ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 11: Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Σχετικά έγγραφα
ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 12:Οι κλασικοί μετασχηματισμοί και ο κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 7: Κλίση και παράγωγος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 4:Συνέχεια διανυσματικών συναρτήσεων-ιδιότητες της συνέχειας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 8: Ιδιότητες της κλίσης, Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 6: Μερικές παράγωγοι. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 16: Θεώρημα Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 5:Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 14: Τοπικά ακρότατα. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 3: Όρια και συνέχεια συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 15: Τοπικά ακρότατα υπό συνθήκες. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 1: Τοπολογία των Ευκλείδειων χώρων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4. Ενότητα 9: Παραδείγματα από άλλες αλλαγές. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 6: Εφαρμογές του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 10

Λογισμός 4 Ενότητα 12

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4 Ενότητα 17

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4. Ενότητα 4: Ιδιότητες του Ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4 Ενότητα 15

Ιστορία της μετάφρασης

Λογισμός 4 Ενότητα 16

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 1: Εισαγωγή. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο

Λογισμός 4 Ενότητα 18

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Εκκλησιαστικό Δίκαιο

Παράκτια Τεχνικά Έργα

Λογισμός 4 Ενότητα 11

Συμπεριφορά Καταναλωτή

Λογισμός 4 Ενότητα 14

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Λογισμός 4 Ενότητα 19

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Ιστορία της μετάφρασης

Λογισμός 4 Ενότητα 13

Μοντέρνα Θεωρία Ελέγχου

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Θέματα Αρμονικής Ανάλυσης

Μηχανολογικό Σχέδιο Ι

Εισαγωγή στους Αλγορίθμους

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Θεωρία μέτρου και ολοκλήρωσης

Εκκλησιαστικό Δίκαιο

Γεωργική Εκπαίδευση Ενότητα 9

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Διπλωματική Ιστορία Ενότητα 2η:

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Φ 619 Προβλήματα Βιοηθικής

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Συμπεριφορά Καταναλωτή

Εισαγωγή στους Αλγορίθμους

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Φ 619 Προβλήματα Βιοηθικής

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)

Μάρκετινγκ Εξαγωγών. Ενότητα 3 : Το Περιβάλλον και το Διεθνές Μάρκετινγκ Κοινωνικο-Πολιτιστικό Περιβάλλον

Διοικητική Λογιστική

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Μοντέρνα Θεωρία Ελέγχου

Οικονομετρία. Πολλαπλή Παλινδρόμηση. Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Διοίκηση Επιχειρήσεων

Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)

Διδακτική της Πληροφορικής

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 8: Αλλαγή μεταβλητών. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Εκκλησιαστικό Δίκαιο

Θέματα Αρμονικής Ανάλυσης

Επιμέλεια μεταφράσεων και εκδοτικός χώρος

Θέματα Αρμονικής Ανάλυσης

Συμπεριφορά Καταναλωτή

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Περιεχόμενα ενότητας 1. Κανόνας της αλυσίδας. 2. Παραδείγματα. 4

Σκοποί ενότητας Απόδειξη του κανόνα της αλυσίδας για διανυσματικές συναρτήσεις. 5

Πρόταση Κανόνας της αλυσίδας) 1) Παρουσιάζουμε τον υπολογισμό της παραγώγου της σύνθετης συνάρτησης που είναι γνωστός και ως κανόνας της αλυσίδας. Πρόταση: Έστω Α ανοικτό του, Β ανοικτό του και, διαφορίσιμες. Τότε και η σύνθετη συνάρτηση είναι διαφορίσιμη και ισχύει 6

Πρόταση Κανόνας της αλυσίδας) 2),1) όπου. Η σχέση 1) λέγεται «κανόνας της αλύσιδας». Προσοχή, στο δεύτερο μέλος της 1) έχουμε πολλαπλασιασμό πινάκων.πριν περάσουμε στην απόδειξη της Πρότασης θα κάνουμε ορισμένες παρατηρήσεις που θα βοηθήσουν στην κατανόηση της αλυσίδας. Ας θέσουμε,,,και ας γράψουμε την 1) αναλυτικά με πίνακες. Αν πολλαπλασιάσουμε τους πίνακες 7

Πρόταση Κανόνας της αλυσίδας) 3)! " " " #! $ $ " " % % $ $ % % & #..! #! 8

Πρόταση Κανόνας της αλυσίδας) 4) Τότε προκύπτει ότι ο κανόνας της αλυσίδας 1) για τις συνιστώσες συναρτήσεις ' της γράφεται ως εξής: ' ' * ' + * * ' ) ) + ) ) ' ) * ' + + ) * * ' ).-2/ Παρατηρούμε ότι στην 2) οι μεταβλητές ) σχηματίζουν τους κρίκους μιας αλυσίδας, εξ ού και η ονομασία «κανόνας της αλυσίδας». 9

Πρόταση Κανόνας της αλυσίδας) 5) Πολλές φορές και σε πολλά εγχειρίδια, ταυτίζουμε την με την -/πράγμα που δικαιολογείται από την σχέση ). Έτσι γράφουμε ' ) ' ) * ' + + ) * αντί του πιο τυπικού 2). * * ' ) 10

Παράδειγμα 1 1) Έστω, +, +, +, +, + 2 0 1 2 +, * + και, + log + * +, + * + 60. Αν, δηλαδή, + log 0 + 1+ 2 2 * + * + βρείτε την 0,1 χρησιμοποιώντας τον κανόνα της αλυσίδας. 11

Παράδειγμα 12) Κατόπιν επαληθεύστε το αποτέλεσμα κάνοντας κατευθείαν τον υπολογισμό. Λύση: Έχουμε από την αλυσίδα * + + * + + 2 2 1 + 0 1 2 * * + + 2. * + 12

Παράδειγμα 1 3) Τώρα αν, + 0,1,τότε, + 0 912,0*1 0,1 και συνεπώς 0,1 20 0 + *1 0*0 20+ 0 + *1. 13

Παράδειγμα 2 1) Έστω : + και ; +. Αν <,,= =,=, δείξτε ότι < *< =< =,-2/. Λύση: Είναι <,,= =,= >,> +, όπου > = > + =. Από τον κανόνα της αλυσίδας έχουμε 14

Παραδειγμα 2 2) και < < > > * < > + > + < =, > < < > > * < > + > + < =, > + < = < > > = * < > + > + = < > * < > +, και η 2) έπεται πολλαπλασιάζοντας τις τρείς παραπάνω σχέσεις με,και =αντίστοιχα. 15

Πρόταση 2 Για την απόδειξη του κανόνα της αλυσίδας χρειαζόμαστε την παρακάτω Πρόταση που έχει ενδιαφέρον αφ εαυτής. Πρόταση: Έστω Αανοικτό του και : μία διανυσματική συνάρτηση διαφορίσιμη στο 9. Τότε η είναι συνεχής στο 9 και επιπλέον υπάρχει θετική σταθερά Μ τέτοια ώστε: @ 9 AB @ 9 για κοντά στο 9. 16

Απόδειξη του κανόνα της αλυσίδας 1) Για 9, πρέπει να δείξουμε ότι @ 9 @ 9 9 @ 9 @ 9 D 0. Ξαναγράφουμε τον αριθμητή ως εξής: @ 9 @ 9 @ 9 * 9 @ 9 @ 9 9 @ 9 @ 9 @ 9 @ 9 * 9 E @ 9 @ 9 @ 9 F 17

Απόδειξη του κανόνα της αλυσίδας 2) Από την διαφορισιμότητα της έχουμε @ 9 @ 9 @ 9 AG @ 9. Κατόπιν, αφού και η g είναι διαφορίσιμη, από την προηγούμενη Πρόταση έπεται ότι @ 9 AB @ 9. Άρα @ 9 @ 9 @ 9 AGB @ 9 18

Απόδειξη του κανόνα της αλυσίδας 3) Τώρα, χρησιμοποιούμε πάλι την διαφορισιμότητα της f και έχουμε: 9 @ 9 @ 9 @ 9 AH I sup M'M M)M ' ) 9 N @ 9 @ 9 @ 9 N AB O @ 9 @ 9 @ 9. Τέλος, από την διαφορισιμότητα της g έχουμε ότι @ 9 @ 9 @ 9 AG @ 9 19

Απόδειξη του κανόνα της αλυσίδας 4) Βάζοντας μαζί τις παραπάνω σχέσεις προκύπτει @ 9 @ 9 9 @ 9 AGΜ @ 9 *B O G @ 9 G Μ*Μ @ 9 Από την οποία συμπεραίνουμε πως η είναι διαφορίσιμη και πως 20

Παραδείγματα 1) Θα δώσουμε τώρα ορισμένα κλασικά παραδείγματα του κανόνα της αλυσίδας. Είδαμε ήδη την περίπτωση της σύνθετης καμπύλης και πραγματικής συνάρτησης: αν η Q: R,S T T, + T,, T Είναι ; καμπύλη του και η : είναι διαφορίσιμη, τότε ο κανόνας της αλυσίδας δίνει την παράγωγο της Q ως ακολούθως 21

Παραδείγματα 2) VQ O T W Q WT Q T T T T * * Q T T Το δεύτερο ουσιαστικό παράδειγμα είναι, στην γενική του μορφή, το ακόλουθο X όπου Τ είναι ένας μετασχηματισμός, που συνήθως τον λέμε αλλαγήσυντεταγμένωνκαι είναι μια πραγματική συνάρτηση. T 22

Βιβλιογραφία 1. V. Guillemin, A. Pollack, Differential Topology, Prentice-Hall, Inc., New Jersey, 1974. 2. J. Marsden, A. Tromba, Διανυσματικός Λογισμός, Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, 2000. 3. J.-M. Monier, Analyse 4, Dunod, Paris, 2000. 4. M. Spivak, ΛογισμόςσεΠολλαπλότητες, Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, 1994. 5. Τ. Χατζηαφράτης, Απειροστικός Λογισμός σε Πολλές Μεταβλητές, Αθήνα, 1996. 23

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο, Μιχάλης Μαριάς. «. Κανόνας της αλυσίδας.». Έκδοση: 1.0. Θεσσαλονίκη 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.auth.gr/courses/ocrs289/.

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative CommonsΑναφορά -Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχοξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-sa/4.0/

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τέλος ενότητας Επεξεργασία: Αναστασία Γ. Γρηγοριάδου Θεσσαλονίκη, Χειμερινό Εξάμηνο 2014-2015