ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

Σχετικά έγγραφα
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου

: :

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

Θαλής Α' Λυκείου

: :

B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

Α={1,11,111,1111,..., }

: :

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 19 Νοεμβρίου 2011 Β ΓΥΜΝΑΣΙΟΥ 2 : 2.

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ

Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 20 Ιανουαρίου 2018 Β ΓΥΜΝΑΣΙΟΥ

2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :

Ευκλείδης Β' Γυμνασίου Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

x , οπότε : Α = = 2.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

Για τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία.

: :

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1 Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 2 24 : : 2, : και να τις συγκρίνετε.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

A

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και

Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. α β. β (β) Το μικρότερο από τα κλάσματα που βρήκαμε στο προηγούμενο ερώτημα είναι το

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

Μαθηματικά προσανατολισμού Β Λυκείου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου 2017 Β ΓΥΜΝΑΣΙΟΥ 1 Α=

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

Αρχιμήδης Μεγάλοι Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ Α= = Επομένως έχουμε:

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

B τάξη Γυμνασίου : : και 4 :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις

1 ΘΕΩΡΙΑΣ...με απάντηση

8 ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version )

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

Θέματα μεγάλων τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 28 η Ελληνική Μαθηματική Ολυμπιάδα. "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ


ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.

Επαναληπτικές Ασκήσεις

Transcript:

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 36653-0367784 - Fax: 0 36405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 B ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ ο 3 5 Αν a = 4 και b = 5 +, να υπολογίσετε την τιμή παράστασης: 5 A = a: b b. 5a ΘΕΜΑ ο Έστω α θετικός ακέραιος τον οποίο διαιρούμε με 4. (i) Ποιες είναι οι δυνατές μορφές του παραπάνω θετικού ακέραιου α ; (ii) Ποιες είναι οι δυνατές τιμές που μπορεί να πάρει ο αριθμός α, αν είναι περιττός, μεγαλύτερος από 39 και μικρότερος από 50, και διαιρούμενος με το 4 δίνει υπόλοιπο. 009 ΘΕΜΑ 3 ο Δίνεται ένα τρίγωνο ABΓ, του οποίου οι γωνίες ˆΒ και ˆΓ έχουν άθροισμα 0 40 και είναι ανάλογες με τους αριθμούς και 6, αντίστοιχα. (α) Να βρεθούν οι γωνίες του τριγώνου. (β) Να υπολογίσετε τη γωνία που σχηματίζουν το ύψος και η διχοτόμος του τριγώνου ΑΒΓ που αντιστοιχούν στην πλευρά του ΒΓ. ΘΕΜΑ 4 ο Από τους μαθητές ενός Γυμνασίου, το 4 ασχολείται με το στίβο, το 5 ασχολείται με το μπάσκετ, το 8 ασχολείται με το βόλεϊ και περισσεύουν και 80 μαθητές που δεν ασχολούνται με κανένα από αυτά τα αθλήματα. Δεδομένου ότι οι μαθητές του Γυμνασίου οι ασχολούμενοι με τον αθλητισμό, ασχολούνται με ένα μόνο άθλημα, εκτός από μαθητές που ασχολούνται και με το μπάσκετ και με το βόλεϊ, να βρείτε: (α) Ποιος είναι ο αριθμός των μαθητών του Γυμνασίου; (β) Πόσοι είναι οι μαθητές του Γυμνασίου που ασχολούνται μόνο με το μπάσκετ; ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 36653-0367784 - Fax: 0 36405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 Γ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ ο Αν ν είναι φυσικός αριθμός διαφορετικός από το μηδέν, να υπολογίσετε την αριθμητική τιμή της παράστασης: v+ 3v v ( ) ( ) A = 4 ( ) + 7. 5 5 ΘΕΜΑ ο O θετικός ακέραιος α είναι περιττός και όταν διαιρεθεί με το 5 αφήνει υπόλοιπο. Να βρείτε το τελευταίο ψηφίο του αριθμού α. ΘΕΜΑ 3 ο Δίνονται δυο ευθείες ε, ε, οι οποίες τέμνονται στο σημείο Α. Η ευθεία ε διέρχεται από την αρχή των αξόνων και έχει κλίση 4, ενώ η ευθεία ε είναι παράλληλη προς την ευθεία ( η ): y = x και διέρχεται από το σημείο Γ(0,6). (α) Να βρείτε τις εξισώσεις των παραπάνω ευθειών καθώς και το κοινό τους σημείο Α. (β) Να βρείτε το εμβαδόν του τριγώνου ΟΑΒ, όπου Ο είναι η αρχή του συστήματος ορθογωνίων αξόνων Ο xy, Α είναι το κοινό σημείο των ευθειών ε, ε και Β είναι το σημείο όπου η ευθεία ε τέμνει τον άξονα x x. ΘΕΜΑ 4 ο Τρεις κύκλοι έχουν το ίδιο κέντρο Ο και ακτίνες r, r, r 3 με 0 < r< r< r3. Έστω Δ ο κυκλικός δακτύλιος που ορίζεται από τους κύκλους κέντρου Ο με ακτίνες r, r, και Δ ο κυκλικός δακτύλιος που ορίζεται από τους κύκλους κέντρου Ο με ακτίνες r, r 3. Αν είναι Ε( Δ ) r r = r3 r και r3 = 3r, να βρείτε το λόγο Ε Δ και Ε( Δ ) είναι τα εμβαδά των κυκλικών δακτυλίων Δ και Δ, αντίστοιχα. ΚΑΛΗ ΕΠΙΤΥΧΙΑ Ε( Δ ), όπου ( )

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 36653-0367784 - Fax: 0 36405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 Α ΛΥΚΕΙΟΥ ΘΕΜΑ ο Το τετράγωνο ενός θετικού αριθμού είναι μεγαλύτερο από το δεκαπλάσιο του αριθμού κατά 75. Να βρεθεί ο αριθμός. ΘΕΜΑ ο Αν οι αριθμοί μ, ν είναι θετικοί ακέραιοι και ισχύει ότι μ ν+ μ+ 4 + 4 ν+, μ ν να αποδείξετε ότι ο ακέραιος Α= + είναι πολλαπλάσιο του 34. ΘΕΜΑ 3 ο Δίνεται τρίγωνο ΑΒΓ και έστω ΑΔ ύψος του. (α) Αν υπάρχουν σημεία Ε και Ζ πάνω στις πλευρές ΑΒ και ΑΓ, αντίστοιχα, τέτοια ώστε να ισχύουν ΔΕ = ΔΖ και ΑΔΕ ˆ = ΑΔΖ ˆ, να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. (β) Αν υπάρχουν σημεία Ε και Ζ στις προεκτάσεις των πλευρών ΒΑ και ΓΑ ( προς το μέρος του Α), αντίστοιχα, τέτοια ώστε να ισχύουν ΔΕ=ΔΖ και ΑΔΕ ˆ = ΑΔΖ ˆ, να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. ΘΕΜΑ 4 ο. Μία βρύση Α γεμίζει (λειτουργώντας μόνη της) μία δεξαμενή σε τρεις ώρες. Μία δεύτερη βρύση Β γεμίζει (λειτουργώντας μόνη της) την ίδια δεξαμενή σε τέσσερις ώρες. Μία τρίτη τέλος βρύση Γ αδειάζει (λειτουργώντας μόνη της) την ίδια δεξαμενή, όταν βέβαια είναι γεμάτη, σε έξι ώρες. Ένας αυτόματος μηχανισμός ανοίγει με τυχαία σειρά και τις τρεις βρύσες με τον εξής τρόπο: ανοίγει μία βρύση, μετά από δύο ώρες ανοίγει μία άλλη και τέλος μετά από μία ώρα ανοίγει και την άλλη βρύση. Ένας άλλος μηχανισμός μετρά το χρόνο που χρειάζεται να γεμίσει η δεξαμενή και ξεκινά τη λειτουργία του μόλις πέσει νερό μέσα στη δεξαμενή. Ποια είναι εκείνη η σειρά με την οποία, αν ανοίξει τις βρύσες ο μηχανισμός, o αριθμός των ωρών που θα χρειαστούν για να γεμίσει η δεξαμενή θα είναι ακέραιος αριθμός; Ποιος είναι σε κάθε περίπτωση αυτός ο ακέραιος αριθμός; ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 36653-0367784 - Fax: 0 36405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 Β ΛΥΚΕΙΟΥ ΘΕΜΑ ο Αν α, β είναι θετικοί πραγματικοί αριθμοί, να αποδείξετε ότι: 4 αβ α + β +. α + β α β ΘΕΜΑ ο Δίνεται οξυγώνιο τρίγωνο ΑΒΓ, εγγεγραμμένο σε κύκλο COR (, ). Αν Α, Β, Γ είναι τα μέσα των πλευρών του ΒΓ, ΑΓ, ΑΒ αντίστοιχα και Α, Β, Γ είναι τα μέσα των ΟΑ, ΟΒ, ΟΓ αντίστοιχα, να αποδείξετε ότι το εξάγωνο ΑΒΓ ΑΒΓ έχει τις πλευρές του ίσες και ότι οι διαγώνιές του ΑΑ, ΒΒ και ΓΓ περνάνε από το ίδιο σημείο. ΘΕΜΑ 3 ο Αν για τους πραγματικούς αριθμούς x, y με x 009 και y 009 ισχύει ότι: x + y x 009 + y+ 009 = +, να βρεθεί η τιμή της παράστασης x y+ Α=. ΘΕΜΑ 4 ο Να λυθεί το σύστημα: στο σύνολο των πραγματικών αριθμών. 3 ( x+ y) = z x y 3 ( y+ z) = x y z ( Σ), 3 ( z+ x) = y z x ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 36653-0367784 - Fax: 0 36405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο. Να αποδείξετε ότι δεν υπάρχουν θετικοί ακέραιοι x, y που να επαληθεύουν την εξίσωση ΘΕΜΑ ο Για τη συνάρτηση για κάθε ( ) x + 3x x + x 0y = 05 f : ισχύει ότι: ( ( )) ( ) ( ) ( ( ) ( )) f x f y f y f x = f f x f y, xy,. Να αποδείξετε ότι f ( x f ( x)) = 0, για κάθε x. ΘΕΜΑ 3 ο Δίνονται τρεις θετικοί ακέραιοι αριθμοί με δεκαδική αναπαράσταση της μορφής α 000 000α, όπου α είναι θετικός μονοψήφιος ακέραιος και μεταξύ του πρώτου και ν ψηϕί α του τελευταίου ψηφίου του αριθμού α 00 00α, μεσολαβούν ν το πλήθος μηδενικά. Να αποδείξετε ότι: ή ένας από αυτούς θα διαιρείται με το 33 ή το άθροισμα κάποιων από αυτούς θα διαιρείται με το 33. ΘΕΜΑ 4 ο. Δίνεται τρίγωνο ΑΒΓ, εγγεγραμμένο σε κύκλο COR (, ) και έστω Α, Β, Γ τα μέσα των R R πλευρών του ΒΓ, ΑΓ, ΑΒ αντίστοιχα. Θεωρούμε τους κύκλους C( Α, ), C( Β, ) και R C3( Γ, ). Να αποδείξετε ότι οι κύκλοι C, C, C3 περνάνε από το ίδιο σημείο (έστω Ν ) και ότι τα δεύτερα κοινά σημεία τους είναι τα μέσα Α, Β, Γ των ΟΑ, ΟΒΟΓ, αντίστοιχα. Στη συνέχεια να αποδείξετε ότι οι ΑΑ, ΒΒ, ΓΓ και ΟΝ περνάνε από το ίδιο σημείο. ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 36653-0367784 - Fax: 0 36405 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ ο 3 5 Αν a = 4 και b = 5 +, να υπολογίσετε την τιμή παράστασης: 5. Είναι 4 0 9 a = 4 = = = και 5 5 5 5 5 οπότε η παράσταση Α γίνεται: A = a: b b. 5a 009 3 5 3 5 8 b = 5+ = 5 = 5 = 5 4=, 9 9 9 76 3 5a 5 9 5 5 9 5 9 45 45 5 009 009 A= a: b b = : = : = = =. ΘΕΜΑ ο Έστω α θετικός ακέραιος τον οποίο διαιρούμε με 4. (i) Ποιες είναι οι δυνατές μορφές του παραπάνω θετικού ακέραιου α; (ii) Ποιες είναι οι δυνατές τιμές που μπορεί να πάρει ο αριθμός α, αν είναι περιττός μεγαλύτερος από 39 και μικρότερος από 50, και διαιρούμενος με το 4 δίνει υπόλοιπο. (i) (ii) Οι δυνατές μορφές του ακέραιου αριθμού α είναι οι εξής: α = 4ρ, όπου ρ θετικός ακέραιος, ή α = 4ρ + ή α = 4ρ + ή α = 4ρ + 3 όπου ρ μη αρνητικός ακέραιος. Σύμφωνα με την υπόθεση είναι α = 4ρ +, οπότε έχουμε: 39 < 4ρ + < 50 38< 4ρ < 49 9,5 < ρ <, 5 Επομένως, αφού ο ρ είναι μη αρνητικός ακέραιος, έπεται ότι ρ = 0 ή ρ = ή ρ = και α = 4 ή α = 45 ή α=49.

ΘΕΜΑ 3 ο 0 Δίνεται ένα τρίγωνο ABΓ του οποίου οι γωνίες ˆΒ και ˆΓ έχουν άθροισμα 40 και είναι ανάλογες με τους αριθμούς και 6, αντίστοιχα. α) Να βρεθούν οι γωνίες του τριγώνου. β) Να υπολογίσετε τη γωνία που σχηματίζουν το ύψος και η διχοτόμος του τριγώνου ΑΒΓ που αντιστοιχούν στην πλευρά του ΒΓ. α) Κατ αρχή έχουμε: ˆ ( ˆ ˆ) 0 0 0 0 80 80 40 40. Α= Β+Γ = = Βˆ Γˆ Σύμφωνα με τις υποθέσεις έχουμε: και ˆ ˆ 40 6 Βˆ Γˆ = = λ Β= ˆ λ Γ= ˆ λ λ+ λ = λ = 6 0 0 Άρα είναι: Β= ˆ 0 και Γ= ˆ 0. 0 = Β+Γ=, οπότε θα έχουμε: 0 0, 6 και 6 40 0. Σχήμα β) Έστω ΑΔ το ύψος και ΑΕ η διχοτόμος της γωνίας Α του τριγώνου ΑΒΓ. Τότε το σημείο Γ βρίσκεται μεταξύ των σημείων Β και Δ, αφού διαφορετικά το τρίγωνο ΑΓΔ 0 θα είχε άθροισμα γωνιών μεγαλύτερο των 80. Έτσι έχουμε: ˆ ˆ ˆ ˆ ( 90 ˆ Α ΔΑΕ = ΔΑΓ + ΓΑΕ = ΔΓΑ ) +. () 0 Επειδή είναι ˆ 0 0 0 Α= 40, ΔΓΑ ˆ = 80 0 = 60, από τη σχέση () λαμβάνουμε ΔΑΕ ˆ = 50 0. ΘΕΜΑ 4 ο Από τους μαθητές ενός Γυμνασίου, το 4 ασχολείται με το στίβο, το 5 ασχολείται με το μπάσκετ, το 8 ασχολείται με το βόλεϊ και περισσεύουν και 80 μαθητές που δεν ασχολούνται με κανένα από αυτά τα αθλήματα. Δεδομένου ότι οι μαθητές του Γυμνασίου οι ασχολούμενοι με τον αθλητισμό, ασχολούνται με ένα μόνο άθλημα, εκτός από μαθητές που ασχολούνται και με το μπάσκετ και με το βόλεϊ, να βρείτε: α) Ποιος είναι ο αριθμός των μαθητών του Γυμνασίου;

β) Πόσοι είναι οι μαθητές του Γυμνασίου που ασχολούνται μόνο με το μπάσκετ; ( ος τρόπος) α) Έχουμε + + = 3. Όμως στα 3 των μαθητών του Γυμνασίου έχουν 4 5 8 40 40 υπολογιστεί δύο φορές οι μαθητές που ασχολούνται με μπάσκετ και βόλεϊ. Άρα οι 40 3 7 80 -=68 μαθητές είναι τα = των μαθητών του Γυμνασίου. Έτσι όλο το 40 40 40 σχολείο έχει : 7 40 68: = 68 = 4 40 = 60 μαθητές. 40 7 β) Μόνο με το μπάσκετ ασχολούνται 60 = 3 = 0 μαθητές. 5 ος τρόπος α) Αν x είναι ο αριθμός των μαθητών του Σχολείου, τότε, σύμφωνα με τα δεδομένα του προβλήματος, έχουμε την εξίσωση: x x x + + + 80 = x, 4 5 8 η οποία είναι ισοδύναμη με την εξίσωση 0x+ 8x+ 5x+ 300 480 = 40x 7x = 70 x= 60. x 60 β) = = 0 μαθητές ασχολούνται μόνο με το μπάσκετ. 5 5 Γ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ ο Αν ν είναι θετικός ακέραιος, να υπολογίσετε την αριθμητική τιμή της παράστασης: v+ 3v v ( ) ( ) A= 4 ( ) + 7. 5 5 v+ 3 v ( ) 3 v ( ) ( ) v ( ) A= 4 ( ) + 7 = 4 ( ) + 7 5 5 5 5 ν ν v 7 ( ) 7 ν 3 ( ) = 4() = 4 ( ) =, 5 5 5 5 5 οπότε διακρίνουμε τις περιπτώσεις: 3 Αν ν άρτιος, τότε Α= =. 5 5 Αν ν περιττός, τότε Α= 3. ΘΕΜΑ ο O θετικός ακέραιος α είναι περιττός και όταν διαιρεθεί με το 5 δίνει υπόλοιπο. Να βρείτε το τελευταίο ψηφίο του αριθμού α. ν 3

Αφού ο α διαιρούμενος με το 5 αφήνει υπόλοιπο, θα είναι της μορφής α = 5λ +, όπου λ μη αρνητικός ακέραιος. Όμως, αν ο λ ήταν άρτιος, τότε ο α επίσης θα ήταν άρτιος, που αντίκειται στην υπόθεση. Άρα ο λ είναι περιττός, δηλαδή είναι λ = κ +, όπου κ μη αρνητικός ακέραιος. Επομένως, έχουμε α = 5 ( κ + ) + = 0κ + 7, σχέση που δείχνει ότι ο θετικός ακέραιος α διαιρούμενος με το 0 αφήνει υπόλοιπο 7, δηλαδή με άλλα λόγια, το τελευταίο ψηφίο του α είναι 7. Διαφορετικά θα μπορούσαμε να πούμε ότι ο α έχει κ δεκάδες και 7 μονάδες, οπότε το τελευταίο του ψηφίο είναι 7. ΘΕΜΑ 3 ο Δίνονται δυο ευθείες ε, ε οι οποίες τέμνονται στο σημείο Α. Η ευθεία ε διέρχεται από την αρχή των αξόνων και έχει κλίση 4, ενώ η ευθεία ε είναι παράλληλη προς την ευθεία ( η ): y = x και διέρχεται από το σημείο Γ(0,6). α) Να βρείτε τις εξισώσεις των παραπάνω ευθειών καθώς και το κοινό τους σημείο Α. β) Να βρείτε το εμβαδόν του τριγώνου ΟΑΒ, όπου Ο είναι η αρχή συστήματος ορθογωνίων αξόνων Ο xy, Α το κοινό σημείο των ευθειών και Β το σημείο όπου η ευθεία ε τέμνει τον άξονα x x. α) Η ευθεία ε έχει εξίσωση y = 4x, ενώ η ευθεία ε έχει εξίσωση y = x+ β, αφού είναι παράλληλη με την (η). Όμως διέρχεται από το σημείο Β(0,6), οπότε θα ισχύει 6= 0+ β β = 6. Άρα η εξίσωση της ευθείας ε είναι y = x+ 6. Λύνοντας το σύστημα των εξισώσεων των δύο ευθειών βρίσκουμε ότι το κοινό σημείο τους είναι το Α 3,. ( ) Σχήμα β) Η ευθεία Β 3, 0, οπότε η τη βάση του τριγώνου έχει μήκος 3, ενώ το ύψος του ίσο με. Άρα έχουμε: ε τέμνει τον άξονα των x στο σημείο ( ) 4

Ε(ΟΑΒ) = 3 8 = τ.μ. ΘΕΜΑ 4 ο Τρεις κύκλοι έχουν το ίδιο κέντρο Ο και ακτίνες r, r, r 3 με 0 < r< r< r3. Έστω Δ ο κυκλικός δακτύλιος που ορίζεται από τους κύκλους κέντρου Ο και ακτίνες r, r και Δ ο κυκλικός δακτύλιος που ορίζεται από τους κύκλους κέντρου Ο και ακτίνες r, r 3. Αν Ε( Δ ) είναι r r = r3 r και r3 = 3r, να βρείτε το λόγο Ε Δ και Ε( Δ ) είναι τα εμβαδά των δακτυλίων Δ και Δ, αντίστοιχα. Ε( Δ ), όπου ( ) Έχουμε ( ) ( ) ( ) ( ) Σχήμα 3 ( )( ) ( )( ) Ε Δ π r r r r r + r r + r = = = Ε Δ π r r r r r + r r + r 3 3 3 3, () r+ r3 αφού δίνεται ότι r r = r 3 r. Από την ίδια σχέση προκύπτει ότι r =, οπότε, r+ 3r λόγω τη σχέσης r 3 = 3r λαμβάνουμε r = = r. Έτσι η σχέση () γίνεται Ε( Δ ) r + r 3r 3r 3 = = = =. Ε( Δ ) r3 + r 3r+ r 5r 5 r+ 3r Διαφορετικά, θα μπορούσαμε να βρούμε πρώτα τη σχέση r = = r και στη συνέχεια να εργαστούμε με το λόγο ( ) ( ) ( ) Ε Δ π r r π r r 3r 3 = = = =. Ε( Δ) π ( r3 r ) π ( 3r) ( r) 5r 5 5

Α ΛΥΚΕΙΟΥ ΘΕΜΑ ο Το τετράγωνο ενός θετικού αριθμού είναι μεγαλύτερο από το δεκαπλάσιο του αριθμού κατά 75. Να βρεθεί ο αριθμός. Αν x είναι ο ζητούμενος αριθμός, τότε από τα δεδομένα του προβλήματος θα ικανοποιεί την εξίσωση x 0x= 75 x 0x 75 = 0 x= 5 ή x= 5. Επειδή ο ζητούμενος αριθμός είναι θετικός, η μοναδική λύση του προβλήματος είναι ο αριθμός 5. ΘΕΜΑ ο Αν οι αριθμοί μ και ν είναι θετικοί ακέραιοι και ισχύει ότι μ ν+ μ+ ν+ 4 + 4, μ ν Α= + είναι πολλαπλάσιο του 34. να αποδείξετε ότι ο ακέραιος. Η δεδομένη σχέση γράφεται στη μορφή μ ν+ μ+ ν μ ν+ μ+ ν μ ν+ ( ) ( ) ( ) ( ) ( ) + 0 + 0 0 από την οποία προκύπτει ότι μ ν+ μ ν 4 = 0 = μ ν 4= 0. Επομένως έχουμε μ ν ν 4 ν ν 4 ν ν Α= + = + + = ( + ) = 7 = 34, που είναι πολλαπλάσιο του 34, αφού ο ν είναι θετικός ακέραιος. ΘΕΜΑ 3 ο Δίνεται τρίγωνο ΑΒΓ και έστω ΑΔ ύψος του. (α) Αν υπάρχουν σημεία Ε και Ζ των πλευρών ΑΒ και ΑΓ, αντίστοιχα, τέτοια ώστε να ισχύουν ΔΕ = ΔΖ και ΑΔΕ ˆ = ΑΔΖ ˆ, να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. (β) Αν υπάρχουν σημεία Ε και Ζ στις προεκτάσεις των πλευρών ΑΒ και ΑΓ προς το μέρος του Α, αντίστοιχα, τέτοια ώστε να ισχύουν ΔΕ=ΔΖ και ΑΔΕ ˆ = ΑΔΖ ˆ, να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. (α) Τα τρίγωνα ΑΔΕ και ΑΔΖ έχουν δύο πλευρές τους ίσες μία προς μία ( ΑΔ = ΑΔ, ΔΕ = ΔΖ ) και τις περιεχόμενες γωνίες των ίσων πλευρών ίσες, ΑΔΕ ˆ = ΑΔΖ ˆ. Άρα τα τρίγωνα είναι ίσα, οπότε θα έχουν και ΔΑΕ ˆ = ΔΑΖ ˆ, δηλαδή η ΑΔ είναι διχοτόμος της γωνίας ˆΑ του τριγώνου ΑΒΓ. Στη συνέχεια συγκρίνουμε τα τρίγωνα ΑΔΒ και ΑΔΓ, τα οποία είναι ορθογώνια με ˆ ˆ ΑΔΒ = ΑΔΓ = 90 και έχουν την πλευρά ΑΔ κοινή και τις οξείες γωνίες 6

ΔΑΒ ˆ και ΔΑΓ ˆ ίσες. Άρα τα τρίγωνα ΑΔΒ και ΑΔΓ είναι ίσα, οπότε θα έχουν και ΑΒ = ΑΓ, δηλαδή το τρίγωνο ΑΒΓ είναι ισοσκελές Σχήμα 4 Σχήμα 5 (β) Ομοίως όπως στο ερώτημα (α) τα τρίγωνα ΑΔΕ και ΑΔΖ είναι ίσα, οπότε θα έχουν ΔΑΕ ˆ = ΔΑΖ ˆ. Επειδή οι γωνίες ΓΑΕ ˆ και ΒΑΖ ˆ είναι ίσες ως κατά κορυφή, έπεται ότι: ΔΑΕ ˆ ΓΑΕ ˆ = ΔΑΖ ˆ ΒΑΖ ˆ ΔΑΓ ˆ = ΔΑΒ ˆ, οπότε και στην περίπτωση αυτή προκύπτει ότι η ΑΔ είναι διχοτόμος της γωνίας ˆΑ του τριγώνου ΑΒΓ. Στη συνέχεια προχωράμε όπως στο ερώτημα (α). Εναλλακτικά, θα μπορούσαμε να προχωρήσουμε ως εξής: 7

Από την ισότητα των τριγώνων ΑΔΕ και ΑΔΖ προκύπτει και η ισότητα ˆ ˆ ΔΖΑ = ΔΕΑ, οπότε εύκολα προκύπτει ότι τα τρίγωνα ΒΔΕ και ΔΓΖ είναι ίσα, οπότε θα είναι ΔΒ = ΔΓ, η ευθεία ΑΔ είναι μεσοκάθετη της πλευράς ΒΓ. Άρα είναι ΑΒ = ΑΓ. Και στις δύο περιπτώσεις μπορούμε να χρησιμοποιήσουμε το γνωστό θεώρημα της Γεωμετρίας, βάσει του οποίου, αν σε ένα τρίγωνο ένα ύψος του είναι και διχοτόμος, τότε το τρίγωνο είναι ισοσκελές. ΘΕΜΑ 4 ο Μία βρύση Α γεμίζει (λειτουργώντας μόνη της) μία δεξαμενή σε τρεις ώρες. Μία δεύτερη βρύση Β γεμίζει (λειτουργώντας μόνη της) την ίδια δεξαμενή σε τέσσερις ώρες. Μία τρίτη τέλος βρύση Γ αδειάζει (λειτουργώντας μόνη της) την ίδια δεξαμενή (όταν βέβαια είναι γεμάτη) σε έξι ώρες. Ένας αυτόματος μηχανισμός ανοίγει με τυχαία σειρά και τις τρεις βρύσες με τον εξής τρόπο: ανοίγει μία βρύση, μετά από δύο ώρες ανοίγει μία άλλη και τέλος μετά από μία ώρα ανοίγει και την άλλη βρύση. Ένας άλλος μηχανισμός μετρά το χρόνο που χρειάζεται να γεμίσει η δεξαμενή και ξεκινά τη λειτουργία του μόλις πέσει νερό μέσα στη δεξαμενή. Ποια είναι εκείνη η σειρά με την οποία αν ανοίξει τις βρύσες ο μηχανισμός, o αριθμός των ωρών που θα χρειαστούν (για να γεμίσει η δεξαμενή) να είναι ακέραιος αριθμός; Ποιος είναι σε κάθε περίπτωση αυτός ο ακέραιος αριθμός; Έστω x, ο αριθμός των ωρών που χρειάζονται για να γεμίσει η δεξαμενή. Τότε οι δυνατοί τρόποι με τους οποίους μπορεί να ανοίξει τις βρύσες ο μηχανισμός (μαζί με τις αντίστοιχες εξισώσεις που δημιουργούνται) είναι: x x x 3 () Α-Β-Γ + = 5x = + 6 6 x = 3 4 6 5 x x x 3 4 () Β-Α-Γ + = 5x = + 8 6 x = 4 3 6 5 x x x 3 7 (3) Α-Γ-Β + = 5x = + 9 4 x = 3 6 4 5 x x x 3 (4) Β-Γ-Α + = 5x = + 4 x = 4 4 6 3 x x x (5) Γ-Β-Α + = 5 x = + 4 4 3 6 6 x = 5 x x x (6) Γ-Α-Β + = 5 x = + 3 x = 3 3 4 6 Ένας τρόπος ανοίγματος είναι Β-Γ-Α με αντίστοιχη διάρκεια x = 4 ώρες (περίπτωση (4)). Ένας δεύτερος τρόπος ανοίγματος είναι Γ-Α-Β με αντίστοιχη διάρκεια x = 3 ώρες (περίπτωση (6)). Στη περίπτωση (4) (που ανοίγει πρώτα η βρύση Β), ο χρόνος αρχίζει να μετράει με το άνοιγμα της βρύσης Β. 8

Αν λοιπόν υποθέσουμε ότι ο απαιτούμενος χρόνος για να γεμίσει η δεξαμενή είναι x x ώρες, τότε η βρύση Β θα έχει γεμίσει τα της δεξαμενής. Στη συνέχεια ανοίγει η 4 x βρύση Γ η οποία θα λειτουργήσει x ώρες και θα αδειάσει τα της δεξαμενής. 6 Τέλος θα ανοίξει η βρύση Α η οποία θα λειτουργήσει x 3 ώρες και θα γεμίσει τα x 3 της δεξαμενής. Με αυτό τον τρόπο προκύπτει η εξίσωση (4). 3 Στη περίπτωση (6) (που ανοίγει πρώτα η βρύση Γ), ο χρόνος αρχίζει να μετράει με το άνοιγμα της βρύσης Α (διότι ο μηχανισμός χρονομέτρησης αρχίζει μόλις πέσει νερό στη δεξαμενή). Αν λοιπόν υποθέσουμε ότι ο απαιτούμενος χρόνος για να γεμίσει η δεξαμενή είναι x x ώρες, τότε η βρύση Α θα έχει γεμίσει τα της δεξαμενής. Στη συνέχεια ανοίγει η x βρύση Β η οποία θα λειτουργήσει x ώρες και θα γεμίσει τα της δεξαμενής. 4 x Τέλος η βρύση Γ θα λειτουργήσει x ώρες, και θα αδειάσει τα της δεξαμενής. Με 6 αυτό τον τρόπο προκύπτει η εξίσωση (6). Ανάλογα εξηγούνται και οι υπόλοιπες περιπτώσεις. 3 Β ΛΥΚΕΙΟΥ ΘΕΜΑ ο ( Αν α, β είναι θετικοί πραγματικοί αριθμοί, να αποδείξετε ότι: 4 αβ α + β +. α + β α β Έχουμε + αβ α β, () που ισχύει γιατί είναι ισοδύναμη με την αληθή ανισότητα ( α β ) 0. Επιπλέον έχουμε 4 + α + β α β, () η οποία ισχύει γιατί γράφεται ως 4 4 α + β + 4αβ ( α + β) 0 ( α β). α + β α β α + β αβ Με πολλαπλασιασμό κατά μέλη των δύο ανισοτήτων () και () λαμβάνουμε τη ζητούμενη ανισότητα 4 αβ α + β +. α + β α β 9

ΘΕΜΑ ο. Δίνεται οξυγώνιο τρίγωνο ΑΒΓ, εγγεγραμμένο σε κύκλο COR (, ). Αν Α, Β, Γ είναι τα μέσα των πλευρών του ΒΓ, ΑΓ, ΑΒ αντίστοιχα και Α, Β, Γ είναι τα μέσα των ΟΑ, ΟΒ, ΟΓ αντίστοιχα, να αποδείξετε ότι το εξάγωνο ΑΒΓ ΑΒΓ έχει τις πλευρές του ίσες και ότι οι διαγώνιές του ΑΑ, ΒΒ και ΓΓ περνάνε από το ίδιο σημείο. Εφόσον Ο είναι το κέντρο του περιγεγραμμένου στο τρίγωνο κύκλου, θα ισχύει: ΟΑ = ΟΒ = ΟΓ = R. Σχήμα 6 Το ευθύγραμμο τμήμα ΑΒ συνδέει τα μέσα των πλευρών του τριγώνου ΟΑΓ, άρα: ΟΓ R ΑΒ = = (). Το ευθύγραμμο τμήμα ΑΒ συνδέει τα μέσα των πλευρών του τριγώνου ΟΒΓ, άρα: ΟΓ R ΑΒ = = (). R Με όμοιο τρόπο αποδεικνύουμε ότι όλες οι πλευρές του πολυγώνου είναι ίσες με. Χρησιμοποιώντας τις σχέσεις () και () συμπεραίνουμε ότι το τετράπλευρο ΑΒΑΒ είναι παραλληλόγραμμο, οπότε οι διαγώνιές του θα διχοτομούνται στο σημείο Κ. 0

Με όμοιο τρόπο συμπεραίνουμε ότι το τετράπλευρο ΑΓΑΓ είναι παραλληλόγραμμο, οπότε και σε αυτή τη περίπτωση οι διαγώνιες θα διχοτομούνται στο σημείο Κ. ΘΕΜΑ 3 ο. Αν για τους πραγματικούς αριθμούς x, y με x 009 και y 009 ισχύει ότι: x + y x 009 + y+ 009 = +, να βρεθεί η τιμή της παράστασης x y+ Α=. Οι άρρητες παραστάσεις ορίζονται γιατί δίνεται ότι: x 009 και y 009. Αν θέσουμε x 009 = a και y+ 009 = b, τότε λαμβάνουμε x= a + 009 και y = b 009, από τις οποίες προκύπτει η εξίσωση x + y = a + b. Τότε η δεδομένη ισότητα γίνεται: a + b a+ b= + a + b a b+ = 0 a + b = 0 a = b = 0 a = b=, ( ) ( ) οπότε θα είναι x= 00, y = 008 και Α= 00. ΘΕΜΑ 4 ο Να λυθεί το σύστημα: 3 ( x+ y) = z x y 3 ( y+ z) = x y z ( Σ) 3 ( z+ x) = y z x στο σύνολο των πραγματικών αριθμών. Θέτουμε x + y = α, y + z = β και z + x = γ, οπότε το δοσμένο σύστημα γίνεται: 3 α + α = β α ( α + ) = β 3 β + β = γ β( β + ) = γ 3 γ + γ = α γ ( γ + ) = α Από τη τελευταία έκφραση του συστήματος συμπεραίνουμε ότι έχει τη προφανή λύση: α = β = γ = 0. Θα αποδείξουμε ότι το σύστημα δεν έχει άλλη λύση. Αν αβγ 0 τότε πολλαπλασιάζοντας τις σχέσεις έχουμε: αβγ ( α + )( β + )( γ + ) = αβγ ( α + )( β + )( γ + ) =. Η τελευταία ισότητα δεν είναι δυνατό να ισχύει, οπότε καταλήγουμε σε άτοπο. Αν υποθέσουμε ότι α = 0 τότε θα ισχύει: β = γ = 0. Αν υποθέσουμε ότι β = 0 τότε θα ισχύει: α = γ = 0. Αν υποθέσουμε ότι γ = 0 τότε θα ισχύει: α = β = 0.

Αποδείξαμε λοιπόν ότι το σύστημα δεν έχει άλλη λύση εκτός από την α = β = γ = 0. Άρα το αρχικό σύστημα γίνεται: x+ y = 0 y+ z = 0 x = y = z = 0. + = 0 z x Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να αποδείξετε ότι δεν υπάρχουν θετικοί ακέραιοι x, y που να επαληθεύουν την εξίσωση x + 3x x + x 0y = 05. ( ) Η δεδομένη εξίσωση είναι ισοδύναμη με την x( x+ ) y = 403. () Επειδή για όλους τους θετικούς ακέραιους, x x+ και y είναι άρτιοι x y οι αριθμοί ( ) θετικοί ακέραιοι και η διαφορά τους x( x ) y + θα είναι άρτιος θετικός ακέραιος, οπότε δεν είναι δυνατόν να ισούται με 403. ΘΕΜΑ ο Για τη συνάρτηση f : ισχύει ότι: ( ( )) ( ( )) ( ( ) ( )) f x f y f y f x = f f x f y, για κάθε xy,. Να αποδείξτε ότι f( x f( x)) = 0,για κάθε x. Θέτουμε στη δοσμένη συναρτησιακή σχέση όπου y το x και παίρνουμε: f ( x f ( x) ) f ( x f ( x) ) = f ( f ( x) f ( x) ), οπότε θα είναι f (0 ) = 0. Θέτουμε στη δοσμένη συναρτησιακή σχέση όπου x το 0 και παίρνουμε: f ( 0 f ( y) ) f ( y f ( 0) ) = f ( f ( 0) f ( y) ) και χρησιμοποιώντας την ισότητα f (0 ) = 0, καταλήγουμε: f ( f ( y) ) f ( y) = f ( f ( y) ) f ( f ( y) ) = f ( y). Θέτουμε (στη τελευταία ισότητα) όπου y το x και έχουμε τη σχέση: f ( f ( x) ) = f ( x). () Θέτουμε στη δοσμένη συναρτησιακή σχέση όπου y το 0 και παίρνουμε: f ( x f ( 0) ) f ( 0 f ( x) ) = f ( f ( x) f ( 0) ) και χρησιμοποιώντας την ισότητα f (0 ) = 0, καταλήγουμε: f x f f x = f f x. () ( ) ( ( )) ( ( ))

( έχουμε: ( ( )) ( ) Από τις σχέσεις ( ) και ) f f x = f x, για κάθε x R. Θέτουμε τέλος στη δοσμένη συναρτησιακή σχέση όπου y το f ( x ) και f x f x =, για κάθε x R. χρησιμοποιώντας τη προηγούμενη ισότητα έχουμε ( ( )) 0 ΘΕΜΑ 3 ο. Δίνονται τρεις θετικοί ακέραιοι αριθμοί της μορφής α 000 000α, όπου α είναι ν ψηφία θετικός μονοψήφιος ακέραιος και μεταξύ του πρώτου και του τελευταίου ψηφίου του αριθμού α 00 00α, μεσολαβούν ν το πλήθος μηδενικά. Να αποδείξετε ότι: ή ένας από αυτούς θα διαιρείται με το 33 ή το άθροισμα κάποιων από αυτούς θα διαιρείται με το 33. Πρώτα θα αποδείξουμε ότι κάθε αριθμός της μορφής α 000 000α διαιρείται με το ν ψηφία. Πράγματι, κάθε αριθμός της παραπάνω μορφής γράφεται; 0 ν ν + α 00 00α = α 0 + 0 0 + + 0 0 + α 0 = + = α + α 0 ν = ν = + + α ( 0 ) = ν ν = α( + 0 )(0 0 + + ) = α κ. Έστω τώρα α, α, α 3 τρεις οποιοιδήποτε θετικοί ακέραιοι αριθμοί. της μορφής α 000 000α. Θα αποδείξουμε ότι: ή ένας από αυτούς θα διαιρείται με το 3 ή το ν ψηφία άθροισμα κάποιων από αυτούς θα διαιρείται με το 3. () Αν κάποιος από τους αριθμούς α, α, α 3 διαιρείται με το 3, τότε προφανώς θα ισχύει η πρόταση. Έστω ότι το 3 δεν διαιρεί κανένα από τους αριθμούς α, α, α 3. Τότε υπάρχουν οι παρακάτω δυνατές περιπτώσεις: ) Αν όλοι οι αριθμοί είναι της μορφής 3 k +, τότε προφανώς α + α + α 3 = 3m ) Αν όλοι οι αριθμοί είναι της μορφής 3 k +, τότε προφανώς α + α + α 3 = 3n Σε όλες τις άλλες περιπτώσεις ένας τουλάχιστον αριθμός θα είναι της μορφής 3 k + και ένας τουλάχιστον της μορφής 3 k +, οπότε το άθροισμα αυτών των δύο αριθμών θα είναι προφανώς πολλαπλάσιο του τρία. Επειδή καθένας από τους αριθμούς α, α, α 3 της μορφής α 00 00α διαιρείται με το, έπεται ότι και το άθροισμα οσωνδήποτε από αυτούς θα διαιρείται με το. Λαμβάνοντας υπόψιν τις προηγούμενες προτάσεις, καταλήγουμε στο ζητούμενο. ΘΕΜΑ 4 ο. Δίνεται τρίγωνο ΑΒΓ, εγγεγραμμένο σε κύκλο COR (, ) και έστω Α, Β, Γ τα μέσα R των πλευρών του ΒΓ, ΑΓΑΒ, αντίστοιχα. Θεωρούμε τους κύκλους C( Α, ), R R C( Β, ) και C3( Γ, ). Αποδείξτε ότι οι κύκλοι C, C, C 3 περνάνε από το ίδιο κ 3

σημείο (έστω Ν ) και ότι τα δεύτερα κοινά σημεία τους είναι τα μέσα Α, Β, Γ των ΟΑ, ΟΒ, ΟΓ αντίστοιχα. Στη συνέχεια να αποδείξτε ότι οι ΑΑ, ΒΒ, ΓΓ και ΟΝ περνάνε από το ίδιο σημείο. Το τρίγωνο ΑΒΓ είναι όμοιο με το τρίγωνο ΑΒΓ. Ο λόγος ομοιότητας των δύο τριγώνων είναι λ =, οπότε ο περιγεγραμμένος κύκλος του τριγώνου ΑΒΓ θα έχει ακτίνα R. Σχήμα 7 Οι κύκλοι τώρα που έχουν κέντρα τις κορυφές του τριγώνου ΑΒΓ και ακτίνα R θα περνάνε από το περίκεντρο Ν του τριγώνου ΑΒΓ. (Το σημείο Ν είναι το κέντρο του κύκλου του Euler του τριγώνου ΑΒΓ ) Αν Α,Β,Γ είναι τα μέσα των ΟΑ,ΟΒ,ΟΓ αντίστοιχα, τότε: R ΑΒ = ΑΓ = ΒΑ = ΒΓ = ΓΑ = ΓΒ =. (Τα παραπάνω τμήματα ΑΒ,Α Γ,ΒΑ,ΒΓ,ΓΑ,ΓΒ είναι διάμεσοι προς την υποτείνουσα των ορθογωνίων τριγώνων ΟΑΒ, ΟΑΓ, ΟΒΑ, ΟΒΓ, ΟΓ Α και ΟΓ Β.) R Άρα τα δεύτερα κοινά σημεία των κύκλων C(Α, ), R R C(Β, ) και C(Γ 3, ) είναι τα σημεία Α, Β,Γ. 4

Τα τετράπλευρα ΓΝΒΑ και ΟΒΑΓ είναι ρόμβοι με πλευρές μήκους R και οι πλευρές του ενός τετραπλεύρου, είναι παράλληλες με τις πλευρές του άλλου ( ΑΒ = // ΒΑ, ΓΑ = // ΑΓ,.). Από τα παραπάνω προκύπτει ότι: Το τετράπλευρο ΑΟΑΝ είναι παραλληλόγραμμο οπότε οι διαγώνιές του θα διχοτομούνται. Δηλαδή η ΑΑ περνά από το μέσο Κ του ΟΝ που είναι μέσο και του ΑΑ. Το τετράπλευρο ΓΑ ΓΑ είναι παραλληλόγραμμο οπότε οι διαγώνιές του θα διχοτομούνται. Δηλαδή η ΓΓ περνά από το μέσο Κ του ΑΑ που είναι μέσο και του ΓΓ. Τέλος το τετράπλευρο Β ΓΒ Γ είναι παραλληλόγραμμο οπότε οι διαγώνιές του θα διχοτομούνται. Δηλαδή η ΒΒ και περνά από το μέσο Κ του ΓΓ που είναι μέσο και του ΒΒ. 5

Β Γυμνασίου ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ ΘΑΛΗ 009-0 Θ. Για την εύρεση του a μία μονάδα και άλλη μία για την εύρεση του b. Για την εύρεση του Α τρεις μονάδες. Για λάθος εύρεση του Α που οφείλεται σε λάθος τιμή του a ή του b, δεν κόβουμε μονάδες από τις τρεις. Θ. Για το (i) μονάδες. Για το (ii) 3 μονάδες. Για σωστή πορεία λύσης με τη χρήση ανισοτήτων, αλλά εύρεση λιγότερων ή περισσότερων τιμών κόβουμε μία μονάδα. Αν βρει τις λύσεις στο (ii) απ ευθείας χωρίς τη χρήση ανισοτήτων δίνουμε μονάδες. Θ3. (α) Για την εύρεση μόνο της γωνίας Α μισή μονάδα. Για την εύρεση των γωνιών Β και Γ,5 μονάδες. (β) Για την εξήγηση γιατί το ίχνος του ύψους είναι εξωτερικά του τριγώνου ΑΒΓ μία μονάδα. Για τον υπολογισμό της γωνίας ύψους - διχοτόμου μονάδες. Θ4. Για το (α) ερώτημα 4 μονάδες, ανάλογα με την πρόοδο. Για το (β) μία μονάδα. Για σωστή εξίσωση στο (α) που λύνεται λανθασμένα δίνουμε μονάδες. Γ Γυμνασίου Θ. Για σωστή εύρεση του ( ) ν + 3ν 3 ( ) = ( ) = ( ) ν ν = μία μονάδα, για σωστή εύρεση του επίσης μία μονάδα. Για λανθασμένο αποτέλεσμα που οφείλεται σε λάθος εύρεση των παραπάνω δυνάμεων κόβουμε μονάδες. Αν δοθεί σωστά το αποτέλεσμα συναρτήσει του ( ) ν δίνουμε 4 μονάδες συνολικά. Για τις δύο περιπτώσεις με ν άρτιο ή περιττό δίνουμε μία μονάδα. Θ. Για τη μορφή α = 5λ + δύο μονάδες Για την εξέταση των δύο περιπτώσεων με λ άρτιο ή περιττό από μία μονάδα. Μία ακόμη μονάδα για το συμπέρασμα. Θ3. Για την εύρεση της εξίσωσης των ευθειών ε και ε από μία μονάδα, για το κοινό σημείο τους επίσης μία μονάδα. Δύο μονάδες για σωστό εμβαδό. Θ4. Για την εύρεση της σχέσης r = r δύο μονάδες. Για σωστό εμβαδόν του ενός ή και των δύο δακτυλίων μία μονάδα. Για τα υπόλοιπα δύο μονάδες. Α Λυκείου Θ. Μία μονάδα για σωστή εξίσωση και 3 για σωστή επίλυσή της. Κόβουμε μία μονάδα από τις τρεις για τη μη απόρριψη της μιας λύσης. Θ. Τρεις μονάδες για τη σχέση μ ν 4= 0 και δύο για τα υπόλοιπα. Θ3. Δύο μονάδες για το (α) και τρεις για το (β).

Θ4. Για κάθε σωστή περίπτωση με ακέραιο αποτέλεσμα δίνουμε από μια μονάδα, ενώ για τις άλλες τέσσερις περιπτώσεις δίνουμε από 0,75 μονάδες. Β Λυκείου Θ. Για κάθε μία από τις βοηθητικές ανισότητες δίνουμε από δύο μονάδες και μία για τον πολλαπλασιασμό τους. Για άλλες λύσεις, ανάλογα με την πρόοδο. Θ. Για την απόδειξη ότι μία τουλάχιστον πλευρά του εξαγώνου είναι ίση με R μία μονάδα και δύο μονάδες για όλες. Για τον προσδιορισμό κάθε παραλληλογράμμου από τα τρία που απαιτούνται για την λύση της άσκησης από μία μονάδα. Όμως δίνουμε σύνολο 5 μονάδες, αν υπάρχει και το συμπέρασμα ότι οι διαγώνιοι συντρέχουν. Διαφορετικά κόβουμε μία μονάδα. Θ3. Για τη χρήση αντικατάστασης για τα ριζικά, χωρίς την εύρεση των τιμών των a και b μέχρι δύο μονάδες, ανάλογα με την πρόοδο. Αν βρουν τα a και b δίνουμε συνολικά 4 μονάδες. Μία μονάδα για την τιμή του Α. Θ4. Για την αντικατάσταση και την εύρεση του βοηθητικού συστήματος μία μονάδα. Για τη σωστή εύρεση των α, β, γ μέχρι 4 μονάδες συνολικά. Μία μονάδα για τα υπόλοιπα. Για άλλες λύσεις δίνουμε μονάδες, ανάλογα με την πρόοδο, μόνο αν οδηγούν σε σωστή πορεία λύσης, όχι για απλές πράξεις που δεν οδηγούν σε κάποιο αποτέλεσμα σοβαρό για τη λύση. Γ Λυκείου. Θ. Για τη σχέση () δίνουμε δύο μονάδες. Τρεις μονάδες για τα υπόλοιπα. Θ. Για την τιμή f ( 0) = 0 δίνουμε μία μονάδα. Για μία μόνο από τις σχέσεις f ( f ( x) ) = f ( x) ή f ( f ( x) ) f ( x) =, για κάθε x, δίνουμε δύο μονάδες και τρεις μονάδες και για τις δύο μαζί. Για τη τελική σχέση δίνουμε μία ακόμη μονάδα. Θ3. Για την γραφή των δεδομένων αριθμών στη μορφή α κ, δηλαδή για την απόδειξη του ότι έκαστος διαιρείται με το, δίνουμε δύο μονάδες. Δεν δίνουμε επιπλέον μονάδα για την τετριμμένη περίπτωση που κάποιος από τους αριθμούς διαιρείται με το 3. Στη συνέχεια δίνουμε από μια μονάδα για καθεμιά από τις περιπτώσεις: Και οι τρεις αριθμοί είναι της μορφής 3k + Και οι τρεις αριθμοί είναι της μορφής 3k + Ένας τουλάχιστον είναι της μορφής 3k + και ένας τουλάχιστον είναι της μορφής 3k +. Θ4. Δύο μονάδες για το ότι οι κύκλοι περνάνε από το ίδιο σημείο. Μία μονάδα για το προσδιορισμό των δεύτερων κοινών σημείων των κύκλων. Δύο μονάδες για την ολοκλήρωση της άσκησης, ανάλογα με την πρόοδο.