Analisi dinamica di un telaio shear-type a 3 piani

Σχετικά έγγραφα
Moto armonico: T : periodo, ω = pulsazione A: ampiezza, φ : fase

!Stato di tensione triassiale!stato di tensione piano!cerchio di Mohr

Esercizi sui circoli di Mohr

ECONOMIA MONETARIA (parte generale) Prof. Guido Ascari LEZIONE 3 LA DOMANDA DI MONETA

Capitolo 4 Funzione di trasferimento

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ

ΕΥΣΤΑΘΕΙΑ ΙΑΤΟΙΧΙΣΜΟΥ ΠΛΟΙΟΥ ΚΑΙ ΥΠΟΒΑΘΡΟ ΚΑΝΟΝΙΣΜΩΝ. Σηµειώσεις για το πρόγραµµα Mathematica

Sollecitazioni proporzionali e non proporzionali I criteri di Gough e Pollard e di Son Book Lee I criteri di Sines e di Crossland

IL LEGAME COVALENTE. Teoria degli orbitali molecolari

Processi di Markov di nascita e morte. soluzione esprimibile in forma chiusa

Stato di tensione triassiale Stato di tensione piano Cerchio di Mohr

Lungo una curva di parametro λ, di vettore tangente. ;ν = U ν [ V µ. ,ν +Γ µ ναv α] =0 (2) dλ +Γµ να U ν V α =0 (3) = dxν dλ

Prima Esercitazione. Baccarelli, Cordeschi, Patriarca, Polli 1

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

TRIGONOMETRIA: ANGOLI ASSOCIATI

:= x 2 + c 1 H1 - xl x 2 + c 2 H1- xl 2 x 3 17 c 1 c c 2 c c c 2 : 1 Ø 2 Ø 111 >>

Un calcolo deduttivo per la teoria ingenua degli insiemi. Giuseppe Rosolini da un università ligure

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Σηµειώσεις για το πρόγραµµα Mathematica

Integrali doppi: esercizi svolti


-! " #!$ %& ' %( #! )! ' 2003

9.2 Μελετώντας τρισδιάστατα γραφικά στο επίπεδο Oi sunartήseiv Contour Plot kai DensityPlot

G. Parmeggiani, 15/1/2019 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 12

Σηµειώσεις για το πρόγραµµα Mathematica

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

Εγχειρίδιο οδηγιών. Χρονοθερμοστάτης WiFi Εγχειρίδιο τεχνικού εγκατάστασης

ENERGIA - POTENZA - CORRELAZIONE

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης

!!"#$"%&'()%*$& !! )!+($,-./,0. !! )!"% $&)#$+($1$ !!2)%$34#$$)$ !!+(&%#(%$5$( #$%

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Έγκριση ελευθέρων βοηθημάτων της Ιταλικής Γλώσσας για το Γενικό Λύκειο σχολικού έτους

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης

F1. Goniometria - Esercizi

Ακαδημαϊκός Λόγος Εισαγωγή

Ιταλική Γλώσσα Β1 Θεωρία: Γραμματική

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

IMPARA LE LINGUE CON I FILM AL CLA


GUIDA FISCALE PER GLI STRANIERI

LVFABPB νέο. Λειτουργίες. Εκδόσεις. 50's style retro

Προγραμματισμός Ι (HY120)

Ιταλική Γλώσσα Β1. 11 η ενότητα: Appuntamenti nel tempo libero. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

L oscillatore armonico e il rotatore rigido

PVWH! OILGEAR TAIFENG

Alterazioni del sistema cardiovascolare nel volo spaziale

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

STL7233L νέο. Λειτουργίες. Πλήρως Εντοιχιζόμενο Πλυντήριο Πιάτων 60 εκ Ενεργειακή κλάση A+++ Περισσότερες πληροφορίες στο

DEFINIZIONE DELLE FUNZIONI TRIGONOMETRICHE IN UN TRIANGOLO RETTANGOLO

OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ST2FABBL νέο. Λειτουργίες. Εκδόσεις. 50's style retro

Ιταλική Γλώσσα Β1. 12 η ενότητα: Giorno e notte estate. Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

άπο πρώτη ς Οκτωβρίου 18 3"] μέ/ρι τοΰ Πάσ/α 1838 τυροωμιάσατ ο Π 1 Ν Α S Τ Ω Ν Ε Ν Τ Ω Ι Β. Ο Θ Ω Ν Ε Ι Ω Ι Π Α Ν Ε Π Ι Σ Ί Ή Μ Ε Ι Ω Ι

Διαφορικά Αόριστα Ολοκληρώµατα Κανόνες Ολοκλήρωσης. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

LA CONDUZIONE ELETTRICA NEI METALLI

EE434 ASIC & Digital Systems Arithmetic Circuits

MACCHINE A FLUIDO 2 CORRELAZIONE RENDIMENTO TURBINA A GAS S.F. SMITH

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

!"# '1,2-0- +,$%& &-

Stucco Natural / Stucco Mítiko. Στόκος με βάση τον ασβέστη.

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Il testo è stato redatto a cura di: Daniele Ferro (Tecnico della prevenzione - S.Pre.S.A.L. - ASL 12 Biella)

!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7

MATRICES DE TRANSFORMACION DE COORDENADAS. 3D. ü INCLUDES. ü Cálculo de las componentes de la Matriz de rotación de tensiones (3-3)

MÉTHODES ET EXERCICES

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc)

ΚλασικΩ ΣΥ Λ Λ Ο)1ΓJf-I

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ.

LVS4334XIN. Πλυντήριο πιάτων 60 εκ., ελεύθερο, εμφανή χειριστήρια, inox/γκρι μεταλλικό Κλάση Α+++A Περισσότερες πληροφορίες στο

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Stati tensionali e deformativi nelle terre

! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΚΥΡΟΔΕΜΑ ΙΙ.

!!" # $!!" %% &% $ : () *"++,- ; 4 % < & & / % % & / % 1 " #. % % 6

L'ELEGANZA NEI PUNTI NOTEVOLI DI UN TRIANGOLO

Problemas resueltos del teorema de Bolzano

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.

Vers un assistant à la preuve en langue naturelle

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

!!" # "!! $$ %$ ' : () *"++,- ; 4 $ < % % / $ $ % /

PoS(PSF07)002 !"# $%"&!'( &")(#""* "+#,'("# ! " #$% ! " #$ ! " ,,. 12!34 " ! " ! γ " " #$ % &'# ( #$ γ )* +, &'# &'# -. /$01#!

m 1, m 2 F 12, F 21 F12 = F 21

ROVER (MG ROVER GROUP LTD)

ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ (ECΟ465) ΥΛΙΣΜΙΚΟ/ΛΟΓΙΣΜΙΚΟ ΕΙΚΟΝΙΚΑ ΔΙΚΤΥΑ

Ε.Ο.Αθηνών Λαµίας 97, Τ.Κ ,Ν.Φιλαδέλφεια Τηλ , Fax Θερµοστάτης PJEZSNH000.

cognome -nome data di nascita Città C.S.B. cellulare ctg- specialità

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

ΕΝΘΥΜΗΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΩΝ ΒΙΒΛΙΩΝ ΙΕΡΟΥ ΝΑΟΥ ΚΟΙΜΗΣΕΩΣ ΘΕΟΤΟΚΟΥ ΑΝΩ ΣΚΟΤΙΝΑΣ

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Profesor Blaga Mirela-Gabriela DREAPTA

MECHANICAL PROPERTIES OF MATERIALS


... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

Οριακή Κατάσταση. με ή χωρίς ορθή δύναμη

Παράδειγμα 1. Διαστασιολόγηση δοκού Ο/Σ

Karta Katalogowa CATALOGUE CARD

Αποτελέσματα έρευνας σε συνδικαλιστές

Transcript:

ss_new.nb 1 Analisi dinamica di un elaio shear-ype a 3 piani Sezione pilasri 3 x 3 Versione per la sampa ü Comandi di uilià ü Equazioni del moo In[7]:= eq@1d = m@1d x@1d''@d + k@1d Hx@1D@D xg@dl k@2d Hx@2D@D x@1d@dl + c@1d Hx@1D'@D xg'@dl c@2d Hx@2D'@D x@1d'@dl Ou[7]= k@1d H xg@d + x@1d@dl k@2d H x@1d@d + x@2d@dl + c@1d H xg @D + x@1d @DL c@2d H x@1d @D + x@2d @DL + m@1d x@1d @D In[8]:= eq@2d = m@2d x@2d''@d + k@2d Hx@2D@D x@1d@dl k@3d Hx@3D@D x@2d@dl + c@2d Hx@2D'@D x@1d'@dl c@3d Hx@3D'@D x@2d'@dl Ou[8]= k@2d H x@1d@d + x@2d@dl k@3d H x@2d@d + x@3d@dl + c@2d H x@1d @D + x@2d @DL c@3d H x@2d @D + x@3d @DL + m@2d x@2d @D In[9]:= Ou[9]= eq@3d = m@3d x@3d''@d + k@3d Hx@3D@D x@2d@dl + c@3d Hx@3D'@D x@2d'@dl k@3d H x@2d@d + x@3d@dl + c@3d H x@2d @D + x@3d @DL + m@3d x@3d @D In[1]:= MM := Table@Coefficien@eq@iD, x@jd''@dd, 8i, 1, 3<, 8j, 1, 3<D In[11]:= KK := Table@Coefficien@eq@iD, x@jd@dd, 8i, 1, 3<, 8j, 1, 3<D In[12]:= CC := Table@Coefficien@eq@iD, x@jd'@dd, 8i, 1, 3<, 8j, 1, 3<D In[13]:= FF1 := Table@Coefficien@eq@iD, xg@dd, 8i, 1, 3<D In[14]:= FF2 := Table@Coefficien@eq@iD, xg'@dd, 8i, 1, 3<D In[15]:= MarixForm@MMD Ou[15]//MarixForm= i m@1d y m@2d j z k m@3d { In[16]:= MarixForm@KKD Ou[16]//MarixForm= i k@1d + k@2d k@2d y k@2d k@2d + k@3d k@3d j z k k@3d k@3d { In[17]:= MarixForm@CCD Ou[17]//MarixForm= i c@1d + c@2d c@2d y c@2d c@2d + c@3d c@3d j z k c@3d c@3d {

ss_new.nb 2 In[18]:= In[19]:= AA := Inverse@MMD.KK MarixForm@AAD Ou[19]//MarixForm= i j k k@1d+k@2d m@1d k@2d m@2d k@2d m@1d k@2d+k@3d m@2d k@3d m@3d k@3d m@2d k@3d m@3d In[2]:= Table@m@iD = M, 8i, 1, 3<D Ou[2]= 8M, M, M< In[21]:= Table@k@iD = K, 8i, 1, 3<D Ou[21]= 8K, K, K< In[22]:= Table@c@iD = Ci, 8i, 1, 3<D y z { Ou[22]= In[23]:= Ou[23]= In[24]:= 8Ci, Ci, Ci< AA 99 2 K M, K M MarixForm@AAD, =, 9 K M, 2 K M, K M =, 9, K M, K M == Ou[24]//MarixForm= 2 K i K M K 2 K M M j k K M M K M K M y z { ü Assegnazione valori numerici In[25]:= l = 3; In[26]:= b =.3; In[27]:= h =.3; In[28]:= Ine = b h3 12 Ou[28]=.675 In[29]:= El = 3 1 1 Ou[29]= 3 In[3]:= 24 El Ine K = Ou[3]= 1.8 1 7 l 3 In[31]:= M = 25 Ou[31]= 25

ss_new.nb 3 In[32]:= Ci =.2 Ou[32]= ü Analisi modale In[33]:= AA Ou[33]= 88144., 72.,.<, 8 72., 144., 72.<, 8., 72., 72.<< In[34]:= Ou[34]= In[35]:= eigens = Eigensysem@AAD 882337.83, 1119.57, 142.65<, 88.5919,.736976,.327985<, 8.736976,.327985,.5919<, 8.327985,.5919,.736976<<< eigv1 = eigens@@2, 3DD Ou[35]= 8.327985,.5919,.736976< In[36]:= Ou[36]= In[37]:= Ou[37]= In[38]:= eigv2 = eigens@@2, 2DD 8.736976,.327985,.5919< eigv3 = eigens@@2, 1DD 8.5919,.736976,.327985< ave@1d = AppendColumns@88, <<, Table@8eigv1@@iDD, i<, 8i, 1, 3<DD Ou[38]= 88, <, 8.327985, 1<, 8.5919, 2<, 8.736976, 3<< In[39]:= Ou[39]= In[4]:= In[41]:= plmodol@1d = LisPlo@ave@1D, PloJoined True, PloRange 88, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD plmodop@1d = LisPlo@ave@1D, PloSyle PoinSize@.3D, PloRange 88, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD; Show@plmodol@1D, plmodop@1d, DisplayFuncion $DisplayFuncionD 3 2.5 2 1.5 1.5.2.4.6.8 1 1.2 1.4 Ou[41]= In[42]:= ave@2d = AppendColumns@88, <<, Table@8eigv2@@iDD, i<, 8i, 1, 3<DD Ou[42]= 88, <, 8.736976, 1<, 8.327985, 2<, 8.5919, 3<<

ss_new.nb 4 In[43]:= Ou[43]= In[44]:= Ou[44]= In[45]:= plmodol@2d = LisPlo@ave@2D, PloJoined True, PloRange 88 1.5, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD plmodop@2d = LisPlo@ave@2D, PloSyle PoinSize@.3D, PloRange 88, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD Show@plmodol@2D, plmodop@2d, DisplayFuncion $DisplayFuncionD 3 2.5 2 1.5 1.5-1.5-1 -.5.5 1 1.5 Ou[45]= In[46]:= ave@3d = AppendColumns@88, <<, Table@8eigv3@@iDD, i<, 8i, 1, 3<DD Ou[46]= 88, <, 8.5919, 1<, 8.736976, 2<, 8.327985, 3<< In[47]:= Ou[47]= In[48]:= Ou[48]= In[49]:= plmodol@3d = LisPlo@ave@3D, PloJoined True, PloRange 88 1.5, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD plmodop@3d = LisPlo@ave@3D, PloSyle PoinSize@.3D, PloRange 88, 1.5<, 8, 3.1<<, DisplayFuncion IdeniyD Show@plmodol@3D, plmodop@3d, DisplayFuncion $DisplayFuncionD 3 2.5 2 1.5 1.5-1.5-1 -.5.5 1 1.5 Ou[49]=

ss_new.nb 5 In[5]:= Ou[5]= In[51]:= Φ = Transpose@8eigv1, eigv2, eigv3<d 88.327985,.736976,.5919<, 8.5919,.327985,.736976<, 8.736976,.5919,.327985<< MarixForm@ΦD Ou[51]//MarixForm= i.327985.736976.5919 y.5919.327985.736976 j z k.736976.5919.327985 { In[52]:= MarixForm@KKD Ou[52]//MarixForm= i 3.6 1 7 1.8 1 7 y 1.8 1 7 3.6 1 7 1.8 1 7 j k 1.8 1 7 1.8 1 7 z { In[53]:= kmodal = Chop@Transpose@ΦD.KK.Φ, 1 6 D Ou[53]= 883.56512 1 6,, <, 8, 2.79892 1 7, <, 8,, 5.84456 1 7 << In[54]:= MarixForm@kmodalD Ou[54]//MarixForm= i 3.56512 1 6 2.79892 1 7 j k 5.84456 1 7 y z { In[55]:= mmodal = Chop@Transpose@ΦD.MM.Φ, 1 6 D Ou[55]= 8825.,, <, 8, 25., <, 8,, 25.<< In[56]:= MarixForm@mmodalD Ou[56]//MarixForm= i 25. y 25. j z k 25. { In[57]:= Ou[57]= In[58]:= Y@D = 8y@1D@D, y@2d@d, y@3d@d< 8y@1D@D, y@2d@d, y@3d@d< CC Ou[58]= 88,, <, 8,, <, 8,, << In[59]:= cmodal = Chop@Transpose@ΦD.CC.Φ, 1 6 D Ou[59]= 88.396125,, <, 8,.31992, <, 8,,.649396<< In[6]:= fmodal1 = Chop@Transpose@ΦD.FF1, 1 6 D Ou[6]= 8 5.9373 1 6, 1.32656 1 7, 1.6382 1 7 < In[61]:= fmodal2 = Chop@Transpose@ΦD.FF2, 1 6 D Ou[61]= 8.655971,.147395,.11822<

ss_new.nb 6 Equazioni modali In[62]:= eqdisacc = mmodal.d@y@d, 8, 2<D + kmodal.y@d + cmodal.d@y@d, 8, 1<D + fmodal1 xg@d + fmodal2 xg'@d Ou[62]= 8 5.9373 1 6 xg@d + 3.56512 1 6 y@1d@d.655971 xg @D +.396125 y@1d @D + 25. y@1d @D, 1.32656 1 7 xg@d + 2.79892 1 7 y@2d@d.147395 xg @D +.31992 y@2d @D + 25. y@2d @D, 1.6382 1 7 xg@d + 5.84456 1 7 y@3d@d +.11822 xg @D +.649396 y@3d @D + 25. y@3d @D< ü Assegnazione erremoo In[63]:= err = << afdis2; In[64]:= err1 = Block@8 =.1, =.1<, Table@8 = +, err@@idd<, 8i, 1, Lengh@errD<DD; In[65]:= Ou[65]= xg = Inerpolaion@err1D InerpolaingFuncion@88., 17.99<<, <>D Sposameno al erreno In[66]:= Plo@Evaluae@xg@DD, 8,, 17.99<D 17.5 - Ou[66]= Velocià al erreno

ss_new.nb 7 In[67]:= Plo@Evaluae@xg'@DD, 8,, 17.99<D.1.75.5 5-5 17.5 -.5 -.75 Ou[67]= Accelerazione al erreno In[68]:= Plo@Evaluae@xg''@DD, 8,, 17.99<D 1.75.5.25 -.25 17.5 -.5 -.75 Ou[68]= ü Risoluzione equazioni modali Soluzione prima equazione modale In[69]:= mod@1d = NDSolve@8eqdisacc@@1DD, y@1d@d, y@1d'@d <, y@1d, 8, 17<, MaxSeps maxpassid Ou[69]= 88y@1D InerpolaingFuncion@88., 17.<<, <>D<<

ss_new.nb 8 In[7]:= Plo@Evaluae@y@1D@D ê. mod@1dd, 8,, 17<, AxesLabel 8"", "yh1lhl"<d yh1lhl.75.5 5-5 -.5 Ou[7]= Soluzione seconda equazione modale In[71]:= mod@2d = NDSolve@8eqdisacc@@2DD, y@2d@d, y@2d'@d <, y@2d, 8,, 17<, MaxSeps maxpassid Ou[71]= In[72]:= 88y@2D InerpolaingFuncion@88., 17.<<, <>D<< Plo@Evaluae@y@2D@D ê. mod@2dd, 8,, 17<, AxesLabel 8"", "yh2lhl"<d yh2lhl.1 -.1 Ou[72]= Soluzione erza equazione modale In[73]:= mod@3d = NDSolve@8eqdisacc@@3DD, y@3d@d, y@3d'@d <, y@3d, 8,, 17<, MaxSeps maxpassid Ou[73]= 88y@3D InerpolaingFuncion@88., 17.<<, <>D<<

ss_new.nb 9 In[74]:= Plo@Evaluae@y@3D@D ê. mod@3dd, 8,, 17<, AxesLabel 8"", "yh3lhl"<d yh3lhl.6.4.2 -.2 -.4 -.6 -.8 Ou[74]= Ricosruzione dello sao In[75]:= Ou[75]= Φ.8y@1D, y@2d, y@3d< 8.327985 y@1d +.736976 y@2d.5919 y@3d,.5919 y@1d +.327985 y@2d +.736976 y@3d,.736976 y@1d.5919 y@2d.327985 y@3d< ü Sao con il solo primo modo In[76]:= pl1x1 = Plo@Evaluae@HΦ@@1, 1DD y@1d@d ê. mod@1dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x1hl"<, Frame True, FrameLabel 8"", "x1hl", "sposameno 1 liv. I modo", " "<D sposameno 1 liv. I modo x 1 HL.6 - - -.6 Ou[76]=

ss_new.nb 1 In[77]:= pl1x2 = Plo@Evaluae@HΦ@@2, 1DD y@1d@d ê. mod@1dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x2hl"<, Frame True, FrameLabel 8"", "x2hl", "sposameno 2 liv. I modo", " "<D sposameno 2 liv. I modo x 2 HL.6 - - -.6 Ou[77]= In[78]:= pl1x3 = Plo@Evaluae@HΦ@@3, 1DD y@1d@d ê. mod@1dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x3hl"<, Frame True, FrameLabel 8"", "x3hl", "sposameno 3 liv. I modo", " "<D sposameno 3 liv. I modo x 3 HL.6 - - -.6 Ou[78]=

ss_new.nb 11 ü Sao con i primi due modi In[79]:= pl2x1 = Plo@Evaluae@HΦ@@1, 1DD y@1d@d ê. mod@1dl + HΦ@@1, 2DD y@2d@d ê. mod@2dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x1hl"<, Frame True, FrameLabel 8"", "x1hl", "sposameno 1 liv. I e II modo", " "<D sposameno 1 liv. I e II modo x 1 HL.6 - - -.6 Ou[79]= In[8]:= pl2x2 = Plo@Evaluae@HΦ@@2, 1DD y@1d@d ê. mod@1dl + HΦ@@2, 2DD y@2d@d ê. mod@2dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x2hl"<, Frame True, FrameLabel 8"", "x2hl", "sposameno 2 liv. I e II modo", " "<D sposameno 2 liv. I e II modo x 2 HL.6 - - -.6 Ou[8]=

ss_new.nb 12 In[81]:= pl2x3 = Plo@Evaluae@HΦ@@3, 1DD y@1d@d ê. mod@1dl + HΦ@@3, 1DD y@2d@d ê. mod@2dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x3hl"<, Frame True, FrameLabel 8"", "x3hl", "sposameno 3 liv. I e II modo", " "<D sposameno 3 liv. I e II modo x 3 HL.6 - - -.6 Ou[81]= ü Sao con ui e re i modi In[82]:= pl3x1 = Plo@Evaluae@HΦ@@1, 1DD y@1d@d ê. mod@1dl + HΦ@@1, 2DD y@2d@d ê. mod@2dl + HΦ@@1, 3DD y@3d@d ê. mod@3dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x1hl"<, Frame True, FrameLabel 8"", "x1hl", "sposameno 1 liv. I, II e III modo", " "<D.6 sposameno 1 liv. I, II e III modo x 1 HL - - -.6 Ou[82]=

ss_new.nb 13 In[83]:= pl3x2 = Plo@Evaluae@HΦ@@2, 1DD y@1d@d ê. mod@1dl + HΦ@@2, 2DD y@2d@d ê. mod@2dl + HΦ@@2, 3DD y@3d@d ê. mod@3dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x2hl"<, Frame True, FrameLabel 8"", "x2hl", "sposameno 2 liv. I, II e III modo", " "<D.6 sposameno 2 liv. I, II e III modo x 2 HL - - -.6 Ou[83]= In[84]:= pl3x3 = Plo@Evaluae@HΦ@@3, 1DD y@1d@d ê. mod@1dl + HΦ@@3, 2DD y@2d@d ê. mod@2dl + HΦ@@3, 3DD y@3d@d ê. mod@3dld, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x3hl"<, Frame True, FrameLabel 8"", "x3hl", "sposameno 3 liv. I, II e III modo", " "<D.6 sposameno 3 liv. I, II e III modo x 3 HL - - -.6 Ou[84]= ü Soluzione dell'equazione di parenza In[85]:= solo = NDSolve@8eq@1D, eq@2d, eq@3d, x@1d@d, x@1d'@d, x@2d@d, x@2d'@d, x@3d@d, x@3d'@d <, 8x@1D, x@2d, x@3d<, 8,, 17<, MaxSeps maxpassid Ou[85]= 88x@1D InerpolaingFuncion@88., 17.<<, <>D, x@2d InerpolaingFuncion@88., 17.<<, <>D, x@3d InerpolaingFuncion@88., 17.<<, <>D<<

ss_new.nb 14 In[86]:= plox1 = Plo@Evaluae@x@1D@D ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x1hl"<, Frame True, FrameLabel 8"", "x1hl", "sposameno 1 liv. inegrazione direa", " "<D sposameno 1 liv. inegrazione direa.6 x 1 HL - - -.6 Ou[86]= In[87]:= plox2 = Plo@Evaluae@x@2D@D ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x2hl"<, Frame True, FrameLabel 8"", "x2hl", "sposameno 2 liv. inegrazione direa", " "<D sposameno 2 liv. inegrazione direa.6 x 2 HL - - -.6 Ou[87]= In[88]:= plox3 = Plo@Evaluae@x@3D@D ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, AxesLabel 8"", "x3hl"<, Frame True, FrameLabel 8"", "x3hl", "sposameno 3 liv. inegrazione direa", " "<D sposameno 3 liv. inegrazione direa.6 x 3 HL - - -.6 Ou[88]=

ss_new.nb 15 ü Sovrapposizione In[89]:= plox1r = Plo@Evaluae@x@1D@D ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, Frame True, FrameLabel 8"", "x1hl", "sovrapposizione spos 1 liv.", " "<, PloSyle Dashing@8.1,.1<D, DisplayFuncion IdeniyD; In[9]:= plox2r = Plo@Evaluae@x@2D@D ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, Frame True, FrameLabel 8"", "x2hl", "sovrapposizione spos 2 liv.", " "<, PloSyle Dashing@8.1,.1<D, DisplayFuncion IdeniyD; In[91]:= plox3r = Plo@Evaluae@x@3D@D ê. solod, 8,, 17<, PloRange 88, 17<, 8 esrgraf, esrgraf<<, Frame True, FrameLabel 8"", "x3hl", "sovrapposizione spos 3 liv.", " "<, PloSyle Dashing@8.1,.1<D, DisplayFuncion IdeniyD; Soluzione dell'equazione di parenza e soluzione con il primo modo (a linea coninua)

ss_new.nb 16 In[92]:= Show@GraphicsArray@88Show@plox1r, pl1x1d<, 8Show@plox2r, pl1x2d<, 8Show@plox3r, pl1x3d<<, DisplayFuncion $DisplayFuncionDD sovrapposizione spos 1 liv..6 x 1 HL - - -.6 sovrapposizione spos 2 liv..6 x 2 HL - - -.6 sovrapposizione spos 3 liv..6 x 3 HL - - -.6 Ou[92]= GraphicsArray

ss_new.nb 17 Soluzione dell'equazione di parenza e soluzione con il primo e secondo modo (a linea coninua) In[93]:= Show@GraphicsArray@88Show@plox1r, pl2x1d<, 8Show@plox2r, pl2x2d<, 8Show@plox3r, pl2x3d<<, DisplayFuncion $DisplayFuncionDD

ss_new.nb 18.6 sovrapposizione spos 1 liv. x 1 HL - - -.6 sovrapposizione spos 2 liv..6 x 2 HL - - -.6 sovrapposizione spos 3 liv..6 x 3 HL - - -.6 Ou[93]= GraphicsArray

ss_new.nb 19 Soluzione dell'equazione di parenza e soluzione con il primo, secondo e erzo modo (a linea coninua)

ss_new.nb 2 In[94]:= Show@GraphicsArray@88Show@plox1r, pl3x1d<, 8Show@plox2r, pl3x2d<, 8Show@plox3r, pl3x3d<<, DisplayFuncion $DisplayFuncionDD sovrapposizione spos 1 liv..6 x 1 HL - - -.6 sovrapposizione spos 2 liv..6 x 2 HL - - -.6 sovrapposizione spos 3 liv..6 x 3 HL - - -.6 Ou[94]= GraphicsArray