Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Σχετικά έγγραφα
Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής

Θεωρία Γραφημάτων 11η Διάλεξη

Επίπεδα Γραφήματα (planar graphs)

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

u v 4 w G 2 G 1 u v w x y z 4

d(v) = 3 S. q(g \ S) S

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

q(g \ S ) = q(g \ S) S + d = S.

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

2 ) d i = 2e 28, i=1. a b c

Θεωρία Γραφημάτων 6η Διάλεξη

E(G) 2(k 1) = 2k 3.

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι είδαμε την προηγούμενη φορά. Συνεκτικότητα. 25 -Γράφοι

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Θεωρία Γραφημάτων 4η Διάλεξη

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Γραφημάτων 1η Διάλεξη

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

(elementary graph algorithms)

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

m = 18 και m = G 2

HY118-Διακριτά Μαθηματικά

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

βασικές έννοιες (τόμος Β)

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ

Θεωρία Γραφημάτων 7η Διάλεξη

Διάλεξη 13: D Σχήμα 13.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 13.3: Σχηματική επεξήγηση περιπτώσεων πο

Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης

HY118-Διακριτά Μαθηματικά

Αναζήτηση Κατά Πλάτος

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι

Εισαγωγή στους Αλγορίθμους

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης

Θεωρία Γραφημάτων 10η Διάλεξη

Αναζήτηση Κατά Πλάτος

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

... a b c d. b d a c

Συνεκτικότητα Γραφήματος

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Στοιχεία Θεωρίας Γραφηµάτων (1)

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 3η Διάλεξη

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

Αλγόριθµοι και Πολυπλοκότητα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Σεπτέμβριος 2017

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

Γράφοι: κατευθυνόμενοι και μη

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος

Εισαγωγή στη Θεωρία Γράφων

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Θεωρία Γράφων - Εισαγωγή

Transcript:

Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου τα στοιχεία ονομάζονται κόμβοι, και ένα σύνολο E που είναι υποσύνολο του V V και του οποίου τα στοιχεία ονομάζονται ακμές: E {(u, v) u, v V } Μη κατευθυνόμενα γραφήματα Βρόγχοι Ο ορισμός επιτρέπει θεωρητικά την ύπαρξη βρόγχων (loops), δηλ. ακμών της μορφής (u, u), u V. Μη κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E) όπου E {{u, v} u, v V } δηλαδή μια ακμή σε ένα μη κατευθυνόμενο γράφημα είναι ένα μη διατεταγμένο ζεύγος κόμβων. Γραφήματα χωρίς βρόγχους και παράλληλες ακμές ονομάζονται απλά γραφήματα. Τα γραφήματα που δεν είναι απλά ονομάζονται πολυγραφήματα. Οταν λέμε «γράφημα» θα εννοούμε απλό γράφημα. Αν ασχολούμαστε με πολυγράφημα, θα το αναφέρουμε ρητά. Μια πρόταση που ισχύει για κατευθυνόμενα γραφήματα συνήθως μεταφέρεται και στα μη κατευθυνόμενα γραφήματα. Το αντίστροφο είναι πιο σπάνιο.

Κατευθυνόμενα / Μη κατευθυνόμενα Σχεδίαση γραφημάτων Διαφορές: (u, v) {u, v} V ( V ) δυνατές ακμές V ( V )/ δυνατές ακμές (a) (b) Συμβολισμός Αριθμός κόμβων: V ή n Αριθμός ακμών: E ή m Σχήμα : Γραφικές παραστάσεις του ίδιου γραφήματος ΠΑΡΑΔΕΙΓΜΑ (Σχεδίαση Γραφημάτων) Δεν πρέπει να συγχέουμε ένα γράφημα με τη σχεδίασή του. Ενα γράφημα μπορεί να έχει πολλές σχεδιάσεις. Συμπλήρωμα Ḡ = (V, E ) του G = (V, E): E = {{u, v} {u, v} E, u v}. (Πλήρες / Κενό) (συνέχεια) (Μονοπάτι / Κύκλος) (a) (b) (a) (b) Σχήμα : Τα γραφήματα P και C Σχήμα : Τα γραφήματα K και K

(συνέχεια) (συνέχεια) (Πλήρες διμερές) a b c d e f Σχήμα : Το γράφημα K, Δωδεκάεδρο (από τη Βικιπαίδεια) Το αντίστοιχο γράφημα (συνέχεια) (Γράφημα του Πέτερσεν) 7 8 6 0 9 Σχήμα : Το γράφημα του Petersen Βαθμός ενός κόμβου σε μη κατευθυνόμενο γράφημα ονομάζεται ο αριθμός των ακμών που τον περιέχουν. Σε κάθε γράφημα, το άθροισμα των βαθμών όλων των κόμβων είναι άρτιο. Απόδειξη. Κάθε ακμή συνεισφέρει στο βαθμό δυο κόμβων.

(Γενίκευση) Σε κάθε γράφημα G = (V, E) με m ακμές, το άθροισμα των βαθμών των κόμβων είναι ίσο με m. degree(u) = u V u V v V : {u,v} E = {u,v} E = m [, ] [, ] [, ] [, ] [, ] [, ] Πόρισμα Σε κάθε γράφημα, ο αριθμός των κόμβων περιττού βαθμού είναι άρτιος. Σε κάθε ομάδα ανθρώπων με περιττό αριθμό μελών, υπάρχει πάντα κάποιος που έχει άρτιο αριθμό γνωστών. :,, :, Λίστες γειτνίασης: : : : Πλεονεκτήματα: Οικονομική σε μνήμη για αραιούς γραφήματα: Θ( V + E log V ). Κατάλληλη για κάποιους αλγόριθμους. Μειονεκτήματα: Απαιτεί έργο για να ελέγξουμε αν μια ακμή (u, v) ανήκει στο γράφημα. Πίνακας γειτνίασης: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Πλεονεκτήματα: Άμεση απάντηση αν μια ακμή (u, v) ανήκει στο γράφημα. Εύκολα γενικεύεται για γραφήματα με βάρη στις ακμές. Μειονεκτήματα: Απαιτητική σε μνήμη για αραιά γραφήματα.

Μονοπάτια, κύκλοι Συνεκτικότητα Ενα μη κατευθυνόμενο γράφημα G = (V, E) ονομάζεται συνεκτικό αν για κάθε u, v V υπάρχει μονοπάτι από το u στο v. Ενα κατευθυνόμενο γράφημα που έχει την ιδιότητα αυτή ονομάζεται ισχυρά συνεκτικό. 6 Μονοπάτι: (,,, ) Μονοπάτι (μη απλό): (,,,,, 6) Κύκλος: (,,,, 6, ) Συνεκτικός Μή συνεκτικός Μή ισχυρά συνεκτικός Η έννοια του ελαχιστικού/μεγιστικού Εστω μια σχέση μερικής διάταξης πάνω σε ένα σύνολο P. Ενα στοιχείο p του P καλείται ελαχιστικό (αντίστοιχα μεγιστικό) ως προς την αν δεν υπάρχει p P τέτοιο ώστε p p (p p ). Με τους όρους ελαχιστικό/μεγιστικό μεταφράζουμε τους αγγλικούς όρους minimal/maximal, σε αντιδιαστολή με τους όρους minimum/maximum οι οποίοι υπονοούν ολική διάταξη. Δένδρα Ερώτηση: Ποια γραφήματα είναι ελαχιστικά συνεκτικά (minimally connected); Δηλαδή είναι συνεκτικά αλλά χάνουν τη συνεκτικότητα τους αν αφαιρέσουμε οποιαδήποτε ακμή τους; Απάντηση: Τα δένδρα. Δένδρα ονομάζονται τα συνεκτικά γραφήματα που δεν περιέχουν κύκλους. Παράδειγμα: P U, για κάποιο κατάλληλο σύμπαν U και. Τότε ένα σύνολο S P είναι ελαχιστικό (αντίστοιχα μεγιστικό) αν x U, S \ {x} P (αντ. x U, S {x} P.) 6 7 Σχήμα : Δένδρο

Ιδιότητες των δένδρων Ιδιότητες των δένδρων Οι παρακάτω προτάσεις είναι όλες ισοδύναμες με τον ορισμό των δένδρων: Δένδρα είναι τα συνεκτικά γραφήματα που αν αφαιρέσουμε οποιαδήποτε ακμή τους παύουν να είναι συνεκτικά. Είναι δηλαδή ελαχιστικά γραφήματα ως προς τη συνεκτικότητα. Δένδρα είναι τα γραφήματα που δεν έχουν κύκλους, αλλά αν προσθέσουμε οποιαδήποτε νέα ακμή αποκτούν κάποιο κύκλο. Είναι δηλαδή μεγιστικά άκυκλα γραφήματα. Δένδρα είναι τα συνεκτικά γραφήματα με n ακμές, όπου n είναι ο αριθμός των κόμβων τους. Δένδρα είναι τα γραφήματα που για κάθε ζεύγος κόμβων u και v υπάρχει ένα μοναδικό μονοπάτι από τον u στον v. Σε κάθε δένδρο με τουλάχιστον δύο κόμβους υπάρχει ένας τουλάχιστον κόμβος με βαθμό. Σε κάθε γράφημα, το άθροισμα των βαθμών είμαι m. Στα δένδρα έχουμε m = n. Αφού n, όλοι οι κόμβοι έχουν βαθμό μεγαλύτερο του μηδενός. Αν κάθε κόμβος είχε βαθμό ή περισσότερο, το άθροισμα των βαθμών θα ήταν μεγαλύτερο ή ίσο του n. Επίπεδα γραφήματα Ενα γράφημα G λέγεται επίπεδο (planar) αν υπάρχει τρόπος να σχεδιαστεί στο επίπεδο με τέτοιο τρόπο ώστε οι ακμές του να τέμνονται μόνο σε κορυφές. 7 6 Οψεις σε γραφήματα Ενα γράφημα G λέγεται ενεπίπεδο (plane) αν έχει σχεδιαστεί στο επίπεδο R με τέτοιο τρόπο ώστε οι ακμές του να τέμνονται μόνο σε κορυφές. Σχήμα : Επίπεδο γράφημα Οψεις ενός ενεπίπεδου G καλούνται οι μ-συνεκτικές συνιστώσες του R \ G. Το γράφημα του σχήματος έχει όψεις. Ενα υποσύνολο S του επιπέδου καλείται μ-συνεκτικό αν οποιαδήποτε δύο σημεία του S συνδέονται με μονοπάτι.

Τύπος του Euler Σχέση ακμών και κόμβων Αριθμός κόμβων: n Αριθμός ακμών: m Αριθμός όψεων: f (Τύπος του Euler) Σε κάθε συνεκτικό ενεπίπεδο γράφημα ο αριθμός των κόμβων n, των ακμών m και των όψεων f συνδέονται με τη σχέση n m + f =. Απόδειξη: Με επαγωγή στον αριθμό των ακμών. Βάση της επαγωγής: Δένδρα. Σε κάθε συνεκτικό επίπεδο γράφημα με n κόμβους και m ακμές m n 6. Απόδειξη. Η απόδειξη βασίζεται σε δυο παρατηρήσεις: Κάθε ακμή συνορεύει με (το πολύ) δυο όψεις. Κάθε όψη συνορεύει με τουλάχιστον ακμές. [, ] [, ] [, ] [, ] [, ] (,,, ) (,, ) (,, ) (,,, ) Η προηγούμενη απόδειξη δείχνει πόσο χρήσιμα είναι τα γραφήματα : Χρησιμοποιεί ένα διμερές γράφημα για να επιχειρηματολογήσει για τη σχέση ακμών και όψεων ενός άλλου γραφήματος! [, ] [, ] Αν μετρήσουμε τις ακμές του διμερούς γραφήματος από αριστερά, είναι το πολύ m (κάθε ακμή βρίσκεται σε το πολύ όψεις). Από δεξιά είναι τουλάχιστον f (κάθε όψη έχει τουλάχιστον ακμές). Άρα, σε κάθε γράφημα f m. Από Euler f = n + m...

Το K δεν είναι επίπεδο Συνθήκη για διμερή γραφήματα Το K δεν είναι επίπεδο Πράγματι, το K έχει n = κόμβους και m = 0 ακμές. Δεν ισχύει πως m n 6, άρα δεν είναι επίπεδο. Αναγκαία αλλά όχι ικανή Η συνθήκη m n 6 είναι αναγκαία για να είναι ένα γράφημα επίπεδο. Δεν είναι όμως ικανή: Υπάρχουν γραφήματα με λίγες ακμές που δεν είναι επίπεδα. Σε κάθε συνεκτικό διμερές επίπεδο γράφημα ο αριθμός των κόμβων n και των ακμών m ικανοποιεί m n. Συμπέρασμα: το K, δεν είναι επίπεδο γιατί έχει n = 6 και m = 9 > n Ικανή και αναγκαία συνθήκη για επίπεδα γραφήματα Κύκλοι του Euler και του Hamilton Σχήμα : Ενα γράφημα και μια υποδιαίρεσή του (Kuratowski, 90) Ενα γράφημα είναι επίπεδο αν και μόνο αν δεν περιέχει κάποια υποδιαίρεση του K ή του K,. (Χωρίς απόδειξη) Σχήμα : Οι γέφυρες του Königsberg

Κύκλοι του Euler και του Hamilton Leonhard Euler (707-78) Κύκλοι του Euler και του Hamilton Κύκλοι του Euler και του Hamilton 7 8 9 6 Σχήμα : Το γράφημα των 7 γεφυρών Ενα συνεκτικό γράφημα έχει κύκλο του Euler μόνο αν και μόνο αν όλοι οι κόμβοι του έχουν άρτιο βαθμό. Σχήμα : Γράφημα με κύκλο του Euler Ενα συνεκτικό γράφημα έχει κύκλο του Euler μόνο αν και μόνο αν όλοι οι κόμβοι του έχουν άρτιο βαθμό.