Geodesic paths for quantum many-body systems

Σχετικά έγγραφα
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Higher Derivative Gravity Theories

Solutions - Chapter 4

Geodesic Equations for the Wormhole Metric

Lifting Entry (continued)

D Alembert s Solution to the Wave Equation

1 String with massive end-points

Note: Please use the actual date you accessed this material in your citation.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Spherical Coordinates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Homework 8 Model Solution Section

[Note] Geodesic equation for scalar, vector and tensor perturbations

On the Galois Group of Linear Difference-Differential Equations

Variational Wavefunction for the Helium Atom

Second Order Partial Differential Equations

Parametrized Surfaces

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 9 Ginzburg-Landau theory

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Spectrum Representation (5A) Young Won Lim 11/3/16

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Partial Differential Equations in Biology The boundary element method. March 26, 2013

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Distances in Sierpiński Triangle Graphs

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Section 8.3 Trigonometric Equations

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Markov chains model reduction

SPECIAL FUNCTIONS and POLYNOMIALS

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Mean-Variance Analysis

Hartree-Fock Theory. Solving electronic structure problem on computers

Α Ρ Ι Θ Μ Ο Σ : 6.913

On the Einstein-Euler Equations

Approximation of distance between locations on earth given by latitude and longitude

Metastable states in a model of spin dependent point interactions. claudio cacciapuoti, raffaele carlone, rodolfo figari

Solar Neutrinos: Fluxes

Higher spin gauge theories and their CFT duals

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Homework 3 Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

EE512: Error Control Coding

Homomorphism in Intuitionistic Fuzzy Automata

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

6.4 Superposition of Linear Plane Progressive Waves

Dark matter from Dark Energy-Baryonic Matter Couplings

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

What happens when two or more waves overlap in a certain region of space at the same time?

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

The Pohozaev identity for the fractional Laplacian

Matrix Hartree-Fock Equations for a Closed Shell System

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

High order interpolation function for surface contact problem

Graded Refractive-Index

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Solutions to Exercise Sheet 5

4.6 Autoregressive Moving Average Model ARMA(1,1)

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

derivation of the Laplacian from rectangular to spherical coordinates

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

6.003: Signals and Systems. Modulation

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Derivation of Optical-Bloch Equations

Ηλεκτρονικοί Υπολογιστές IV

Supporting Information

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Inverse trigonometric functions & General Solution of Trigonometric Equations

Lecture 2. Soundness and completeness of propositional logic

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Numerical Analysis FMN011

Electronic structure and spectroscopy of HBr and HBr +

LTI Systems (1A) Young Won Lim 3/21/15

Prey-Taxis Holling-Tanner

Θεωρητική Επιστήμη Υλικών

Second Order RLC Filters

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

5.4 The Poisson Distribution.

Heisenberg Uniqueness pairs

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Additional Results for the Pareto/NBD Model

Strain gauge and rosettes

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Linearized Lifting Surface Theory Thin-Wing Theory

Quantum Systems: Dynamics and Control 1

Transcript:

Geodesic paths for quantum many-body systems Michael Tomka, Tiago Souza, Steve Rosenberg, and Anatoli Polkovnikov Department of Physics Boston University Group: Condensed Matter Theory June 6, 2016 Workshop: Quantum Non-Equilibrium Phenomena

Adiabatic ground-state preparation Ĥ(λ(t)) Ψ gs (λ 0 ) Ψ gs (λ f ) λ(t) = λ 0 + (λ f λ 0 ) t t f Ψ i Ψ f

Adiabatic Quantum Computation Ĥ = (1 λ)ĥ 0 + λĥ f linear interoplation: λ(t) = 1 t f t Ground state of Ĥ 0 is easily accessible Ground state of Ĥ f encodes the solution to a hard computational problem E. Farhi, et al., Science 20, 472 (2001)

Superfluid - Mott Insulator Transition Superfluid Mott Insulator Phase coherence Macroscopic phase well defined in each potential well No phase coherence Macroscopic phase uncertain in each potential well Atom number uncertain in each potential well Atom number exactly known in each potential well M. Greiner, et al., Nature 415, 39-44 (2002)

Outline Introduction Quantum metric tensor Geodesics Examples The Landau-Zener model XY spin chain in a transverse magnetic field Conclusion

Introduction Parameters of the Hamiltonian Hamiltonian λ(t) = (λ 1 (t),..., λ p (t)) T M H(λ(t)) Ĥ(λ(t)) ψ n (λ(t)) = E n (λ(t)) ψ n (λ(t)), n = 0, 1, 2,...

Introduction Ĥ(λ(t)) ψ 0 (λ 0 ) ψ 0 (λ f ) F [ λ(t f ) ] = ψ(t f ) ψ 0 (t f ) 2

Quantum metric tensor - a simplistic approach Consider two nearby ground states ψ 0 (λ) and ψ 0 (λ + dλ) and define a distance (λ, dλ) between λ and dλ in M 2 (λ, dλ) 1 ψ 0 (λ) ψ 0 (λ + dλ) 2 ψ 0 (λ + dλ) = ψ 0 (λ) + µ ψ 0 (λ) dλ µ + 1 2 µ ν ψ 0 (λ) dλ µ dλ ν +... 2 (λ, dλ) 1 ψ 0 (λ) ψ 0 (λ + dλ) 2 = g µν dλ µ dλ ν ( = Re ψ 0 µ ν ψ 0 ψ 0 ) µ ψ 0 ψ 0 ν ψ 0 dλ µ dλ ν Quantum metric tensor ( g µν Re ψ 0 µ ν ψ 0 ψ 0 ) µ ψ 0 ψ 0 ν ψ 0 µ λ µ

Quantum metric tensor - a rigorous approach

Quantum metric tensor - a rigorous approach [ ψ0 ] : T [ ψ0 ]PH T [ ψ0 ]PH C u, v u v [ ψ0 ] X H projecting to a given vector u T [ ψ0 ]PH χ( u, v ) u v [ ψ0 ] = X 1 X 2 X 1 ψ 0 ψ 0 X 2 The non-degenerate hermitian metric χ pulls back to a non-degenerate hermitian metric χ only if pull back is injective where µ J.P. Provost, G. Valle, (Commun. Math. Phys. 76, 289 (1980)) χ µν ψ 0 µ ν ψ 0 ψ 0 µ ψ 0 ψ 0 ν ψ 0 λ µ and g µν = Re(χ µν ) F µν = 2 Im(χ µν )

Quantum metric tensor - Fidelity The quantum metric tensor is closely related to the fidelity F F(λ, λ + dλ) ψ 0 (λ) ψ 0 (λ + dλ) 2 The fidelity susceptibility χ F is defined by the expansion of F F(λ, λ + dλ) = 1 χ F +... and reads [ ψ 0 µ ν ψ 0 + ψ 0 ] ν µ ψ 0 χ F = ψ 0 µ ψ 0 ψ 0 ν ψ 0 dλ µ dλ ν 2 = g µν dλ µ dλ ν = 1 2 m 0 P. Zanardi, P. Giorda, and M. Cozzini, Phys. Rev. Lett. 99, 100603 (2007) ψ 0 µ Ĥ ψ m ψ m ν Ĥ ψ 0 + µ ν (E 0 E m ) 2 dλ µ dλ ν W.-L. You, Y.-W. Li, and S.-J. Gu, Phys. Rev. E 76, 022101 (2007) V. Mukherjee, A. Polkovnikov, and A. Dutta Phys. Rev. B 83, 075118 (2011)

Quantum metric tensor - Energy fluctuations ( ) gxx g g(x f, z f ) = xz, g µν = 1 2 g zx g zz m 0 ψ 0 µ Ĥ ψ m ψ m ν Ĥ ψ 0 + µ ν (E 0 E m ) 2 z = z f, x(t) = v x t + x 0, 0 t t f, x(t f ) = x f δe 2 ψ(t f ) Ĥ 2 ψ(t f ) ψ(t f ) Ĥ ψ(t f ) 2 ψ(t f ) = ψ 0 iv x δe 2 v 2 x m 0 m 0 ψ m x Ĥ ψ 0 (E m E 0 ) 2 + O(v2 x), ψ m x Ĥ ψ 0 2 (E m E 0 ) 2 = v 2 x g xx M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Phys. Rev. B 88, 064304 (2013)

Geodesics ds 2 = g µν dλ µ dλ ν = 1 ψ 0 (λ) ψ 0 (λ + dλ) 2 The quantum distance L between two ground-states ψ 0 (λ 0 ) and ψ 0 (λ f ) for a path λ(t), joining λ 0 = λ(0) and λ f = λ(t f ), is given by L(λ) = f i ds = A geodesics is defined by λf λ 0 gµν dλ µ dλ ν = δl = 0 tf 0 g µν λµ λν dt. and we can find the shortest path λ geo (t) connecting the two ground states at λ 0 and λ f.

Geodesics L = tf 0 g µν dλ µ dt dλ ν tf dt dt E = t dλ µ dλ ν f g µν 0 dt dt dt L 2 E, g µν dλ µ dt dλ ν dt = const. δe 2 where d 2 λ µ dt 2 + Γ µ dλ ν dλ ρ νρ dt dt = 0 Γ µ νρ = 1 ( gξν 2 gµξ λ ρ + g ξρ λ ν g ) νρ λ ξ g µν = (g µν ) 1 Γ µ νρ = Γ µ ρν

The Landau-Zener model ( ) Ĥ LZ (t) = x(t)ˆσ x + ɛ(t)ˆσ z ɛ(t) x(t) = x(t) ɛ(t) Eigenstates ψ 0,1 = 1 Ω ɛ + 1 x, 2 Ω(Ω ɛ) 2 Ω(Ω ɛ) Eigenenergies E 0,1 = Ω x 2 + ɛ 2 Find λ opt (t) = (x opt (t), ɛ opt (t)) T maximizing: F(t f ) = ψ(t f ) ψ 0 (t f ) 2 for ψ 0 (0) at λ i = (x i, ɛ) T ψ 0 (t f ) at λ f = (x f, ɛ) T

The Landau-Zener model (a) (b) (c) ϵ=0.1 10 10 10 xlin (t) xgeo(t) λ geo(t) 5 5 0.01 x(t) 0-5 -10 0 2 4 6 8 10 t E 0 0 x ϵ 0-5 -10 λ i Δ 0 10 20 30-10 -5 0 5 10 x [ (1) x lin (t) = x i + (x f x i )t/t f = F(t f ) 1 exp λ f -log( F ) 7 10-5 6 5 4 3 2 10-8 1 0 0.0 0.2 0.4 0.6 0.8 1.0 0.001 0.01 0.1 0.5 1 1/t f π ɛ 2 (x f x i ) 1 t f (2) g xx = ɛ 2 4(x 2 +ɛ 2 ) 2 = x geo (t) = ɛ tan [α i + (α f α i ) t/t f ] α i,f = arctan(x i,f /ɛ) (3) λ(t) = Ω(t) ( ) sin θ(t) cos θ(t) (g µν ) = ( ) 0 0 0 1/4 ] = Ω geo (t) = Ω i θ geo (t) = θ i + (θ f θ i ) t/t f θ i,f = arctan(x i,f /ɛ i,f )

XY spin chain in a transverse magnetic field Ĥ XY = N [ 1 + g ˆσ j x ˆσ j+1 x 2 + 1 g ] ˆσ y j 2 ˆσy j+1 + hˆσz j j=1 ( h cos(k) g sin(k) ) Ĥ XY = k g sin(k) [h cos(k)] PM FM PM

XY spin chain in a transverse magnetic field F = ψ(t f ) ψ 0 (h f ) 2 h(t) h 0 =1.1, h f =3.5, δ=0.1 3.5 3.0 2.5 2.0 1.5 1.0 0 2 4 6 8 10 t g hh = 1 16 -log(f(tf )) g=1, h 0=1.1, h f =3.5, N=300 0.035 0.030 0.025 0.020 0.015 0.010 0.005 0.000 0.0 0.1 0.2 0.3 0.4 0.5 h g 2 (h 2 1)(h 2 1+g 2 ) 3/2 δ = 1/t f M. Kolodrubetz, V. Gritsev, and A. Polkovnikov, Phys. Rev. B 88, 064304 (2013) P. Zanardi, P. Giorda, and M. Cozzini, Phys. Rev. Lett. 99, 100603 (2007)

XY spin chain in a transverse magnetic field γ sin φ γ cos φ H XY (h, γ, φ) = R z (φ)h XY R z(φ), R z (φ) = N l=1 exp( i φ 2 σz l ) g γγ = 1 16γ(1+γ) 2, g φφ = γ 8(γ+1), g γφ = 0

Bz 5 4 3 2 1 0 By =0, g=1., B0=1. 0 1 2 3 4 5 12.5 10.0 7.5 5.0 2.5 0 Summary Quantum metric ( tensor: g µν = Re ψ 0 µ ν ψ 0 ψ 0 ) µ ψ 0 ψ 0 ν ψ 0 Geodesics: d 2 λ µ dt 2 + Γ µ νρ dλν dt dλ ρ dλ dt = 0 g µ dλ ν µν dt dt = const. δe 2 ΔE Landau-Zener model and XY spin chain Used in experiments with superconducting quantum circuits (P. Roushan, et al.) Bx