ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

Σχετικά έγγραφα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

Παράδειγμα #5 ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ & ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

Αριθμητική Ανάλυση και Εφαρμογές

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Ειδικά θέματα στην επίλυση

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

β) Με τη βοήθεια του αποτελέσµατος της απαλοιφής υπολογίστε την ορίζουσα του πίνακα του συστήµατος. x x = x

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

ΜΕΜ251 Αριθμητική Ανάλυση

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

3. Γραμμικά Συστήματα

Επαναληπτικές μέθοδοι για την επίλυση γραμμικών συστημάτων. Μιχάλης Δρακόπουλος

Κεφάλαιο 5ο: Εντολές Επανάληψης

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

Αριθμητική Ανάλυση και Εφαρμογές

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel. Δημιουργία κώδικα στο Matlab

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4)

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

Εφαρμοσμένα Μαθηματικά ΙΙ

ΜΕΜ251 Αριθμητική Ανάλυση

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

Επίλυση Γραµµικών Συστηµάτων

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παράδειγμα #3 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΑΠΕΥΘΕΙΑΣ ΜΕΘΟΔΟΥΣ Επιμέλεια: Ν. Βασιλειάδης

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

Μάθημα Επιλογής 8 ου εξαμήνου

Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Λύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πίνακας Περιεχομένων

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:

Πίνακες. FORTRAN και Αντικειμενοστραφής Προγραμματισμός

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan

Τμήμα Εφαρμοσμένης Πληροφορικής

Παράδειγμα #4 ΑΛΓΕΒΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas)

ΣΥΓΚΡΙΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΡΙΘΜΗΤΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΑΙ ΕΠΙΛΥΣΗΣ ΓΡΑΜΜΙΚΩΝ ΚΑΙ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ: ΧΡΗΣΗ ΤΟΥ MATLAB

Επιστηµονικός Υπολογισµός Ι Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων. Ευστράτιος Γαλλόπουλος

την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx

ΦΥΣ 145 Μαθηματικές Μέθοδοι στη Φυσική. Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας.

Μόρφωση του συστήματος εξισώσεων. Επίλυση και επεξεργασία των αποτελεσμάτων

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

Πίνακας Περιεχομένων

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

i. Επιλύστε με απαλοιφή Gauss μερικής οδήγησης το σύστημα:

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια υπορουτίνα; με υπορουτίνα ΥΠΟΡΟΥΤΙΝΕΣ. Παράδειγμα #1: η πράξη SQ. Ποια η διαφορά συναρτήσεων και υπορουτίνων;

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

8 FORTRAN 77/90/95/2003

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Επιστηµονικός Υπολογισµός Ι

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

Αριθμητική Ανάλυση & Εφαρμογές

Non Linear Equations (2)

Εφαρμοσμένα Μαθηματικά ΙΙ

Αριθμητική Ανάλυση και Εφαρμογές

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

Παρουσίαση συλλογών υποπρογραμμάτων για γραμμική άλγεβρα: blas lapack

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Χ. Α. Αλεξόπουλος. Τµήµα Μηχ. Η/Υ και Πληροφορικής Πανεπιστήµιο Πατρών

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2010-2011 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 2 η Σειρά Ασκήσεων 16.11.2010 Άσκηση 1. Δίνονται οι εξισώσεις: (k + k )x k x = 1000 k x + (k + k )x k x = 10 k x + (k + k )x k x = 20 k x + (k + k )x k x = 0 k x + (k + k )x k x = 12 k x + (k + k )x k x = 0 k x + (k + k )x k x = 0 k x + (k + k )x k x = 0 k x + (k + k )x k x = 0 k x + (k + k )x k x = 0 k x + (k + k )x k x = 15 k x + (k + k )x k x = 0 k x + k x = 50 Αν k = 6980, k = 6980, k = 5990, k = 153, k = 218, k = 407, k = 2448, k = 520, k = 1885, k = 3820, k = 6360, k = 6730 και k = 6220. Α. Να προσδιοριστούν τα x με τη χρήση του Mathematia. Β. Να γραφτεί πρόγραμμα σε Fortran για την αριθμητική επίλυση του παραπάνω συστήματος με τις παρακάτω μεθόδους: 1. Παραγοντοποίηση LU 2. Cholesky 3. Gauss-Seidel Για τις επαναληπτικές μεθόδους η επίλυση να γίνει με ακρίβεια 7 σημαντικών ψηφίων και σαν αρχική εκτίμηση να θεωρηθεί ότι x = 1,5 όπου i = 1,, 13. (Τα παραδοτέα θα είναι το πρόγραμμα για κάθε μέθοδο και τα αποτελέσματα που προκύπτουν). Α. Στο Mathematia η επίλυση του παραπάνω συστήματος γίνεται δίνοντας: N[LinearSolve[A,b]], όπου A το μητρώο των συντελεστών των αγνώστων και b το δεξιό μέλος. 1

Το αποτέλεσμα που προκύπτει είναι: {{0.158596},{0.173926},{0.190119},{0.693387},{1.0466},{1.2063},{1.23286}, {1.35786},{1.39234},{1.40935},{1.41957},{1.427},{1.43504}}. Β. Παρακάτω φαίνεται ο πηγαίος κώδικας σε γλώσσα προγραμματισμού Fortran για τις διάφορες μεθόδους. Για κάθε μέθοδο, ο κώδικας γράφτηκε σε περιβάλλον linux (Ubuntu 10.4 LTS) και μεταγλωττίστηκε με τον ompiler gfortran έκδοση 4.4.3. Στους πηγαίους κώδικες το μητρώο των συντελεστών των αγνώστων συμβολίζεται με a(n,n) και το δεξιό μέλος με b(n). 1. Παραγοντοποίηση LU Ο πηγαίος κώδικας είναι: program lu impliit none integer n parameter (n=13) double preision a(n,n),b(n) integer i,ipvt(n),info all initialization(n,a,b) all ludeomp(n,a,ipvt,info) all lusolve(n,a,b,ipvt,info) if (info.eq.0) then open(unit=15,file="lu.txt") write(15,*) " LU" write(15,50) write(15,*) "--------------------" write(15,100) i,b(i) do lose(15) if 50 format(2x,'i',10x,'xi') 100 format(i3,2x,f14.7) stop Η υπορουτίνα initialization δίνει τις αρχικές τιμές στο μητρώο των συντελεστών των αγνώστων και στο διάνυσμα στο δεξιό μέλος. subroutine initialization(n,a,b) impliit none 2

integer n,i,j double preision a(n,n),b(n) double preision k1,k2,k3,k4,k5,k6,k7 double preision k8,k9,k10,k11,k12,k13 do j=1,n a(i,j)=0.0d0 b(i)=0.0d0 matrix a k1=6980.0d0 k2=6980.0d0 k3=5990.0d0 k4=153.0d0 k5=218.0d0 k6=407.0d0 k7=2448.0d0 k8=520.0d0 k9=1885.0d0 k10=3820.0d0 k11=6360.0d0 k12=6730.0d0 k13=6220.0d0 row 1 a(1,1)=k1+k2; a(1,2)=-k2 row 2 a(2,1)=-k2; a(2,2)=k2+k3; a(2,3)=-k3 row 3 a(3,2)=-k3; a(3,3)=k3+k4; a(3,4)=-k4 row 4 a(4,3)=-k4; a(4,4)=k4+k5; a(4,5)=-k5 row 5 a(5,4)=-k5; a(5,5)=k5+k6; a(5,6)=-k6 row 6 a(6,5)=-k6; a(6,6)=k6+k7; a(6,7)=-k7 row 7 a(7,6)=-k7; a(7,7)=k7+k8; a(7,8)=-k8 row 8 a(8,7)=-k8; a(8,8)=k8+k9; a(8,9)=-k9 row 9 a(9,8)=-k9; a(9,9)=k9+k10; a(9,10)=-k10 row 10 a(10,9)=-k10; a(10,10)=k10+k11; a(10,11)=-k11 row 11 a(11,10)=-k11; a(11,11)=k11+k12; a(11,12)=-k12 row 12 a(12,11)=-k12; a(12,12)=k12+k13; a(12,13)=-k13 row 13 a(13,12)=-k13; a(13,13)=k13 3

right hand side vetor b b(1)=1000.0d0 b(2)=10.0d0 b(3)=20.0d0 b(5)=12.0d0 b(11)=15.0d0 b(13)=50.0d0 Στην υπορουτίνα ludeomp γίνεται η παραγοντοποίηση του μητρώου των συντελεστών των αγνώστων. Στην έξοδο, το μητρώο έχει το αποτέλεσμα της παραγοντοποίσης, δηλαδή τα τριγωνικά μητρώα L και U. subroutine ludeomp(n,a,ipvt,info) impliit none integer n,info double preision a(n,n) integer ipvt(n) double preision pivot,temp,work(n),s,maxvalue integer i,j,k,m,ip,itmp info=0 ipvt(i)=i work(i)=0.0d0 LU fatorization with partial pivoting do m=1,n find pivot ip=m maxvalue=0.0d0 do j=m,n s=0.0d0 do k=1,m-1 s=s+a(ipvt(j),k)*a(ipvt(k),m) work(ipvt(j))=a(ipvt(j),m)-s if ( dabs(work(ipvt(j))).gt.maxvalue ) then ip=j maxvalue=dabs(work(ipvt(j))) if 4

pivot=work(ipvt(ip)) if (dabs(pivot).lt.1.0d-15) then info=1 write(*,*) "Pivot equals zero" write(*,*) "LU deomposition an not ontinue" if itmp=ipvt(m) ipvt(m)=ipvt(ip) ipvt(ip)=itmp temp=work(m) work(m)=work(ip) work(ip)=temp a(ip,m)=a(m,m) a(m,m)=pivot ompute L and U do j=1,m-1 temp=a(m,j) a(m,j)=a(ip,j) a(ip,j)=temp do j=m+1,n temp=a(m,j) a(m,j)=a(ip,j) a(ip,j)=temp s=0.0d0 do k=1,m-1 s=s+a(m,k)*a(k,j) a(m,j)=a(m,j)-s a(j,m)=work(j)/a(m,m) Τέλος, η επίλυση του συστήματος, με την προς τα εμπρός και προς τα πίσω αντικατάσταση, γίνεται στην υπορουτίνα lusolve. Στην είσοδο, το διάνυσμα b έχει το δεξιό μέλος, ενώ στην έξοδο το αποτέλεσμα της επίλυσης, δηλαδή το διάνυσμα x. subroutine lusolve(n,a,b,ipvt,info) impliit none integer n,ipvt(n),info double preision a(n,n),b(n) 5

integer i,m,j double preision temp,s if (info.eq.1) forward substitution do i=2,n s=b(ipvt(i)) do j=1,i-1 s=s-a(i,j)*b(ipvt(j)) b(ipvt(i))=s bak substitution x(n)=b(ipvt(n))/a(n,n) do i=n-1,1,-1 s=b(ipvt(i)) do j=i+1,n s=s-a(i,j)*x(j) x(i)=s/a(i,i) b(i)=x(i) Το αποτέλεσμα της επίλυσης που προκύπτει για την παραγοντοποίηση LU είναι: LU i xi -------------------- 1 0.1585960 2 0.1739255 3 0.1901192 4 0.6933871 5 1.0465981 6 1.2063033 7 1.2328556 8 1.3578556 9 1.3923383 10 1.4093541 11 1.4195742 12 1.4270036 13 1.4350422 6

2. Cholesky (LL T ) Το μητρώο των συντελεστών των αγνώστων είναι συμμετρικό και θετικά ορισμένο, οπότε εφαρμόζεται η μέθοδος Cholesky. Ο πηγαίος κώδικας είναι: program holesky impliit none integer n parameter (n=13) double preision a(n,n),b(n) integer i,info all initialization(n,a,b) all holeskydeomp(n,a,info) all holeskysolve(n,a,b,info) if (info.eq.0) then open(unit=15,file="holesky.txt") write(15,*) " Cholesky" write(15,50) write(15,*) "--------------------" write(15,100) i,b(i) do lose(15) if 50 format(2x,'i',10x,'xi') 100 format(i3,2x,f14.7) stop Η υπορουτίνα initialization παραμένει η ίδια και παραλείπεται ο πηγαίος της κώδικας. Στην υπορουτίνα holeskydeomp γίνεται ο υπολογισμός του κάτω τριγωνικού μητρώου L της μεθόδου Cholesky, το οποίο αποθηκεύεται στο μητρώο των συντελεστών των αγνώστων. subroutine holeskydeomp(n,a,info) impliit none integer n,info double preision a(n,n) double preision s,temp integer i,j,k info=0 7

s=0.0d0 do k=1,i-1 s=s+a(i,k)*a(i,k) temp=a(i,i)-s if ( temp.lt.0.0d0 )then write(*,*) "Matrix is not positive definite" write(*,*) "Cholesky fatorization an not ontinue" info=1 if a(i,i)=dsqrt(temp) if ( dabs(a(i,i)).le.1.0d-16 ) then write(*,*) "Divided by zero" write(*,*) "Cholesky fatorization an not ontinue" info=1 if ompute L(j,i), j=i+1(1)n do j=i+1,n s=0.0d0 do k=1,i-1 s=s+a(i,k)*a(j,k) a(j,i)=(a(j,i)-s)/a(i,i) Τέλος, η επίλυση του συστήματος γίνεται στην υπορουτίνα holeskysolve. Στην είσοδο, το διάνυσμα b περιέχει το δεξιό μέλος του συστήματος, ενώ στην έξοδο το αποτέλεσμα της επίλυσης, δηλαδή το διάνυσμα x. subroutine holeskysolve(n,a,b,info) impliit none integer n,info double preision a(n,n),b(n) integer i,j double preision s 8

if (info.eq.1) forward substitution s=b(i) do j=1,i-1 s=s-a(i,j)*b(j) b(i)=s/a(i,i) bakward substitution do i=n,1,-1 s=b(i) do j=i+1,n s=s-a(j,i)*b(j) b(i)=s/a(i,i) Το αποτέλεσμα της επίλυσης που προκύπτει για τη μέθοδο Cholesky είναι: Cholesky i xi -------------------- 1 0.1585960 2 0.1739255 3 0.1901192 4 0.6933871 5 1.0465981 6 1.2063033 7 1.2328556 8 1.3578556 9 1.3923383 10 1.4093541 11 1.4195742 12 1.4270036 13 1.4350422 Οι δύο μέθοδοι, που εφαρμόστηκαν μέχρι στιγμής για την επίλυση του γραμμικού συστήματος Ax = b ήταν άμεσες, δηλαδή η λύση βρέθηκε, χρησιμοποιώντας ακριβή αριθμητική, μετά από ένα πεπερασμένο πλήθος πράξεων. Στη συνέχεια, για την επίλυση του συστήματος των γραμμικών εξισώσεων, θα εφαρμοστεί μία επαναληπτική (έμμεση) μέθοδος. Η μέθοδος αυτή προσεγγίζει τη λύση ξεκινώντας με ένα αρχικό 9

διάνυσμα, που εκφράζει την αρχική προσέγγιση της λύσης, κατασκευάζει μία ακολουθία διανυσμάτων, η οποία σύμφωνα με ορισμένες προϋποθέσεις και με ακριβή αριθμητική συγκλίνει οριακά στην ακριβή λύση. Η μέθοδος βασίζεται στο ότι το μητρώο Α διασπάται και παίρνει την μορφή A = D L U. 3. Gauss-Seidel Η μέθοδος Gauss-Seidel ανήκει στις επαναληπτικές μεθόδους επίλυσης γραμμικών συστημάτων. Σε αυτή την περίπτωση θα πρέπει να εξεταστεί αν η μέθοδος συγκλίνει για το συγκεκριμένο σύστημα. Μία ικανή συνθήκη, για να επιτευχθεί σύγκλιση, είναι αν το μητρώο Α έχει αυστηρά διαγώνια κυριαρχία είτε κατά γραμμές είτε κατά στήλες, δηλαδή αν ισχύει a > a i = 1,, n Στην περίπτωσή μας δεν ικανοποιείται η συνθήκη αυτή, γιατί υπάρχουν γραμμές, όπως και στήλες, στις οποίες το διαγώνιο στοιχείο κατά απόλυτη τιμή είναι ίσο με το άθροισμα των απολύτων τιμών των υπολοίπων στοιχείων. Επομένως, προχωράμε να εξετάσουμε τη σύγκλιση με άλλη συνθήκη. Μία άλλη ικανή συνθήκη, που εξασφαλίζει σύγκλιση, είναι αν ισχύει: G < 1, όπου p = 1 ή. Στην παραπάνω ανισότητα, G είναι ο πίνακας επανάληψης και για τη μέθοδο Gauss-Seidel είναι ίσος με G = (D L) U. Ορίζοντας στο Mathematia τα μητρώα D, L και U, υπολογίζουμε το μητρώο G και δίνοντας στη συνέχεια N[Norm[G,1]] ή N[Norm[G, ]] προκύπτουν οι νόρμες του πίνακα επανάληψης G για p = 1 ή, αντίστοιχα. Οι νόρμες είναι ίσες με G = 1,80584 G = 0,99997 1 οπότε δεν ικανοποιείται η συνθήκη. Επομένως, θα εξεταστεί αν ικανοποιείται η αναγκαία και ικανή συνθήκη για τη σύγκλιση. Η αναγκαία και ικανή συνθήκη για να συγκλίνει η επαναληπτική μέθοδος Gauss-Seidel είναι αν ισχύει: ρ(g) < 1, δηλαδή αν φασματική ακτίνα του πίνακα επανάληψης G είναι μικρότερη της μονάδας. Δίνοντας στο Mathematia N[Max[Abs[Eigenvalues[G]]]] προκύπτει ότι η φασματική ακτίνα του πίνακα επανάληψης G είναι ίση με 10

ρ(g) = 0,997877 < 1. Συνεπώς, η μέθοδος Gauss-Seidel θα συγκλίνει. Ο πηγαίος κώδικας είναι: program gauss_seidel impliit none integer n parameter (n=13) double preision a(n,n),b(n),x(n),xold(n),tol integer i,maxiter,j,ionv,onvergene all initialization(n,a,b,x) maxiter=5000 tol=0.5d0*1.0d-7 do j=1,n xold(j)=x(j) open(unit=15,file="gauss_seidel.txt") write(15,*) "Gauss-Seidel" do i=1,maxiter all gsiter(n,a,b,x,xold) ionv=onvergene(n,x,xold,tol) if ( ionv.eq.1 ) then write(15,*) "Number of iterations:",i write(15,*) "Error:",tol exit else do j=1,n xold(j)=x(j) if write(15,*) "--------------------" write(15,50) write(15,*) "--------------------" write(15,100) i,x(i) do lose(15) 50 format(2x,'i',10x,'xi') 100 format(i3,2x,f14.7) 11

stop Στην υπορουτίνα initialization ορίζονται το μητρώο των συντελεστών των αγνώστων, το διάνυσμα b καθώς και η αρχική εκτίμηση x της λύσης. subroutine initialization(n,a,b,x) impliit none integer n,i,j double preision a(n,n),b(n),x(n) double preision k1,k2,k3,k4,k5,k6,k7 double preision k8,k9,k10,k11,k12,k13 do j=1,n a(i,j)=0.0d0 b(i)=0.0d0 x(i)=1.5d0 matrix a k1=6980.0d0 k2=6980.0d0 k3=5990.0d0 k4=153.0d0 k5=218.0d0 k6=407.0d0 k7=2448.0d0 k8=520.0d0 k9=1885.0d0 k10=3820.0d0 k11=6360.0d0 k12=6730.0d0 k13=6220.0d0 row 1 a(1,1)=k1+k2; a(1,2)=-k2 row 2 a(2,1)=-k2; a(2,2)=k2+k3; a(2,3)=-k3 row 3 a(3,2)=-k3; a(3,3)=k3+k4; a(3,4)=-k4 row 4 a(4,3)=-k4; a(4,4)=k4+k5; a(4,5)=-k5 row 5 a(5,4)=-k5; a(5,5)=k5+k6; a(5,6)=-k6 row 6 a(6,5)=-k6; a(6,6)=k6+k7; a(6,7)=-k7 row 7 a(7,6)=-k7; a(7,7)=k7+k8; a(7,8)=-k8 row 8 a(8,7)=-k8; a(8,8)=k8+k9; a(8,9)=-k9 12

row 9 a(9,8)=-k9; a(9,9)=k9+k10; a(9,10)=-k10 row 10 a(10,9)=-k10; a(10,10)=k10+k11; a(10,11)=-k11 row 11 a(11,10)=-k11; a(11,11)=k11+k12; a(11,12)=-k12 row 12 a(12,11)=-k12; a(12,12)=k12+k13; a(12,13)=-k13 row 13 a(13,12)=-k13; a(13,13)=k13 right hand side vetor b b(1)=1000.0d0 b(2)=10.0d0 b(3)=20.0d0 b(5)=12.0d0 b(11)=15.0d0 b(13)=50.0d0 Στην υπορουτίνα gsiter γίνεται η επανάληψη. subroutine gsiter(n,a,b,x,xold) impliit none integer n,i,j double preision a(n,n),b(n),x(n),xold(n),sum1,sum2 sum1=0.0d0 do j=1,i-1 sum1=sum1+a(i,j)*x(j) sum2=0.0d0 do j=i+1,n sum2=sum2+a(i,j)*xold(j) x(i)=(b(i)-sum1-sum2)/a(i,i) Στη συνάρτηση onvergene ελέγχεται το κριτήριο τερματισμού. integer funtion onvergene(n,x,xold,tol) 13

impliit none integer i,n double preision x(n),xold(n),tol,num,denom,temp num=0.0d0 temp=dabs(x(i)-xold(i)) if ( temp.gt.num ) num=temp denom=0.0d0 temp=dabs(x(i)) if ( temp.gt.denom ) denom=temp if ( (num/denom).le.tol ) then onvergene=1 tol=num/denom else onvergene=0 if Το αποτέλεσμα της επίλυσης που προκύπτει για την επαναληπτική μέθοδο Gauss-Seidel είναι: Gauss-Seidel Number of iterations: 3789 Error: 4.99645792992985750E-008 -------------------- i xi -------------------- 1 0.1585963 2 0.1739261 3 0.1901201 4 0.6934012 5 1.0466214 6 1.2063314 7 1.2328844 8 1.3578878 9 1.3923715 10 1.4093876 11 1.4196078 12 1.4270373 13 1.4350759 14

Άσκηση 2. Δίνεται το μη γραμμικό σύστημα εξισώσεων: 15x + y 4z = 13 x + 10y z = 11 y 25z = 22 Αν η αρχική εκτίμηση είναι (x, y, z ) = (1,1,1): A. Να επιλυθεί στο Mathematia. B. Να γραφτεί πρόγραμμα σε Fortran και να επιλυθεί αριθμητικά με τη μέθοδο Newton-Raphson για στάθμη ακρίβειας τουλάχιστον ίση με ε 10. Α. Η επίλυση του μη γραμμικού συστήματος εξισώσεων στο Mathematia γίνεται δίνοντας: FindRoot[{15x+y 2-4z-13==0,x 2 +10y-z-11==0, y 3-25z+22==0}, {x,1}, {y,1}, {z,1}, WorkingPreision->8] και υπολογίζεται: {x 1.0364005,y 1.0857066,z 0.93119144}. Β. Η αριθμητική επίλυση του μη γραμμικού συστήματος θα γίνει με εφαρμογή επαναληπτικής διαδικασίας Newton-Raphson. Σύμφωνα με τη διαδικασία αυτή, για κάθε επανάληψη i θα λύνεται ένα γραμμικό σύστημα της μορφής: όπου J ο Ιακωβιανός πίνακας, x η διόρθωση σε κάθε επανάληψη και f(x) το μη γραμμικό σύστημα. J x x = f x, Στην περίπτωση μας, ο Ιακωβιανός πίνακας είναι ίσος με: f x f J = x f x f y f y f y f z f 15 2y 4 z = 2x 10 1. 0 3y 25 f z Παρακάτω φαίνεται ο πηγαίος κώδικας σε γλώσσα προγραμματισμού Fortran για την αριθμητική επίλυση του μη γραμμικού συστήματος με τη μέθοδο Newton-Rapshon. O κώδικας γράφτηκε σε περιβάλλον linux (Ubuntu 10.4 LTS) και μεταγλωττίστηκε με τον ompiler gfortran έκδοση 4.4.3. Για την επίλυση του γραμμικού συστήματος εφαρμόστηκε η μέθοδος LU με τον αλγόριθμο, που παρουσιάστηκε στην προηγούμενη άσκηση. program newton_raphson impliit none integer n 15

parameter (n=3) double preision ja(n,n),f(n),x(n),xold(n),tol integer i,j,ipvt(n),info,maxiter,ionv,onvergene maxiter=100 tol=1.0d-07 x(1)=1.0d0 x(2)=1.0d0 x(3)=1.0d0 open(unit=15,file="nonlinear.txt") write(15,*) "Newton-Raphson" do i=1,maxiter all jaobian(n,x,ja) all righthand(n,x,f) all ludeomp(n,ja,ipvt,info) all lusolve(n,ja,f,ipvt,info) if (info.eq.0) then ionv=onvergene(n,f,tol) do j=1,n xold(j)=x(j) x(j)=xold(j)+f(j) if ( ionv.eq.1 ) then write(15,*) "Number of iterations:",i write(15,*) "Error:",tol exit if else exit if if (info.eq.0) then write(15,*) "--------------------" write(15,50) write(15,*) "--------------------" write(15,100) i,x(i) do if lose(15) 50 format(2x,'i',10x,'xi') 100 format(i3,2x,f14.7) stop 16

Η υπορουτίνα jaobian υπολογίζει τον Ιακωβιανό πίνακα του συστήματος, ενώ η υπορουτίνα righthand το δεξιό μέλος του προς επίλυση σε κάθε επανάληψη γραμμικού συστήματος. subroutine jaobian(n,x,ja) impliit none integer n double preision x(n),ja(n,n) ja(1,1)=15.0d0 ja(1,2)=2.0d0*x(2) ja(1,3)=-4.0d0 ja(2,1)=2.0d0*x(1) ja(2,2)=10.0d0 ja(2,3)=-1.0d0 ja(3,1)=0.0d0 ja(3,2)=3.0d0*x(2)*x(2) ja(3,3)=-25.0d0 subroutine righthand(n,x,f) impliit none integer n double preision x(n),f(n) f(1)=-( 15.0d0*x(1)+x(2)*x(2)-4.0d0*x(3)-13.0d0 ) f(2)=-( x(1)*x(1)+10.0d0*x(2)-x(3)-11.0d0 ) f(3)=-( x(2)*x(2)*x(2)-25.0d0*x(3)+22.0d0 ) Η συνάρτηση onvergene ελέγχει αν ικανοποιείται το κριτήριο τερματισμού. integer funtion onvergene(n,dx,tol) impliit none integer i,n double preision dx(n),tol,maxvalue,temp maxvalue=0.0d0 temp=dabs(dx(i)) if ( temp.gt.maxvalue ) maxvalue=temp if ( maxvalue.le.tol ) then 17

onvergene=1 tol=maxvalue else onvergene=0 if Ο κώδικας για τη μέθοδο LU είναι ο ίδιος που παρουσιάστηκε στην προηγούμενη άσκηση και παραλείπεται. Eπιλέγοντας σαν αρχική εκτίμηση: προκύπτει: x = (1 1 1) Newton-Raphson Number of iterations: 3 Error: 6.41937738450484643E-009 -------------------- i xi -------------------- 1 1.0364005 2 1.0857066 3 0.9311914 18