Βασικές Έννοιες Θεωρίας Γραφημάτων

Σχετικά έγγραφα
Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος

Αλγόριθµοι Γραφηµάτων

ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις

u v 4 w G 2 G 1 u v w x y z 4

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Εισαγωγή στην Επιστήμη των Υπολογιστών

2 ) d i = 2e 28, i=1. a b c

Ελάχιστο Συνδετικό Δέντρο

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Εισαγωγή στην Επιστήμη των Υπολογιστών

Ελάχιστο Συνδετικό Δέντρο

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

... a b c d. b d a c

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Στοιχεία Θεωρίας Γραφηµάτων (1)

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Θεωρία Γραφημάτων 1η Διάλεξη

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Αναζήτηση Κατά Βάθος. Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Θεωρία Γραφημάτων 11η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη

Ελάχιστο Συνδετικό έντρο

Γράφοι: κατευθυνόμενοι και μη

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Αναζήτηση Κατά Βάθος. Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

Συντομότερες Διαδρομές

Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

E(G) 2(k 1) = 2k 3.

Θεωρία Γραφημάτων 5η Διάλεξη

Ελάχιστο Συνδετικό Δέντρο

Ελάχιστο Συνδετικό έντρο

Συντομότερες Διαδρομές

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς

Θεωρία Γραφημάτων 6η Διάλεξη

Στοιχεία Θεωρίας Γραφηµάτων (2)

Θεωρία Γραφημάτων 8η Διάλεξη

Μέγιστη Ροή Ελάχιστη Τομή

Κεφάλαιο 3. Γραφήµατα v1.1 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

Συντομότερες ιαδρομές

Επίπεδα Γραφήματα (planar graphs)

βασικές έννοιες (τόμος Β)

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Μαθηματικά Πληροφορικής

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι είδαμε την προηγούμενη φορά. Συνεκτικότητα. 25 -Γράφοι

Συνεκτικότητα Γραφήματος

Θεωρία Γραφημάτων 9η Διάλεξη

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Μαθηματικά Πληροφορικής

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

Μέγιστη Ροή Ελάχιστη Τομή

Συντομότερες ιαδρομές

Συντομότερες ιαδρομές

Θεωρία Γραφημάτων 7η Διάλεξη

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

για NP-Δύσκολα Προβλήματα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

d(v) = 3 S. q(g \ S) S

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι

Ουρά Προτεραιότητας: Heap

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

q(g \ S ) = q(g \ S) S + d = S.

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Transcript:

Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα, διαδρομές, δρομολόγηση ανάθεση πόρων, layouts, ). Γράφημα G(V, E): V κορυφές Ε ακμές(ζεύγη σχετιζόμενων κορυφών) Τάξη V = n και μέγεθος E = m. Κατευθυνόμενα και μη-κατευθυνόμενα, απλά μη-κατευθ. Βάρη (μήκη) στις ακμές Εθνικό Μετσόβιο Πολυτεχνείο Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 2 Πλήρες και Συμπληρωματικό Γράφημα Σύνολο Ανεξαρτησίας και Χρωματικός Αριθμός Πλήρες γράφημα n κορυφών: Κ n Όλαταζεύγηκορυφώνσυνδέονταιμεακμή: n(n-1)/2 ακμές. Συμπληρωματικό γράφημα γραφήματος G. Ίδιο σύνολο κορυφών. Ακμές: όσεςδενυπάρχουνστοg. Συμπληρωματικό : αρχικό γράφημα G. 1 4 5 3 6 2 Σύνολο ανεξαρτησίας: σύνολο κορυφών που δεν συνδέονται με ακμή. k-μερές γράφημα: κορυφές του διαμερίζονται σε k σύνολα ανεξαρτησίας. Ενδιαφέρει ελάχιστο k για το οποίο γράφημα G είναι k-μερές. Αυτό ταυτίζεται με χρωματικό αριθμό χ(g) γραφήματος G. Χρωματικός αριθμός: ελάχιστος αριθμός χρωμάτων για χρωματισμό κορυφών ώστε όλες οι ακμές να έχουν άκρα διαφορετικού χρώματος. Κορυφές ίδιου χρώματος: σύνολο ανεξαρτησίας. Αν G περιέχει Κ m, χ(g) m χ(g) Δ+1 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 3 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 4

Διμερές Γράφημα Υπάρχει διαμέριση κορυφών σε δύο σύνολα ανεξαρτησίας. G(X, Y, E): X και Y σύνολα ανεξαρτησίας, ακμές μόνο μεταξύ κορυφών Χ και Υ. G διμερές ανν χ(g) = 2. G διμερές ανν δεν έχει κύκλους περιττού μήκους. Κύκλος n κορυφών C n : διμερές αν n άρτιος, 3-μερές αν n περιττός. Πλήρες διμερές γράφημα Κ n,m : Δύοσύνολαανεξαρτησίαςμεn και m κορυφές. Όλες οι n m ακμές μεταξύ τους. Π.χ. Κ 3,3 έχει 9 ακμές. Υπο-Γραφήματα Υπογράφημα G (V, E ) του G(V, E) όταν V V και E E. Επικαλύπτον (spanning) όταν V = V, δηλ. έχει όλες τις κορυφές του αρχικού γραφήματος, επιλέγουμε τις ακμές που τις συνδέουν. Επαγόμενο (induced) όταν δηλ. έχει όλες τις ακμές του αρχικού μεταξύ των επιλεγμένων κορυφών. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 5 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 6 Διαδρομές, Μονοπάτια, και Κύκλοι Συνεκτικότητα Διαδρομή Μονοκονδυλιά Μονοπάτι - Κ Διαδρομή: ακολουθία «διαδοχικών» ακμών. Δύο ακμές «διαδοχικές» αν έχουν τουλάχιστον ένα άκρο κοινό. Π.χ. {2, 1}, {1, 3}, {3, 4}, {4, 1}, {1, 5}, {5, 3}, {3, 6}. Μονοκονδυλιά: διαδρομή χωρίς επανάληψη ακμών. (Απλό) μονοπάτι: διαδρομή χωρίς επανάληψη κορυφών (και ακμών). Υπάρχει διαδρομή u v ανν υπάρχει μονοπάτι u v. Απόσταση d(u, v) (χωρίς και με βάρη): μήκος συντομότερου u v μονοπατιού. Κλειστή διαδρομή όταν άκρα της ταυτίζονται. Κλειστή μονοκονδυλιά ή κύκλωμα. (Απλός) κύκλος: μονοπάτι που άκρα του ταυτίζονται («κλειστό» μονοπάτι). (Μη-κατευθυνόμενο) γράφημα G(V, E) συνεκτικό αν για κάθε ζευγάρι κορυφών u, v V, υπάρχει u v μονοπάτι. Μη-συνεκτικό γράφημα αποτελείται από συνεκτικές συνιστώσες: μεγιστοτικά συνεκτικά υπογραφήματα. Γέφυρα (ακμή τομής): ακμή που αν αφαιρεθεί αυξάνει το πλήθος των συνεκτικών συνιστωσών. Ακμή γέφυρα ανν δεν ανήκει σε κύκλο. Σημείο άρθρωσης (κορυφή τομής): κορυφή που αν αφαιρεθεί αυξάνει το πλήθος των συνεκτικών συνιστωσών. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 7 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 8

Συνεκτικότητα Βαθμός Κορυφής (Κατευθυνόμενο) γράφημα G(V, E) ισχυρά συνεκτικό αν u, v V, υπάρχουν u v και v u μονοπάτια. Για κάθε ζευγάρι κορυφών ισχυρά συνεκτικού γραφήματος, υπάρχει κύκλος που τις περιλαμβάνει. Αν ένα κατευθυνόμενο γράφημα δεν είναι ισχυρά συνεκτικό, διαμερίζεται σε ισχυρά συνεκτικές συνιστώσες: Μεγιστοτικά ισχυρά συνεκτικά υπογραφήματα. Βαθμός κορυφής deg(v): #ακμών εφαπτόμενων στη v. Κατευθυνόμενα: προς-τα-έσω και προς-τα-έξω βαθμός. Μη-κατευθυνόμενο G(V, E): Άρτιο πλήθος κορυφών περιττού βαθμού. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 9 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 10 Κύκλος Euler Κύκλος Hamilton Κλειστή μονοκονδυλιά που διέρχεται: από κάθε ακμή 1 φορά, και από κάθε κορυφή τουλάχιστον 1 φορά. Συνεκτικό (μη-κατευθ.) γράφημα έχει κύκλο Euler ανν όλες οι κορυφές έχουν άρτιο βαθμό. c C A d e g D 6 1 2 3 (Απλός) κύκλος που διέρχεται από όλες τις κορυφές. Διέρχεται από κάθε κορυφή 1 φορά. Μπορεί να μην διέρχεται από κάποιες ακμές. Δεν είναι γνωστή ικανή και αναγκαία συνθήκη! Ικανές συνθήκες ώστε G(V, E) έχει κύκλο Hamilton: v V, deg(v) V /2 (Θ. Dirac). u, v V, deg(u) + deg(v) V (Θ. Ore). Αναγκαίες συνθήκες για ύπαρξη κύκλου Hamilton σε γραφήμα G: G δεν έχει γέφυρα ή σημείο άρθρωσης. a B b f 5 4 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 11 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 12

Αναπαράσταση Γραφημάτων Πίνακας Γειτνίασης με πίνακα γειτνίασης: Αν έχουμε βάρη, (Απλό) μη κατευθυνόμενο: συμμετρικός, διαγώνιος 0. Άθροισμα στοιχείων γραμμής (στήλης): βαθμός κορυφής. Χώρος Θ(n 2 ). Άμεσος έλεγχος για ύπαρξη ακμής. Α k [u i, u j ] = #διαδρομών u i u j μήκους k. Διαγώνιος τετραγώνου: Α 2 [u i, u i ] = βαθμός(u i ). Α 3 [u i, u i ] = 2 #τριγώνων που συμμετέχει u i. Ορίζουμε: Υ[u i, u j ] = #διαδρομών u i u j μήκους n 1. Μονοπάτια έχουν μήκος n 1, και διαδρομή ανν μονοπάτι. Γράφημα συνεκτικό ανν όλα τα στοιχεία του Υθετικά(> 0). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 13 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 14 Αναπαράσταση Γραφημάτων με λίστα γειτνίασης: γειτονικές κορυφές σε λίστα. Αν έχουμε βάρη, τα αποθηκεύουμε στους κόμβους. Χώρος Θ(m). Έλεγχος για ύπαρξη ακμής σε χρόνο Ο(deg(u)). Πίνακας Πρόσπτωσης 2 7 1 3 6 8 10 9 5 4 1 2 3 4 5 6 3 / 1 4 / 2 4 5 / 2 6 / 6 / 3 / 1,2 1,5 1,6 2,3 2,7 3,4 3,8 4,5 4,9 5, 10 6,8 6,9 7,9 7, 10 8, 10 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 5 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 6 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 7 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 8 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 9 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 10 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 15 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 16

Ισομορφικά Γραφήματα Ισομορφικά Γραφήματα Γραφήματα G(V G, E G ) και H(V H, E H ) είναι ισομορφικά ανν υπάρχει 1-1 και επί συνάρτηση f: V G V H (ισομορφισμός) ώστε για κάθε u, v V G, {u, v} E G ανν {f(u), f(v)} E H Υπάρχει αντιστοιχία κορυφών που διατηρεί τη γειτονικότητα. Ισομορφισμός αποτελεί σχέση ισοδυναμίας. Αναλλοίωτη ιδιότητα: ισομορφικά γραφήματα «συμφωνούν». Όλες οι σημαντικές ιδιότητες: #κορυφών, #ακμών, βαθμοί, συνεκτικότητα, κύκλος Euler και Hamilton, χρωματικός αριθμός,... Πως αποδεικνύω ότι δύο γραφήματα ισομορφικά: Βρίσκω ισομορφισμό και ελέγχω ότι διατηρεί γειτονικότητα. Αποδεικνύω (με ισομορφισμό) ότι τα συμπληρωματικά τους είναι ισομορφικά. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 17 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 18 Ισομορφικά Γραφήματα Ισομορφικά Γραφήματα Πως αποδεικνύω ότι δύο γραφήματα δεν είναι ισομορφικά: Βρίσκω μια αναλλοίωτη ιδιότητα στην οποία «διαφωνούν». Αυτοσυμπληρωματικό γράφημα: ισομορφικό με το συμπληρωματικό του. Αυτοσυμπληρωματικό γράφημα έχει n(n-1)/4 ακμές. Αυτοσυμπληρωματικά γραφήματα υπάρχουν μόνο αν n ή n-1 είναι πολλαπλάσιο του 4. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 19 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 20

Επίπεδα Γραφήματα Επίπεδο ένα γράφημα που μπορεί να ζωγραφιστεί στο επίπεδο χωρίς να τέμνονται οι ακμές του. Θεώρημα 4 χρωμάτων: Επίπεδο γράφημα έχει χρωματικό αριθμό 4. Επίπεδη αποτύπωση ορίζει όψεις (faces). Περιοχή επιπέδου που ορίζεται από (απλό) κύκλο και δεν μπορεί να διαιρεθεί σε μικρότερες όψεις. Εσωτερικές και εξωτερική όψη. f = #όψεων επίπεδου γραφήματος. Τύπος του Euler για συνεκτικά επίπεδα γραφ.: n + f = m + 2 #όψεων είναι αναλλοίωτη ιδιότητα, δεν εξαρτάται από αποτύπωση! Επίπεδα Γραφήματα Μέγιστος αριθμός ακμών απλού επίπεδου γραφήματος. Απλό: κάθε όψη ορίζεται από τουλάχιστον 3 ακμές. Κάθε ακμή «ανήκει» σε μία ή δύο όψεις: Αν ανήκει σε κύκλο: σύνορο δύο όψεων. Διαφορετικά, «ανήκει» σε μία όψη. (Κάθε ακυκλικό γράφημα είναι επίπεδο με μία όψη, την εξωτερική). Υπάρχει συνεκτικό απλό επίπεδο γράφημα με m = 3n 6. Όλες του οι όψεις είναι τρίγωνα. Απλό διμερές επίπεδο γράφημα: m 2n 4. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 21 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 22 Επίπεδα Γραφήματα Ομοιομορφικά Γραφήματα Άρα αν απλό γράφημα έχει m > 3n 6 (m > 2n 4 αν διμερές), δεν είναι επίπεδο. Τα Κ 5 και Κ 3,3 δεν είναι επίπεδα. Το συμπληρωματικό του γραφ. Petersen δεν είναι επίπεδο. Απλό επίπεδο γράφημα περιέχει κορυφή βαθμού 5. Π.χ. χρησιμοποιείται για να δείξουμε επαγωγικά ότι κάθε επίπεδο γράφημα έχει χρωματικόαριθμό 5. Κάθε γράφημα G με n 11 κορυφές, είτε το G είτε το συμπληρωματικό του δεν είναι επίπεδο. Απλοποίηση σειράς: απαλοιφή κορυφών βαθμού 2 (δεν επηρεάζουν επιπεδότητα). Γραφήματα G και H ομοιομορφικά ανν μπορούν να καταλήξουν ισομορφικά με διαδοχική εφαρμογή αποποιήσεων σειράς. Ομοιομορφικά μπορούν να «διαφωνούν» σε αναλλοίωτες ιδιότητες, αλλά «συμφωνούν» σε επιπεδότητα. Ομοιομορφικά «συμφωνούν» σε κύκλο Euler και κύκλο Hamilton; Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 23 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 24

Θεώρημα Kuratowski Δέντρα Θ. Kuratowski: Γράφημα επίπεδο ανν δεν περιέχει υπογράφημα ομοιομορφικό με Κ 5 ήκ 3,3. Ένα γράφημα δεν είναι επίπεδο ανν μπορούμε με απλοποιήσεις (διαγραφές κορυφών και ακμών, απλοποιήσεις σειράς) να καταλήξουμε σε Κ 5 ήκ 3,3. Δέντρο: μοντέλο ιεραρχικής δομής. Αναπαράσταση (ιεραρχικών) σχέσεων: προγόνου-απογόνου, προϊσταμένου-υφισταμένου, όλου-μέρους, Εφαρμογές: Γενεαλογικά δέντρα. Οργανόγραμμα επιχείρησης, ιεραρχία διοίκησης. User interfaces, web sites, module hierarchy, δέντρα απόφασης, Ιεραρχική οργάνωση: ταχύτερη πρόσβαση σε δεδομένα! Πωλήσεις Εταιρεία Υπολογιστών Έρευνα και Ανάπτυξη Διοικ. και Οικονομ. Υπ. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 25 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 26 Αθήνα Θεσ/νίκη Πάτρα Δίκτυα Βάσεις Οικον. Προσ. Δέντρα: Βασικές Ιδιότητες Δέντρα: Ορολογία Γράφημα ακυκλικό και συνεκτικό. Τα παρακάτω είναι ισοδύναμα για κάθε απλό μη κατευθυνόμενο γράφημα G(V, E): G είναι δέντρο. Κάθε ζευγάρι κορυφών του G συνδέεται με μοναδικό μονοπάτι. G ελαχιστοτικά συνεκτικό. G συνεκτικό και E = V -1. G ακυκλικό και E = V -1. G μεγιστοτικά ακυκλικό. Γράφημα ακυκλικό και συνεκτικό. Δέντρο με n κορυφές έχει m = n 1 ακμές. Ρίζα : κόμβος χωρίς πρόγονο. Δέντρο με ρίζα : ιεραρχία Φύλλο : κόμβος χωρίς απογόνους. Πρόγονοι u: κόμβοι στο (μοναδικό) μονοπάτι u προς ρίζα. Απόγονοι u: κόμβοι σε μονοπάτια από u προς φύλλα. Υποδέντρο u : Δέντρο αποτελούμενο από u και απόγονούς του. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 27 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 28

Δέντρα: Ορολογία Επίπεδο u : μήκος μονοπατιού από u προς ρίζα. Ύψος : μέγιστο επίπεδο κόμβου (φύλλου). Μέγιστη απόσταση από ρίζα. Βαθμός u: αριθμός παιδιών u. Δυαδικό δέντρο : κάθε κορυφή 2 παιδιά Αριστερό και δεξιό. Κάθε υποδέντρο είναι δυαδικό δέντρο. Δυαδικά Δέντρα Ύψος h : h+1 #κορυφών 2 h+1 1 h+1 επίπεδα, 1 κορ. / επίπ. 2 i κορυφές στο επίπεδο i. 1 + 2 + + 2 h = 2 h +1 1 #κορυφών n : log 2 (n+1) 1 h n 1 Πλήρες (complete) : n = 2 h+1 1 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 29 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 30 Inorder Preorder Ενδο-διατεταγμένη (inorder) διέλευση: Αριστερό Ρίζα Δεξί. Κόμβος εξετάζεται μετά από κόμβους αριστερού υποδέντρου και πριν από κόμβους δεξιού υποδέντρου. Προ-διατεταγμένη (preorder) διέλευση: Ρίζα Αριστερό Δεξί. Κόμβος εξετάζεται πριν από κόμβους αριστερού και δεξιού υποδέντρου. 7 1 20 20 4 10 2 8 10 30 10 30 2 6 9 11 3 6 9 11 7 15 25 35 7 15 25 35 1 3 5 8 12 4 5 7 10 12 3 9 12 21 40 3 9 12 21 40 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 31 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 32

Postorder Μετα-διατεταγμένη (preorder) διέλευση: Αριστερό Δεξί Ρίζα Κόμβος εξετάζεται μετά από κόμβους αριστερού και δεξιού υποδέντρου. 12 20 6 11 10 30 3 5 8 10 7 15 25 35 1 2 4 3 9 12 7 9 21 40 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Βασικές Έννοιες Θεωρίας Γραφημάτων 33