Φυσική για Μηχανικούς

Σχετικά έγγραφα
Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

1 η Ενότητα Κλασική Μηχανική

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

1 η Ενότητα Κλασική Μηχανική

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Κεφάλαιο 1. Κίνηση σε μία διάσταση

ΣΥΝΟΨΗ 1 ου Μαθήματος

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

Συστήματα συντεταγμένων

Φυσική για Μηχανικούς

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ. Ενότητα 2: Ταχύτητα - Επιτάχυνση

Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; O.T.

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

Φυσική για Μηχανικούς

ΠΕΡΙΛΗΨΗ ΘΕΩΡΙΑΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

Κεφάλαιο 3. Κίνηση σε δύο ή τρεις διαστάσεις

Φυσική για Μηχανικούς

Κεφάλαιο 3 Κίνηση σε 2 και 3 διαστάσεις, Διανύσµατα. Copyright 2009 Pearson Education, Inc.

ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)

Φυσική για Μηχανικούς

Κεφάλαιο M3. Διανύσµατα

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη

ΘΕΜΑ A: ΔΙΑΡΚΕΙΑ: 120min ΤΜΗΜΑ:. ONOMA:. ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις


ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη

Φυσική για Μηχανικούς

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

1. Εισαγωγή στην Κινητική

a x (t) = d dt u x(t) = d dt dt x(t) )

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η

2 ο Μάθημα Κίνηση στο επίπεδο

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.

Φυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β.

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

5 η Εβδομάδα Έργο και κινητική ενέργεια. Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Κεφάλαιο 2 Κίνηση σε μία διάσταση. Copyright 2009 Pearson Education, Inc.

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ. Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΜΑΤΙΚΗΣ

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

Κίνηση με σταθερή επιτάχυνση, α(t) =σταθ.

ΦΥΣΙΚΗ. Ενότητα 3: ΚΙΝΗΣΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z

Σημειώσεις Μαθηματικών 1

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. και η συνάρτηση f είναι παραγωγίσιμη στο x. την παράγωγο f' ( x. 0 ) (ή και στιγμιαίο ρυθμό μεταβολής).

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,,

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc.

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 13/10/2013

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6)

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Μαθηματικά Προσανατολισμού Β Λυκείου

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα

φυσική κεφ.2 ΚΙΝΗΣΕΙΣ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

Κίνηση σε δύο διαστάσεις

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

1.2 Συντεταγμένες στο Επίπεδο

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. ΘΕΜΑ 3 ο. ΘΕΜΑ 4 ο ΦΥΣΙΚΗ ΘΕΜΑΤΑ. 1. Να διατυπωθούν οι τρεις νόμοι του Νεύτωνα.

Η επιτάχυνση και ο ρόλος της.

Εφαρμοσμένα Μαθηματικά ΙΙ

ΣΗΜΕΙΩΣΕΙΣ 4. bt (γιατί;).

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ


ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ευθύγραμμη Κίνηση

Κίνηση σε μια διάσταση

Θέση-Μετατόπιση -ταχύτητα

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Με διάγραμμα :

Μηχανική - Ρευστομηχανική

ΣΥΝΟΨΗ 2 ου Μαθήματος

Φυσική για Μηχανικούς

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ

β. Το μέτρο της ταχύτητας u γ. Την οριζόντια απόσταση του σημείου όπου η μπίλια συναντά το έδαφος από την άκρη Ο του τραπεζιού.

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Transcript:

Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515 km/h, καλύπτοντας την απαιτούμενη απόσταση σε λιγότερο από 5 sec. (George Lepp/Stone/Getty Images) Κίνηση σε Μια Διάσταση Διανύσματα

Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515 km/h, καλύπτοντας την απαιτούμενη απόσταση σε λιγότερο από 5 sec. (George Lepp/Stone/Getty Images) Κίνηση σε Μια Διάσταση Διανύσματα

Κίνηση σε μια Διάσταση Μετατόπιση Μέση ταχύτητα Στιγμιαία ταχύτητα Δx = x f x i u x,avg Δx Δt = x f x i t f t i Δx u x lim Δt 0 Δt = dx dt Θέση σωματιδίου υπό σταθερή ταχύτητα x f = x i + u x t

Κίνηση σε μια Διάσταση Μέση επιτάχυνση a x,avg Δu x Δt = u xf u xi t f t i Στιγμιαία επιτάχυνση Αφού όμως είναι Δu x a x lim Δt 0 Δt = du x dt d dt u x = d dt a x = d2 x dt 2 dx dt

Κίνηση σε μια Διάσταση Ειδική περίπτωση: a x σταθερή Εξισώσεις Κίνησης υπό σταθερή επιτάχυνση: 1. u xf = u xi + a x t 2. u x,avg = u xi + u xf 2 3. x f = x i + 1 2 u xi + u xf t 4. x f = x i + u x,avg t 5. x f = x i + u xi t + 1 2 a xt 2 6. u 2 xf = u 2 xi + 2a x (x f x i )

Κίνηση σε μια Διάσταση Δεν είναι απαραίτητη η χρήση διανυσμάτων στην κίνηση αυτή Είδατε ότι το τυπολόγιο της κίνησης ήταν χωρίς διανύσματα Προσοχή στην ερμηνεία των αρνητικών μεγεθών! Υπενθυμίζεται η σύμβαση ότι : ορίζουμε ως θετική φορά αυτή προς τα δεξιά Αντίστοιχα, αρνητική προς τα αριστερά Ελεύθερη πτώση (κίνηση σε μια διάσταση κατακόρυφη) Επιτάχυνση βαρύτητας g Ίδια μεθοδολογία και εξισώσεις

Κίνηση σε μια Διάσταση Παράδειγμα Πετάμε μια μπάλα από την κορυφή ενός κτηρίου με αρχική ταχύτητα 20 m/s και φορά κατακόρυφα προς τα επάνω. Το ύψος του κτηρίου είναι 50 m. Α) Θεωρώντας ότι αρχίζουμε να μετράμε όταν η μπάλα φεύγει από τα χέρια μας, βρείτε το χρόνο που απαιτείται για να φτάσει στο μέγιστο ύψος. Β) Βρείτε αυτό το μέγιστο ύψος. Γ) Βρείτε την ταχύτητα της μπάλας όταν επιστρέφει στο ύψος που έφυγε από τα χέρια μας. Δ) Βρείτε την ταχύτητα και τη θέση της μπάλας όταν t = 5 s.

Κίνηση σε μια Διάσταση Παράδειγμα Λύση: Πετάμε μια μπάλα από την κορυφή ενός κτηρίου με αρχική ταχύτητα 20 m/s και φορά κατακόρυφα προς τα επάνω. Το ύψος του κτηρίου είναι 50 m. Α) Θεωρώντας ότι αρχίζουμε να μετράμε όταν η μπάλα φεύγει από τα χέρια μας, βρείτε το χρόνο που απαιτείται για να φτάσει στο μέγιστο ύψος.

Κίνηση σε μια Διάσταση Παράδειγμα Λύση: Πετάμε μια μπάλα από την κορυφή ενός κτηρίου με αρχική ταχύτητα 20 m/s και φορά κατακόρυφα προς τα επάνω. Το ύψος του κτηρίου είναι 50 m. Β) Βρείτε αυτό το μέγιστο ύψος.

Κίνηση σε μια Διάσταση Παράδειγμα Λύση: Πετάμε μια μπάλα από την κορυφή ενός κτηρίου με αρχική ταχύτητα 20 m/s και φορά κατακόρυφα προς τα επάνω. Το ύψος του κτηρίου είναι 50 m. Γ) Βρείτε την ταχύτητα της μπάλας όταν επιστρέφει στο ύψος που έφυγε από τα χέρια μας.

Κίνηση σε μια Διάσταση Παράδειγμα Λύση: Πετάμε μια μπάλα από την κορυφή ενός κτηρίου με αρχική ταχύτητα 20 m/s και φορά κατακόρυφα προς τα επάνω. Το ύψος του κτηρίου είναι 50 m. Δ) Βρείτε την ταχύτητα και τη θέση της μπάλας όταν t = 5 s.

Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του να το προσγειώσει με ασφάλεια. Ποσότητες που ορίζονται τόσο από το μέτρο τους όσο και από την κατεύθυνσή τους (όπως η ταχύτητα) λέγονται διανυσματικές ποσότητες. (Mark Wagner/Getty Images) Κίνηση σε Μια Διάσταση Διανύσματα

Διανύσματα Στην κίνηση στο επίπεδο, τα διανύσματα είναι απαραίτητα! Διάνυσμα ΟΑ: προσανατολισμένο ευθύγραμμο τμήμα Μέτρο Διεύθυνση Φορά Καρτεσιανές συντεταγμένες x τετμημένη y τεταγμένη

Διανύσματα Πολική μορφή x = rcos θ, y = rsin θ όπου r = x 2 + y 2 θ = tan 1 y x Παράδειγμα: Βρείτε την πολική μορφή του διανύσματος με συντεταγμένες (x,y) = (1,1) και ύστερα αυτού με συντεταγμένες (x,y)=(-1, -1).

Διανύσματα Ιδιότητες διανυσμάτων Ισότητα διανυσμάτων Ίδιο μέτρο και κατεύθυνση Πρόσθεση διανυσμάτων

Διανύσματα Ιδιότητες Αντιμεταθετικότητα Α + Β = Β + Α Προσεταιριστικότητα A + B + C = A + B + C

Διανύσματα Αρνητικό διάνυσμα ενός διανύσματος Α Ορίζεται ως το διάνυσμα εκείνο που όταν προστεθεί στο Α, μας δίνει το μηδενικό διάνυσμα, δηλ. Α + Α = 0 Παράδειγμα: Πρόσθεση

Διανύσματα Πολλαπλασιασμός διανύσματος με αριθμό Το διάνυσμα διατηρεί τη διεύθυνση, αλλά αλλάζει (πιθανώς) η φορά, και το μέτρο του B = m A, m R B = m A B A, αν m > 0 B A, αν m < 0

Διανύσματα Η γραφική μέθοδος είναι βολική για απλά ή διαισθητικά προβλήματα Για μεγαλύτερη ακρίβεια, προτιμούμε την ανάλυση σε συνιστώσες (μια κάθετη και μια παράλληλη στον x-άξονα)

Διανύσματα Πολική μορφή A x = Acos θ, A y = Asin θ Α = A x 2 + A y 2, θ = tan 1 A y A x Προσοχή στον υπολογισμό της γωνίας θ!

Διανύσματα Πολλές φορές εκφράζουμε σύνθετα διανύσματα με όρους μοναδιαίων διανυσμάτων Μοναδιαία διανύσματα ι, j, k Έχουν μέτρο 1 (μονάδα) Δίνουν διεύθυνση i x, j y, k z Κάθετα μεταξύ τους i j, j k, i k

Διανύσματα Το διάνυσμα Α μπορεί να γραφεί ως Α = Α x i + A y j με χρήση των μοναδιαίων διανυσμάτων Διάνυσμα θέσης Σημείο Α(x,y) r = x i + y j Οι συνιστώσες του r είναι οι x i, y j.

Διανύσματα R = Α + Β R = A x i + A y j + B x i + B y j R = A x + B x i + A y + B y j με R x = A x + B x R y = A y + B y Πρόσθεση όλων των x-συνιστωσών και όλων των y-συνιστωσών R = R x 2 + R y 2 = A x + B x 2 + (A y + B y ) 2 tan θ = R y R x = A y+b y A x +B x

Διανύσματα Προσθήκη περισσότερων διαστάσεων Α = Α x i + A y j + Α z k Όμοια ακριβώς συλλογιστική!

Τέλος Διάλεξης