της Νευτώνειας Σχετικότητας. Ως φυσικό γεγονός ορίζεται ένα συμβάν το οποίο λαμβάνει χώρα σε ένα σημείο του χώρου μια συγκεκριμένη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΟΡΜΗ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΟΡΜΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΟΡΜΗ 16113(Α) Ένας δύτης με μάζα 64 kg κολυμπάει με ταχύτητα 0,5 m/s και ρίχνει μια τρίαινα μάζας 2 kg με ταχύτητα 15

Διαβάστε περισσότερα

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής Κεφάλαιο 2 Κίνηση κατά μήκος ευθείας γραμμής Στόχοι 1 ου Κεφαλαίου Περιγραφή κίνησης σε ευθεία γραμμή όσον αφορά την ταχύτητα και την επιτάχυνση. Διαφορά μεταξύ της μέσης και στιγμιαίας ταχύτητας καθώς

Διαβάστε περισσότερα