Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Σχετικά έγγραφα
Θεωρία και Αλγόριθμοι Γράφων

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Θεωρία και Αλγόριθμοι Γράφων

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

u v 4 w G 2 G 1 u v w x y z 4

Αλγόριθµοι και Πολυπλοκότητα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

Στοιχεία Θεωρίας Γραφηµάτων (1)

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

d(v) = 3 S. q(g \ S) S

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη

HY118-Διακριτά Μαθηματικά

q(g \ S ) = q(g \ S) S + d = S.

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 10 η Διάλεξη Κατευθυνόμενοι Γράφοι Βασικά χαρακτηριστικά Αλγόριθμοι διάσχισης κατευθυνόμενων γράφων Λίγα Λόγια για Αλυσίδες Markov

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Μαθηματικά Πληροφορικής

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Μαθηματικά Πληροφορικής

Διάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

2 ) d i = 2e 28, i=1. a b c

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων / γραφήματα. Τι είναι οι γράφοι; Εφαρμογές των γράφων. 23-Γράφοι

Διάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

HY118- ιακριτά Μαθηµατικά

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2

Αλγόριθμοι Γραφημάτων

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης

S A : N G (S) N G (S) + d S d + d = S

Θεωρία Γραφημάτων 2η Διάλεξη

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Θεωρία Γραφημάτων 10η Διάλεξη

Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018

Θεωρία Γραφημάτων 7η Διάλεξη

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

Βασικές Έννοιες Θεωρίας Γραφημάτων

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

Θεωρία Γραφημάτων 4η Διάλεξη

Βασικές Έννοιες Θεωρίας Γραφημάτων

Θεωρία Γραφημάτων 1η Διάλεξη

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Εισαγωγή στη Θεωρία Γράφων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Διδάσκων: Παναγιώτης Ανδρέου

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Θεωρία Γραφημάτων 9η Διάλεξη

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

f e Γράφημα (Graph) Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ

Αλγόριθμοι και Πολυπλοκότητα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων / γραφήματα. Τι έχουμε δει μέχρι τώρα. Υπογράφημα. 24 -Γράφοι

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

Θεωρία και Αλγόριθμοι Γράφων

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

E(G) 2(k 1) = 2k 3.

Θεωρία και Αλγόριθμοι Γράφων

Αναζήτηση Κατά Πλάτος

Θεωρία Γραφημάτων 11η Διάλεξη

Αναζήτηση Κατά Πλάτος

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Transcript:

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 2 Η ΔΙΑΛΕΞΗ Βασικές Έννοιες Γράφων - Ορισμοί (συνέχεια) - Ισομορφισμοί-Ομοιομορφισμοί Γράφων - Πράξεις - Αναπαράσταση Γράφων (Πίνακες και Λίστες Γειτνιάσεως - Βαθμοί και Ακολουθίες Βαθμών Θεωρία Γράφων 1

Ορισμοί (συνέχεια) Αν V 1,,V l είναι ανεξάρτητα υποσύνολα κορυφών, τότε οι υπογράφοι G(V 1 ),,G(V l ) είναι οι συνδεδεμένες συνιστώσες του γράφου G. Συνδεδεμένος γράφος, αν αποτελείται από μία μόνο συνιστώσα Συνδεδεμένος κατά ελάχιστο τρόπο, αν η διαγραφή μιας μόνο ακμής τον αποσυνδέει και δημιουργεί συνιστώσες Σειρά rank: r=n-k, n η τάξη και k το πλήθος των συνιστωσών Μηδενικότητα nullity: μ=m-n-k Βρόχος: ακμή με ταυτόσημες κορυφές Θεωρία Γράφων 2

Ορισμοί (συνέχεια) Παράλληλες ακμές: ενώνουν το ίδιο ζεύγος κορυφών Απλός γράφος: δεν περιλαμβάνει βρόχους ή παράλληλες ακμές Ψευδογράφος: περιλαμβάνει βρόχους Πολυγράφος: με παράλληλες ακμές αλλά χωρίς βρόχους Υποκείμενος: ο γράφος που προκύπτει αν απαλειφθούν οι βρόχοι και οι παράλληλες ακμές Κατευθυνόμενος ή προσανατολισμένος, D(V,A), είναι ο γράφος από ένα μη κενό σύνολο κορυφών και διατεταγμένα ζεύγη κορυφών, που ονομάζονται τόξα. Θεωρία Γράφων 3

Ορισμοί (συνέχεια) Γραμμικός γράφος L(G): m κορυφές, μία για κάθε ακμή του G έτσι ώστε δύο κορυφές του να είναι γειτονικές αν οι αντίστοιχες ακμές του G πρόσκεινται στην ίδια κορυφή Πόρισμα: Το πλήθος των ακμών του γραμμικού γράφου L(G) είναι: Θεώρημα: Το πλήθος των κορυφών περιττού βαθμού ενός πεπερασμένου γράφου είναι άρτιος αριθμός. Θεωρία Γράφων 4

Βασικές έννοιες Θεώρημα: Το πλήθος των απλών γράφων με ετικέτες που έχουν n κορυφές και m ακμές είναι Πόρισμα: Το πλήθος των απλών γράφων με ετικέτες και n κορυφές είναι Υπογράφος, υπεργράφος, ζευγνύων υπογράφος, επηρεασμένος από σύνολο κορυφών/ακμών Θεωρία Γράφων 5

Βασικές έννοιες Για ένα γράφο G, ο κυκλικός υπογράφος με την ελάχιστη τάξη ονομάζεται περιφέρεια g(g). Αν ο γράφος με περιφέρεια g είναι τακτικός βαθμού r τότε ονομάζεται (g,r)-κλωβός. (5,3)-κλωβός (6,3)-κλωβός (7,3)-κλωβός Θεωρία Γράφων 6

Πράξεις (1) Ένωση δύο γράφων είναι ο γράφος G με σύνολο κορυφών και σύνολο ακμών v 2 v 2 v 2 v 6 v 6 v 1 v 3 v 1 v 3 v 1 v 3 G 1 G 2 G 1 G 1 U G 2 v 5 v 4 v 4 v 5 v 4 Θεωρία Γράφων 7

Πράξεις (2) Κάθε μη συνδεδεμένος γράφος μπορεί να εκφρασθεί ως ένωση δύο ή περισσοτέρων συνιστωσών. Η ένωση m ισομορφικών γράφων G συμβολίζεται με mg. Αν ένας γράφος G μπορεί να εκφρασθεί ως ένωση των παραγόντων του, τότε η ένωση αυτή ονομάζεται παραγοντοποίηση του G. Ένας παράγοντας που είναι τακτικός γράφος βαθμού r ονομάζεται r-παράγοντας. Ένας γράφος είναι r-παραγοντοποιήσιμος αν αποτελείται μόνο από r-παράγοντες. Θεωρία Γράφων 8

Πράξεις (3) Τομή δύο γράφων είναι ο γράφος G με σύνολο κορυφών και σύνολο ακμών v 2 v 2 v 2 v 6 v 1 v 3 v 1 v 3 v 1 v 3 G 1 G 2 v 5 v 4 v 4 v 4 Θεωρία Γράφων 9

Πράξεις (4) Άθροισμα δακτυλίου είναι ο γράφος G με σύνολο κορυφών και σύνολο ακμών v 2 v 2 v 2 v 6 v 6 v 1 v 3 v 1 v 3 v 1 v 3 G 1 G 2 v 5 v 4 v 4 v 5 v 4 Θεωρία Γράφων 10

Πράξεις (5) Το συμπλήρωμα ενός γράφου G συμβολίζεται με και είναι ο γράφος που έχει σύνολο κορυφών ενώ το σύνολο των ακμών του αποτελείται από όλες τις δυνατές ακμές που δεν ανήκουν στο σύνολο E(G). Αν ο G δεν είναι συνδεδεμένος, τότε ο συνδεδεμένος (είναι δυνατό να αποδειχθεί). είναι G Θεωρία Γράφων 11

Πράξεις (6) v v Διαγραφή κορυφής και διαγραφή ακμής Θεωρία Γράφων 12

Πράξεις (7) Η πράξη της ανταλλαγής ή αντιστροφής ακμών ταυτίζεται με τη διαγραφή δύο ακμών (v 1,v 2 ) και (v 3,v 4 ) και την εισαγωγή των ακμών (v 1,v 3 ) και (v 2,v 4 ), όπως στο σχήμα. v 1 v 2 v 1 v 2 v 4 v 3 v 4 v 3 Θεωρία Γράφων 13

Πράξεις (8) Κατά τη διάσπαση μιας κορυφής v 1 διαγράφονται δύο ακμές (v 1,v 2 ) και (v 3,v 4 ) του γράφου και εισάγονται με ένωση δύο νέες ακμές (v 4,v 2 ) και (v 4,v 3 ) θεωρώντας μία νέα κορυφή v 4. v 2 v 3 v 2 v 3 v 4 v 1 v 1 Θεωρία Γράφων 14

Πράξεις (9) Αν κατά τη διαγραφή μιας κορυφής από ένα συνδεδεμένο γράφο προκύψουν δύο ή περισσότερες συνιστώσες (δηλ. υπογράφοι), τότε η κορυφή αυτή λέγεται αποκόπτουσα κορυφή ή σημείο άρθρωσης. Αν με τη διαγραφή μιας ακμής προκύψουν δύο συνιστώσες, τότε η ακμή αυτή ονομάζεται αποκόπτουσα ακμή ή γέφυρα. Τα τερματικά σημεία μιας τέτοιας ακμής είναι αποκόπτουσες κορυφές. Ένας γράφος που δεν περιέχει αποκόπτουσες ακμές ονομάζεται δισυναφής. Θεωρία Γράφων 15

Πράξεις (10) Ένας γράφος που δεν περιέχει αποκόπτουσες κορυφές ονομάζεται δισυνδεδεμένος ή μη διαχωριστός, ενώ λέγεται ότι ο γράφος αποτελείται από ένα τεμάχιο. Ένας διαχωριστός γράφος έχει μία ή περισσότερες αποκόπτουσες κορυφές. Κατά τη διάσπαση μιας αποκόπτουσας κορυφής, η κορυφή αυτή αντικαθίσταται από δύο ή περισσότερες κορυφές, ώστε να προκύψουν ανεξάρτητα τεμάχια. Θεωρία Γράφων 16

Πράξεις (11) Η σύνδεση ή άθροισμα δύο γράφων συμβολίζεται με και είναι ένας γράφος που αποτελείται από το γράφο και όλες τις δυνατές ακμές μεταξύ των κορυφών των δύο γράφων. Θεωρία Γράφων 17

Πράξεις (12) Αν είναι δυνατόν οι κορυφές ενός γράφου G να επιμερισθούν σε δύο υποσύνολα V 1 και V 2, έτσι ώστε κάθε ακμή του G να προσπίπτει σε μία κορυφή του V 1 και μία του V 2, τότε ο γράφος G ονομάζεται διμερής ή διγράφος, ενώ τα V 1 και V 2 ονομάζονται μερικά σύνολα. Αν κάθε κορυφή του V 1 συνδέεται με κάθε κορυφή του V 2, τότε ο γράφος G ονομάζεται πλήρης διμερής και συμβολίζεται με, όπου και Κάθε πλήρης διμερής γράφος είναι και διμερής αλλά το αντίστροφο δεν ισχύει (K 3,3 ). Θεωρία Γράφων 18

Πράξεις (13) Θεωρία Γράφων 19

Πράξεις (14) Με όμοιο τρόπο ορίζονται οι πολυμερείς και οι πλήρεις πολυμερείς γράφοι. Το καρτεσιανό γινόμενο δύο γράφων G 1 και G 2 ορίζεται ως ο γράφος με σύνολο κορυφών V(G 1 xg 2 )=V(G 1 )xv(g 2 ) ενώ δύο κορυφές v=(v 1,v 2 ) και u=(u 1,u 2 ) είναι γειτονικές στο καρτεσιανό γινόμενο αν v 1 =u 1 και η v 2 συνδέεται με την u 2 στο γράφο G 2 ή συμμετρικά αν v 2 =u 2 και η v 1 συνδέεται με την u 1 στο γράφο G 1. v 1 (v 1,u 1 ) (v 1,u 2 ) (v 1,u 3 ) G 1 u 1 u 2 u 3 G 2 (v 2,u 1 ) (v 2,u 2 ) (v 2,u 3 ) v 2 Θεωρία Γράφων 20

Πράξεις (15) Ένας γράφος G αποσυντίθεται σε δύο γράφους G 1 και G 2 αν ισχύει: και Κατά την αποσύνθεση αγνοούνται οι απομονωμένες κορυφές. Με απλά λόγια, κάθε ακμή του G βρίσκεται είτε στον ένα γράφο είτε στον άλλο, αλλά όχι και στους δύο. Παρόλα αυτά μπορεί κάποιες κορυφές να ανήκουν και στους δύο υπογράφους. Θεωρία Γράφων 21

Πράξεις (16) Συγχώνευση δύο κορυφών v 1 και v 2 ενός γράφου είναι η αντικατάστασή τους από μία νέα κορυφή v, ενώ οι ακμές που ήταν προσπίπτουσες στις κορυφές v 1 ή/και v 2 αντικαθιστώνται από νέες ακμές προσπίπτουσες προς την κορυφή v. Η πράξη αυτή συμβολίζεται με Κατά τη συγχώνευση, ο αριθμός των ακμών παραμένει σταθερός, ενώ ο αριθμός των κορυφών μειώνεται κατά ένα. Θεωρία Γράφων 22

Πράξεις (17) Κατά την υποδιαίρεση, μία ακμή e διαγράφεται, ενώ οι προσκείμενες κορυφές της e ενώνονται δια μέσου δύο νέων ακμών και μιας ενδιάμεσης κορυφής. Συστολή μιας ακμής e ενός γράφου είναι η αντίστροφη πράξη της υποδιαίρεσης. Κατά τη συστολή η ακμή e διαγράφεται και ταυτοποιούνται οι κορυφές που ήταν προσκείμενες προς την ακμή αυτή. Ο γράφος που προκύπτει κατά τη συστολή συμβολίζεται με Δύο γράφοι λέγονται ομοιομορφικοί αν ένας μπορεί να προκύψει από τον άλλο με μία ή περισσότερες υποδιαιρέσεις ή συστολές ακμών. Θεωρία Γράφων 23

Προτάσεις 1 Θεωρία Γράφων 24

Αλγόριθμοι Γράφων (Ι) Αλγόριθμος: ακολουθία βημάτων αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο - είσοδο - έξοδο - περατότητα - αποτελεσματικός - καθορισμένος Θεωρία Γράφων 25

Αλγόριθμοι Γράφων (ΙΙ) Η αποτελεσματικότητα καθορίζεται από την πολυπλοκότητα χρόνου και χώρου. Στους γράφους θα μας απασχολήσει περισσότερο η πολυπλοκότητα χρόνου. Πολυπλοκότητα χρόνου είναι το πλήθος εκτελέσεων της βασική πράξης, ώστε να παραχθούν τα επιδιωκόμενα δεδομένα εξόδου. Θεωρία Γράφων 26

Αλγόριθμοι Γράφων (ΙΙΙ) Η εκτίμηση της επίδοσης ενός αλγορίθμου μπορεί να γίνει είτε πειραματικά είτε θεωρητικά. Πειραματικά, μπορούμε να μετρήσουμε το πλήθος των πράξεων ενός αλγορίθμου, δηλ. τον απόλυτο χρόνο, μέγεθος όμως που δεν εξαρτάται από πολλούς παράγοντες. Θεωρία Γράφων 27

Αλγόριθμοι Γράφων (IV) Για τη θεωρητική εκτίμηση της πολυπλοκότητας χρόνου, έχει ιδιαίτερη σημασία το μέγεθος του προβλήματος, που εφόσον αναφερόμαστε σε γράφους εκφράζεται από την τάξη και το μέγεθός τους. Ο συμβολισμός Ο εκφράζει το άνω όριο του πλήθους των απαιτούμενων πράξεων με τη βοήθεια μιας συνάρτησης Ο(f(n)) Μας ενδιαφέρει συνήθως - η πολυπλοκότητα της χειρότερης περίπτωσης - η πολυπλοκότητα της μέσης περίπτωσης Πολυωνυμικός είναι ο αλγόριθμος όπου η συνάρτηση f είναι άνω φραγμένη από κάποιο πολυώνυμο Αποτελεσματικός είναι ο αλγόριθμος με όσο το δυνατό μικρότερου βαθμού πολυώνυμο. Θεωρία Γράφων 28

Αναπαράσταση Γράφων (I) Στατικές αναπαραστάσεις Πίνακας γειτνίασης adjacency matrix Πίνακας ακμών incidence matrix Δυναμικές αναπαραστάσεις Λίστες ακμών edge lists (για αραιούς γράφους) Λίστες γειτνίασης Θεωρία Γράφων 29

Αναπαράσταση Γράφων (II) Αναπαράσταση γράφων µε πίνακες γειτνίασης (adjacency matrix) Ένας γράφος G=(V,E) µε n κορυφές µπορεί να αναπαρασταθεί ως ένας n n πίνακας που περιέχει τις τιµές 0 και 1, και όπου αν η (i,j) είναι ακµή τότε A[(i,j)]=1, διαφορετικά A[(i,j)]=0. Αν ο γράφος είναι γράφος µε βάρη, και το βάρος κάθε ακµής είναι τύπου t, τότε για την αναπαράσταση του γράφου µπορεί να χρησιµοποιηθεί πίνακας τύπου t µε Α[(i,j)] = βάρος(i,j), αν υπάρχει ακµή (i,j) A[(i,j)] =, αν δεν υπάρχει ακµή (i,j) Αυτή η αναπαράσταση απαιτεί χώρο Ο(n 2 ), όπου n= V. Αν ο γράφος είναι αραιός η µέθοδος οδηγεί σε σπάταλη χώρου. Θεωρία Γράφων 30

Αναπαράσταση Γράφων (III) Αναπαράσταση γράφων µε λίστες γειτνίασης (adjacency lists) Ένας γράφος G=(V,E) αναπαρίσταται ως ένας µονοδιάστατος πίνακας Α. Για κάθε κορυφή ω, Α[ω] είναι ένας δείκτης σε µια συνδεδεµένη λίστα στην οποία αποθηκεύονται οι κορυφές που γειτνιάζουν µε την ω. Η µέθοδος απαιτεί χώρο Ο( V + Ε ). Επιτυγχάνεται εξοικονόµηση χώρου για αραιούς γράφους. Στην περίπτωση γράφων µε βάρη στη λίστα γειτνίασης αποθηκεύουµε επίσης το βάρος κάθε ακµής. Θεωρία Γράφων 31

Αναπαράσταση Γράφων (IV) Γράφος Ο 1 Πίνακας Γειτνίασης 2 3 4 Λίστα Γειτνίασης Θεωρία Γράφων 32

Πίνακας Γειτνιάσεως-Πυκνά Γραφήματα Θεωρία Γράφων 33

Πίνακας ακμών Θεωρία Γράφων 34

Αναπαράσταση Γράφων με λίστες γειτνίασης (I) Θεωρία Γράφων 35

Αποθήκευση Γράφων Λίστες γειτνίασης (III) Αν υποτεθεί ότι η μέση τιμή των βαθμών των κορυφών του γράφου είναι d av και ότι για τον ορισμό της επιγραφής μιας κορυφής απαιτείται μία λέξη, τότε εύκολα προκύπτει ότι ο συνολικός απαιτούμενος χώρος μνήμης για αυτές τις μεθόδους είναι περίπου Δυναμικές αναπαραστάσεις μπορούν να εφαρμοσθούν και στην περίπτωση των μη κατευθυνόμενων γράφων, όμως στην περίπτωση αυτή απαιτείται περίπου διπλάσιος χώρος μνήμης. Θεωρία Γράφων 36

Τοπολογική Ταξινόμηση ίνεται ένα σύνολο εργασιών και θέλουµε να ορίσουµε τη σειρά µε την οποία πρέπει να εκτελέσει τις εργασίες ένας επεξεργαστής, δεδοµένης της ύπαρξης περιορισµών ως προς την προτεραιότητά τους. Κάθε εργασία έχει ένα σύνολο προαπαιτούµενων εργασιών, δηλαδή δεν µπορεί να εκτελεσθεί προτού συµπληρωθεί κάθε µια από τις προαπαιτούµενες. Μπορούµε να παραστήσουµε το πρόβληµα ως έναν κατευθυνόµενο γράφο: Οι κορυφές του γράφου αντιστοιχούν σε κάθε µια από τις εργασίες, και η ύπαρξη ακµής από την κορυφή Α στην κορυφή Β δηλώνει ότι η εργασία Α πρέπει να εκτελεστεί πριν από τη Β. Τοπολογική ταξινόµηση του γράφου είναι µια σειρά των κορυφών του, v1,, vn,, ώστε αν (vi, vj ) είναι ακµή του γράφου τότε i<j. Θεωρία Γράφων 37

Παράδειγμα Τοπολογικές ταξινομήσεις του Γράφου V1, V2, V4, V3, V5, V6, V7 V1, V2, V3, V5, V6, V7, V4 V1, V3, V2, V5, V6, V4, V7... Θεωρία Γράφων 38

Αλγόριθμος για Τοπολογική Ταξινόμηση Ο βαθµός εισόδου (in-degree) ενός κόµβου είναι ο αριθµός των ακµών που καταλήγουν στον κόµβο. (Στο πρόβληµα µας, ο αριθµός των προαπαιτούµενων εργασιών) Για κάθε κορυφή u έστω I[u] ο βαθµός εισόδου της u. Επαναλαµβάνουµε τα εξής βήµατα: 1. διαλέγουµε κορυφή Α µε Ι[Α]=0, 2. τυπώνουµε την Α, 3. για όλες τις κορυφές Β, µε (Α,Β) µειώνουµε την τιµή Ι[Β] κατά 1. Πως µπορούµε να διακρίνουµε την ύπαρξη κύκλων; Θεωρία Γράφων 39

Βαθμός Βαθμός του u στο γράφημα G, λέγεται το πλήθος των δεσμών του G στο οποίο το u είναι άκρο. Στο ακόλουθο γράφημα, οι κόμβοι του έχουν τους εξής βαθμούς: d(v1) = d(v4) = 3 d(v2) = 2 d(v3) = d(v6) = 1 d(v5) = 0 Θεωρία Γράφων 40

Παράδειγμα Η ακολουθία βαθμών του παραπάνω γραφήματος είναι (3,3,2,1,1,0). Συνήθως γράφουμε την ακολουθία βαθμών σε φθίνουσα τάξη. Θεωρία Γράφων 41

Ακολουθία Βαθμών (1) Μία μη αύξουσα ακολουθία ακεραίων, που αντιστοιχεί στις τιμές των βαθμών των κορυφών ενός γράφου. Μία τυχούσα ακολουθία λέγεται γραφική αν πράγματι αντιστοιχεί σε κάποιο γράφο G. Ο γράφος G που αντιστοιχεί σε δεδομένη ακολουθία S ονομάζεται παραγοντοποίηση της ακολουθίας S. Για κάθε γράφο αντιστοιχεί μία και μοναδική ακολουθία βαθμών και αυτή έχει τις εξής ιδιότητες Μη αρνητικές τιμές Πλήθος περιττών βαθμών άρτιο Τιμές μικρότερες από n Παράδειγμα: Η ακολουθία 2,2,2,2,2,2 απεικονίζει το γράφο Κ 6 και τον 2Κ 3. Θεωρία Γράφων 42

Ακολουθία Βαθμών (2) Μία ακολουθία βαθμών λέγεται απλή, αν είναι γραφική και υπάρχει μόνο μία πραγματοποίησή της (τότε θα μπορούσε να χρησιμοποιηθεί για την αποθήκευση του γράφου). ΔΕΝ ΥΠΑΡΧΕΙ ΙΚΑΝΗ & ΑΝΑΓΚΑΙΑ ΣΥΝΘΗΚΗ Θεώρημα: Μια ακολουθία d 1,d 2,,d n είναι γραφική, αν είναι γραφική η d 2-1,d 3-1,,d d1+1-1,d d1+2,,d n Θεωρία Γράφων 43

Ακολουθία Βαθμών (3) Αλγόριθμος 1. Αν κάποιο d > n-1 OXI 2. Αν όλα μηδενικά ΝΑΙ 3. Αν κάποιο αρνητικό OXI 4. Αν χρειάζεται, η ακολουθία αναδιατάσσεται ώστε να είναι μη αύξουσα 5. Διαγράφεται ο πρώτος όρος (d 1 ) και αφαιρείται μία μονάδα από τους επόμενους d 1 όρους 6. Πήγαινε στο Βήμα 2 Θεωρία Γράφων 44

Ακολουθία Βαθμών (4) Παράδειγμα: η ακολουθία 5,4,4,3,2,1,1 S 2 : 3, 3, 2, 1, 1, 0 S 3 : 2, 1, 1, 0, 0 S 4 : 0, 0, 0, 0 Άρα η ακολουθία είναι γραφική Κατασκευή γράφου σταδιακά, ξεκινώντας από την S 4 v 3 v 3 v 3 v 2 v 1 v 2 Μία ακολουθία βαθμών μπορεί να αντιστοιχίζεται σε περισσότερους από έναν γράφους. Θεωρία Γράφων 45

Ακολουθία Βαθμών (5) Έχει αποδειχθεί ότι μία πραγματοποίηση γραφικής ακολουθίας βαθμών μπορεί να παραχθεί από οποιαδήποτε άλλη πραγματοποίηση μετά από ένα πεπερασμένο αριθμό ανταλλαγών ακμών. Θεώρημα: Μια ακολουθία d 1,d 2,,d n είναι γραφική αν και μόνο αν Σd i είναι άρτιο και για κάθε ακέραιο k, 1<=k<=n-1 ισχύει: Παράδειγμα: Έστω ότι δίνεται η ακολουθία S: 5,5,5,5,2,2,2. Παρατηρούμε ότι: Για k=1, Για k=2, Για k=3, Για k=4 δεν ισχύει (ΨΕΥΔΗΣ) Θεωρία Γράφων 46