Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72

Σχετικά έγγραφα
Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

Αριθµητική Ανάλυση. Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Γραµµική Αλγεβρα

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

ΜΕΜ251 Αριθμητική Ανάλυση

Επαναληπτικές μέθοδοι για την επίλυση γραμμικών συστημάτων. Μιχάλης Δρακόπουλος

Επίλυση Γραµµικών Συστηµάτων

Επιστηµονικοί Υπολογισµοί Μέθοδοι µεταβλητής παρεκτροπής (Variable Extrapolation)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί Υπολογισµοί)

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

Αριθμητική Ανάλυση και Εφαρμογές

Αριθµητική Ανάλυση. Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

2η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 3 (Θεωρία-Αλγόριθµοι-Εφαρµογές)

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

Αριθµητική Ανάλυση. Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

15 εκεµβρίου εκεµβρίου / 64

Επιστηµονικός Υπολογισµός ΙΙ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

3. Γραμμικά Συστήματα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Ιδιοτιμές & Ιδιοδιανύσματα Επαναληπτικές Μέθοδοι

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ

Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα)

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

1 Ορισµός ακολουθίας πραγµατικών αριθµών

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

β) Με τη βοήθεια του αποτελέσµατος της απαλοιφής υπολογίστε την ορίζουσα του πίνακα του συστήµατος. x x = x

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Ειδικά θέματα στην επίλυση

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι ( )

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Ακουλουθίες ρ. Κωνσταντίνα Παναγιωτίδου

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

2.1 Αριθμητική επίλυση εξισώσεων

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:

Αριθµητική Ανάλυση ΕΚΠΑ. 18 Απριλίου 2019

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Μάθημα Επιλογής 8 ου εξαμήνου

Αριθµητική Ανάλυση ΕΚΠΑ. 11 Μαΐου 2016

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Παρεµβολή και Προσέγγιση Συναρτήσεων

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΜΕΜ251 Αριθμητική Ανάλυση

ΣΗΜΕΙΩΣΕΙΣ ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΚΑΘΗΓΗΤΗΣ: ΝΙΚΟΛΑΟΣ ΜΙΣΥΡΛΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

4 Συνέχεια συνάρτησης

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Αριθµητικές Μέθοδοι και Προγραµµατισµός Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί)

Ορίζουσες ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Προηγείται της Γραµµικής Αλγεβρας. Εχει ενδιαφέρουσα γεωµετρική ερµηνεία. ΛΥ.

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Επιστηµονικός Υπολογισµός Ι

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Πεπερασμένες Διαφορές.

Υπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο.

Transcript:

Αριθµητική Ανάλυση 7 Οκτωβρίου 06 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7

Επαναληπτικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων ίνεται το γραµµικό σύστηµα Ax = b όπου A R n n είναι µη ιδιάζων πίνακας και x, b R n. Επαναληπτικές Μέθοδοι Οι επαναληπτικές µέθοδοι χρησιµοποιούνται όταν ο πίνακας A είναι : Μεγάλης τάξης ( 0 0 6 ) Αραιός Συγκεκριµένης δοµής Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7

Βασικές Επαναληπτικές Μέθοδοι Ax = b x = Gx + c R Ax = R b Ορίζουµε την επαναληπτική µέθοδο x = x + τ R (b Ax) x (k+) = x (k) + τ R (b Ax (k) ), k = 0,,, x (k+) = (I τ R A)x }{{} (k) + τ } R {{ b } G τ c τ x (k+) = G }{{} τ x (k) + c τ επαναλ. πίνακας Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7

Γραµµική στατική Επαναληπτική µέθοδος ου ϐαθµού Για τ = x (k+) = Gx (k) + c, k = 0,,, () όπου G = I R A και c = R b x (0) αυθαίρετο, x (), x (), x (), Αριθµητική Ανάλυση 7 Οκτωβρίου 06 4 / 7

Σύγκλιση της Επαναληπτικής Μεθόδου Θεώρηµα 4.. Η επαναληπτική µέθοδος x (k+) = Gx (k) + c, k = 0,,, συγκλίνει αν και µόνον αν ρ(g) < () όπου ρ(g) = max λ i, η ϕασµατική ακτίνα i λ i ιδιοτιµές του G Αριθµητική Ανάλυση 7 Οκτωβρίου 06 5 / 7

Απόδειξη Εστω x το όριο της ακολουθίας x (k), k = 0,,,... και e (k) το διάνυσµα του σφάλµατος στην k επανάληψη Αφού προκύπτει ότι e (k) = x (k) x x = Gx + c x (k+) x = G (x (k) x) }{{}}{{} e (k+) e (k) e (k+) = Ge (k) = G e (k ) = = G k+ e (0) e (k) = G k e (0) () Αρα lim k x(k) = x αν και µόνο αν lim k e(k) = 0 ή λόγω της () αν lim k (Gk e (0) ) = 0 για κάθε αυθαίρετο e (0). Αριθµητική Ανάλυση 7 Οκτωβρίου 06 6 / 7

..Απόδειξη Συνεπώς από προηγούµενο ϑεώρηµα έχουµε ότι αναγκαία συνθήκη για να ισχύει lim k G k = 0 είναι η ρ(g) <. Αν τώρα υποθέσουµε ότι ρ(g) <, τότε ο I G είναι µη ιδιάζων και το σύστηµα (I G)x = k έχει µία και µοναδική λύση. Αν όµως ρ(g) < τότε lim G k = 0 ή k lim G k = 0. k Επειδή G k e (0) G k e (0) συνεπάγεται ότι lim G k e (0) = 0, οπότε k από την () προκύπτει ότι lim e (k) = 0 ή lim x (k) = x, k k δηλαδή ότι η ε.µ. () συγκλίνει. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 7 / 7

Σύγκλιση της ε.µ. Ικανή και αναγκαία συνθήκη : ρ(g) < Ικανή συνθήκη : G α < Αριθµητική Ανάλυση 7 Οκτωβρίου 06 8 / 7

Κριτήριο διακοπής της σύγκλισης k επανάληψη x (k) = x (k) x (k) x (k). x (k) n k + επανάληψη x (k+) x (k+) x (k+). x (k+) n = x (k+) x (k+) x (k) α < ɛ, ɛ = 0 d ή όπου α = ή ή. x (k+) x (k) α x (k+) α < ɛ, ɛ = 0 d Αριθµητική Ανάλυση 7 Οκτωβρίου 06 9 / 7

Ταχύτητα σύγκλισης µιας επαναληπτικής µεθόδου Στην πράξη εκτός από την εξασφάλιση της σύγκλισης µιας ε.µ., µας ενδιαφέρει η ταχύτητα µε την οποία συγκλίνει η µέθοδος που χρησιµοποιούµε. Με άλλα λόγια επιθυµούµε να µελετήσουµε την ταχύτητα µε την οποία e (k) 0 για k. Από την () έχουµε ότι αν x (0) x, τότε e (k) e (0) Gk. (4) Ετσι η G k δίνει το µέγεθος µε το οποίο η norm του σφάλµατος έχει ελαττωθεί σε ένα κλάσµα έστω ϱ της e (0). Η ελάττωση αυτή µπορεί να επιτευχθεί αν διαλέξουµε το k έτσι ώστε G k ϱ. (5) Αριθµητική Ανάλυση 7 Οκτωβρίου 06 0 / 7

Μέση ταχύτητα σύγλισης Για όλα λοιπόν τα αρκετά µεγάλα k ώστε G k η παραπάνω ανισότητα είναι ισοδύναµη µε την log ϱ k k log Gk (6) όπου ξ συµβολίζει τον ελάχιστο ακέραιο µεγαλύτερο του ξ. Η (6) δίνει τον ελάχιστο αριθµό επαναλήψεων για τη σύγκλιση της () Παρατηρούµε ότι ο αριθµός αυτός είναι αντιστρόφως ανάλογος προς την ποσότητα ( k log Gk ). Ετσι οδηγούµαστε στον ορισµό της µέσης ταχύτητας σύγκλισης που είναι η ποσότητα R k (G) = k log Gk. (7) Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7

Ασυµπτωτική ταχύτητα σύγλισης Ορίζουµε ως ασυµπτωτική ταχύτητα σύγκλισης ή ταχύτητα σύγκλισης, την ποσότητα R(G) = lim R k (G) = logρ(g) (8) k καθόσον µπορεί να αποδειχθεί ότι ρ(g) = lim k ( G k k ). Για µια (όχι και τόσο καλή) προσέγγιση του αριθµού των επαναλήψεων που χρειάζεται η () για να συγκλίνει χρησιµοποιείται, σύµφωνα µε την (6), ο τύπος k logρ R(G). (9) Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7

Συµπέρασµα Από τον ανωτέρω τύπο και την (8) συµπεραίνουµε ότι όσο µικρότερη είναι η ϕασµατική ακτίνα του επαναληπτικού πίνακα G τόσο ταχύτερα ϑα συγκλίνει ασυµπτωτικά η επαναληπτική µέθοδος. Ωστόσο για να εκτιµήσουµε την αποτελεσµατικότητα µιας επαναληπτικής µεθόδου ϑα πρέπει να λαβουµε υπόψη τόσο την ταχύτητα σύγκλισής της όσο και την υπολογιστική πολυπλοκότητα που απαιτεί η κάθε επανάληψη. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7

Βασική διάσπαση του πίνακα A A = D C L C U D = a a 0 a 0 a nn 0 a 0 0 C L = a a 0 0... a n a n a n... a n,n 0 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 4 / 7

Βασική διάσπαση του πίνακα A A = D C L C U 0 a 0 0 C L = a a 0 0... a n a n a n... a n,n 0 C U = 0 a a a n 0 a a n 0 a n 0... an,n 0 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 5 / 7

Χρήσιµες µορφές πολλαπλασιασµού πίνακα µε διάνυσµα στους τύπους των επαναληπτικών µεθόδων (D x) i = a ii x i, i =,,, n Θέτουµε και τότε έχουµε i (C L x) i = a ij x j, j= n (C U x) i = a ij x j, j=i+ L = D C L U = D C U i =,,, n i =,,, n Αριθµητική Ανάλυση 7 Οκτωβρίου 06 6 / 7

Χρήσιµες µορφές πολλαπλασιασµού πίνακα µε διάνυσµα στους τύπους των επαναληπτικών µεθόδων Θέτουµε και τότε έχουµε L = D C L U = D C U (D x) i = a ii x i, i =,,, n i a ij (L x) i = x j, a ii (U x) i = j= n j=i+ a ij a ii x j, i =,,, n i =,,, n Αριθµητική Ανάλυση 7 Οκτωβρίου 06 7 / 7

Βασικές Επαναληπτικές Μέθοδοι Ορίζουµε την επαναληπτική µέθοδο x (k+) = x (k) + τ R (b Ax (k) ), k = 0,,, (0) x (k+) = (I τ R A)x }{{} (k) + τ } R {{ b } () G τ c τ x (k+) = G }{{} τ x (k) + c τ () επαναλ. πίνακας Αριθµητική Ανάλυση 7 Οκτωβρίου 06 8 / 7

Θεώρηµα 4.. Αν οι ιδιοτιµές r i, i =,,..., n του πίνακα R A είναι πραγµατικές το επαναληπτικό σχήµα () συγκλίνει αν και µόνον αν r > 0 και 0 < τ < /r n () ή r n < 0 και /r < τ < 0. (4) Αριθµητική Ανάλυση 7 Οκτωβρίου 06 9 / 7

Απόδειξη Λόγω της () οι ιδιοτιµές λ i, i =,,..., n του G τ και εκείνες του R A ικανοποιούν τη σχέση λ i = τ r i, i =,,..., n. (5) Ικανή και αναγκαία συνθήκη για τη σύγκλιση της () είναι η ή ρ(g τ ) < (6) max λ i = max τ r i < (7) i n i n από την οποία εύκολα προκύπτουν οι () και (4). Αριθµητική Ανάλυση 7 Οκτωβρίου 06 0 / 7

Παρατήρηση Ενώ το επαναληπτικό σχήµα x (k+) = G τ x (k) + c τ συγκλίνει αν ισχύουν µία από τις (), (4), η ϐασική µέθοδος x (k+) = Gx (k) + c µπορεί να αποκλίνει καθόσον είναι δυνατό ρ(g) >. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7

Θεώρηµα 4.. Αν οι ιδιοτιµές του πίνακα R A είναι πραγµατικές και το επαναληπτικό σχήµα () συγκλίνει, τότε για τ = τ 0 = r + r n (8) η ρ(g τ ) γίνεται ελάχιστη και η αντίστοιχη τιµή της δίνεται από τον τύπο ρ(g τ0 ) = k(r A) + k(r A) (9) όπου k(r A) = r n /r. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7

Παρατήρηση Από την (9) παρατηρούµε ότι ο πίνακας R ϑα πρέπει να εκλεγεί τέτοιος ώστε k(r A) k(a) καθόσον η ποσότητα ρ(g τ0 ) είναι µια αύξουσα συνάρτηση του k(r A) όταν r > 0 ( ανάλογη παρατήρηση ισχύει αν r n < 0). Με άλλα λόγια για επιπλέον ελαχιστοποίηση της ρ(g τ0 ) ϑα πρέπει να ελαχιστοποιηθεί η ποσότητα k(r A). Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7

Θεώρηµα 4.. Αν οι ιδιοτιµές r i, i =,,..., n του πίνακα R A είναι πραγµατικές το επαναληπτικό σχήµα x (k+) = Gx (k) + c (0) συγκλίνει αν και µόνον αν 0 < r και r n <. () Επιπλέον, ρ(g) = { r, αν r n r n, αν r. () Αριθµητική Ανάλυση 7 Οκτωβρίου 06 4 / 7

Παρατήρηση Για τη σύγκλιση της (0) ϑα πρέπει να ισχύει η επιπλέον συνθήκη r n < σε σχέση µε τη σύγκλιση της (). Επίσης είναι εύκολο να αποδειχθεί ότι ρ(g τ0 ) ρ(g) () πράγµα που σηµαίνει ότι η () ϑα έχει µεγαλύτερη ταχύτητα σύγκλισης από την (0) γι αυτό και ϑα αναφέρεται σαν η επιταχυντική µορφή της (0). Αριθµητική Ανάλυση 7 Οκτωβρίου 06 5 / 7

Επιλογή του πίνακα R Στη συνέχεια ο πίνακας R ϑα λάβει διάφορες µορφές και ϑα σχηµατίσουµε από την () τις αντίστοιχες επαναληπτικές µεθόδους. Ο πίνακας Α αναλύεται σαν A = D C L C U (4) όπου ο D είναι ένας διαγώνιος πίνακας του οποίου τα στοιχεία είναι τα ίδια µε τα διαγώνια στοιχεία του A και οι πίνακες C L, C U είναι τα αυστηρά κάτω και άνω τριγωνικά µέρη του Α, αντίστοιχα. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 6 / 7

Επαναληπτική µέθοδος Επιταχυντική Jacobi (Jacobi Overrelaxation (JOR)) x (k+) = x (k) + τ R (b Ax (k) ), k = 0,,, (5) Αν στην (5) διαλέξουµε τον R έτσι ώστε R = D τότε προκύπτει ή Αναλύοντας περισσότερο την (7) λαµβάνουµε x (k+) = (I τ D A }{{} )x (k) + τ D b }{{} (6) B τ c τ x (k+) = B τ x (k) + c τ, k = 0,,, (7) x (k+) = [( τ)i + τb]x (k) + τ c, (8) όπου B = L + U, L = D C L, U = D C U και c = D b. (9) Αριθµητική Ανάλυση 7 Οκτωβρίου 06 7 / 7

Επαναληπτική µέθοδος Jacobi(J) Αν τ = τότε προκύπτει η ε.µ Jacobi η οποία γράφεται: όπου x (k+) = Bx (k) + c, m = 0,,, B = I D A = I D (D C L C U ) = D C }{{} L + D C U = L + U }{{} L U είναι ο επαναληπτικός πίνακας της ε.µ. Jacobi. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 8 / 7

Σύγκλιση της ε.µ. (J) Ικανή και αναγκαία συνθήκη : Ικανή συνθήκη : Επειδή Η ε.µ. (J) συγκλίνει αν ισχύει max i=()n n j = }{{} j i ρ(b) < ρ(b) B = max a ij a ii < ή a ii i=()n n j = }{{} j i n a ij a ii j = }{{} j i a ij <, για κάθε i Αριθµητική Ανάλυση 7 Οκτωβρίου 06 9 / 7

Σύγκλιση της ε.µ. (J) Αυστηρά διαγωνίως υπερτερών πίνακας αν ισχύει a ii > n j = }{{} j i a ij, για κάθε i τότε ο πίνακας A λέγεται αυστηρά διαγωνίως υπερτερών (α.δ.υ). Αρα αν ο A είναι α.δ.υ. τότε ισχύει δηλ. η ε.µ. J συγκλίνει. ρ(b) B < Αριθµητική Ανάλυση 7 Οκτωβρίου 06 0 / 7

Επαναληπτική µέθοδος Jacobi(J) Υπό µορφή πινάκων : Υπό µορφή συνιστωσών : x (k+) i x (k+) = (L + U)x (k) + c, k = 0,,, x (k) x (k+) x (k) x (k+) x (k) = i = j= x (k). x (k) i x (k) i x (k) i+. x (k) n a ij x (k) j a ii n j=i+ x (k+). x (k+) i x (k+) i x (k+) i+. x (k+) n = x (k+) a ij x (k) j + bi, i = ()n a ii a ii Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7

Επαναληπτική µέθοδος (J) Παράδειγµα ίνεται το γραµµικό σύστηµα x x = x +x x = 0 x +x = Να δειχθεί ότι η µέθοδος του Jacobi συγκλίνει και να ϐρεθούν οι τρείς πρώτες επαναλήψεις, αν x (0) = (, 0, ). Λύση Ο επαναληπτικός πίνακας της µεθόδου Jacobi είναι ο 0 B = I D A = L + U = 0 0 0 0 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7

Επαναληπτική µέθοδος (J) Επίσης B = B =. Οι ιδιοτιµές του Β είναι 0, και -, εποµένως ρ(b) = < x (k+) = ( + x(k) ) x (k+) = (x(k) + x (k) ), k = 0,,... x (k+) = ( + x(k) ). Για x (0) = (, 0, ) T, δηλαδή για x (0) =, x (0) = 0 και x (0) = έχουµε k = 0 x () = ( + x(0) ) = ( + 0) = x () = (x(0) + x (0) ) = ( + ) = x () = ( + x(0) ) = ( + 0) = Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7

Επαναληπτική µέθοδος (J) k = k = x () = ( + x() ) = ( + ) = x () = (x() + x () ) = ( + ) = x () = ( + x() ) = ( + ) = x () = ( + x() ) = ( + ) = 4 x () = (x() + x () ) = ( + ) = x () = ( + x() ) = ( + ) = 4. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 4 / 7

Αλγόριθµος της ε.µ Jacobi(J). ιάβασε n, ɛ, maxiter. Για i = ()n επανάλαβε ιάβασε x0 i ιάβασε b i για j = ()n επανάλαβε ιάβασε a ij. itcount = 0 4. Οσο ισχύει itcount maxiter επανάλαβε 4. Για i = ()n επανάλαβε i x i = j= a ij a ii x0 j n j=i+ a ij a ii x0 j + bi a ii 4. itcount = itcount + 4. Αν x x0 < ɛ τότε Για i = ()n επανάλαβε Τύπωσε x i Τέλος. 4.4 Για i = ()n επανάλαβε x0 i = x i 5. Τύπωσε( Οχι σύγκλιση µετά από maxiter επαναλήψεις ) 6. Τέλος Αριθµητική Ανάλυση 7 Οκτωβρίου 06 5 / 7

Υπολογιστική πολυπλοκότητα του αλγορίθµου της ε.µ (J) 4. Για i = ()n επανάλαβε i a ij n x i = x0 j a ii j= j=i+ a ij a ii x0 j + b i a ii A πυκνός Στην κάθε επανάληψη απαιτούνται ιαιρέσεις : [(i ) + (n i) + ] n = n Πολλαπλασιασµοί : [(i ) + (n i)] n = n(n ) Προσθαφαιρέσεις : n(n ) Αν υποθέσουµε ότι απαιτούνται k επαναλήψεις για τη σύγκλιση της µεθόδου J, τότε έχουµε συνολικά : ιαιρέσεις : kn Πολλαπλασιασµοί : kn(n ) = kn kn Προσθαφαιρέσεις : kn(n ) = kn kn Αριθµητική Ανάλυση 7 Οκτωβρίου 06 6 / 7

Επαναληπτική µέθοδος Επιταχυντική Gauss-Seidel (EGS) x (k+) = x (k) + τ R (b Ax (k) ), k = 0,,, (0) Αν διαλέξουµε τον R έτσι ώστε R = D C L () τότε προκύπτει x (k+) = x (k) + τ(i L) D (b Ax (k) ) () ή x (k+) = L τ,x (k) + τ(i L) c () όπου L τ, = I τ(i L) D A και c = D b. (4) Εκφράζοντας τον L τ, σε όρους των L και U έχουµε Οπότε έχουµε L τ, = I τ(i L) (I L U) = ( τ)i + τ(i L) U. (5) x (k+) = ( τ)x (k) + L x (k+) + (τ ) L x (k) + τ U x (k) + τ c. (6) Η ανωτέρω µέθοδος καλείται Επιταχυντική Gauss-Seidel(EGS) και για τ = προκύπτει η γνωστή µέθοδος Gauss-Seidel(GS) Αριθµητική Ανάλυση 7 Οκτωβρίου 06 7 / 7

Επαναληπτική µέθοδος Gauss-Seidel (GS) Υπό µορφή πινάκων : Υπό µορφή συνιστωσών : x (k+) = (I L) U x (k) + c, k = 0,,, }{{} L x (k+) = Lx (k+) + Ux (k) + c, k = 0,,, x (k) x (k+) x (k) x (k+) x (k+) i x (k) = i = j= x (k). x (k) i x (k) i x (k) i+. x (k) n a ij x (k+) j a ii n x (k+). x (k+) i x (k+) i x (k+) i+. x (k+) n = x (k+) a ij x (k) j + bi, a ii a ii i = ()n j=i+ Αριθµητική Ανάλυση 7 Οκτωβρίου 06 8 / 7

Σύγκλιση της ε.µ. Gauss-Seidel Ικανή και αναγκαία συνθήκη : ρ(l ) < Ικανή συνθήκη : Αν ο A είναι α.δ.υ. τότε ισχύει L < δηλ. η ε.µ. GS συγκλίνει. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 9 / 7

Επαναληπτική µέθοδος Gauss-Seidel(GS) Για τ = προκύπτει ο τύπος της ε.µ GS όπου c = D b. x (k+) = L x (k+) + U x (k) + c, (7) Επαν. µέθοδοι EGS και GS υπό µορφή συνιστωσών EGS i x (k+) i = j= ^a ijx (k+) j GS για τ = προκύπτει +( τ)x (k) i i +(τ )( i x (k+) i = ^a ijx (k+) j + j= j= ν j=i+ ^a ijx (k) j )+τ( ν j=i+ ^a ijx (k) j )+τ ^b i, i = ()n (8) ^a ijx (k) j + ^b i, i = ()n. (9) όπου ^a ij = aij a ii και ^b i = bi a ii. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 40 / 7

Παρατηρήσεις Για την ύπαρξη των δύο ανωτέρω µεθόδων ϑα πρέπει να υπάρχει ο (D C L ) ή det(d C L ) = detd 0 πράγµα που ισχύει αν όλα τα διαγώνια στοιχεία του Α είναι διάφορα του µηδενός. Παρατηρούµε ότι στις ε.µ. EGS και GS οι αριθµητικές πράξεις επηρεάζονται αν εναλλάξουµε τη σειρά των εξισώσεων του συστήµατός µας. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 4 / 7

Επαναληπτική µέθοδος Gauss-Seidel (GS) Παράδειγµα ίνεται το γραµµικό σύστηµα x x = x +x x = 0 x +x = Να δειχθεί ότι η µέθοδος του GS συγκλίνει και να ϐρεθούν οι τρείς πρώτες επαναλήψεις, αν x (0) = (, 0, ). Λύση Ο επαναληπτικός πίνακας της µεθόδου GS είναι ο L = (I L) U = 0 0 0 0 0 0 0 0 0 0 0. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 4 / 7

Επαναληπτική µέθοδος Gauss-Seidel (GS) Από τη σχέση (I L)X = I υπολογίζεται εύκολα ο (I L). Εποµένως L = 0 0 0 4 0 0 0 0 0 = 0 0 0 0 0 0 4 8 4 Οι ιδιοτιµές του L είναι οι 0, 0, / εποµένως ρ(l ) = / < που αποδεικνύει ότι η GS συγκλίνει. Παρατηρούµε ότι ρ(l ) = [ρ(b)] για το παρόν παράδειγµα.. x (k+) = ( + x(k) ) x (k+) = (x(k+) + x (k) ), k = 0,,... x (k+) = ( + x(k+) ). Αριθµητική Ανάλυση 7 Οκτωβρίου 06 4 / 7

Επαναληπτική µέθοδος Gauss-Seidel (GS) Για x (0) = (, 0, ) T, δηλαδή για x (0) =, x (0) = 0 και x (0) =, έχουµε k = 0 k = x () = ( + x(0) ) = ( + 0) = x () = (x() + x (0) ) = ( + ) = 4 x () = ( + x() ) = ( + 4 ) = 7 8 x () = ( + x() ) = ( + 4 ) = 7 8 x () = (x() + x () ) = (7 8 + 7 8 ) = 7 8 x () = ( + x() ) = ( + 7 8 ) = 5 6 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 44 / 7

Επαναληπτική µέθοδος Gauss-Seidel (GS) k = Παρατήρηση x () = ( + x() ) = ( + 7 8 ) = 5 6 x () = (x() + x () ) = (5 6 + 5 6 ) = 5 6 x () = ( + x() ) = 5 ( + 6 ) =. Η µέθοδος GS συγκλίνει πολύ γρηγορότερα από τη µέθοδο Jacobi προς την ακριβή λύση (,, ) T του συστήµατος. Αυτό αναµενόταν αφού R(L ) = R(B). Αριθµητική Ανάλυση 7 Οκτωβρίου 06 45 / 7

Αλγόριθµος της ε.µ Gauss-Seidel(GS). ιάβασε n, ɛ, maxiter. Για i = ()n επανάλαβε για j = ()n επανάλαβε ιάβασε a ij ιάβασε b i ιάβασε x0 i. itcount = 0 4. Οσο ισχύει itcount maxiter επανάλαβε 4. Για i = ()n επανάλαβε i x i = j= a ij a ii x j n j=i+ a ij a ii x0 j + bi a ii 4. itcount = itcount + 4. Αν x x0 < ɛ τότε Για i = ()n επανάλαβε Τύπωσε x i Τέλος. 4.4 Για i = ()n επανάλαβε x0 i = x i 5. Τύπωσε( Οχι σύγκλιση µετά από maxiter επαναλήψεις ) 6. Τέλος Αριθµητική Ανάλυση 7 Οκτωβρίου 06 46 / 7

Επαναληπτική Επιταχυντική µέθοδος της ιαδοχικής Υπερµείωσης (Extrapolated Successive Overrelaxation (ESOR)) x (k+) = x (k) + τ R (b Ax (k) ), k = 0,,, (40) Είναι δυνατόν να ϐρεθούν δύο άλλες µέθοδοι αν εισάγουµε µία παράµετρο στη µορφή του R. Ετσι αν ϑέσουµε R = D ωc L (4) στην (40), όπου ω είναι ένας πραγµατικός αριθµός του οποίου ο ϱόλος στη ϕάση αυτή είναι να διαταράξει τον R έτσι ώστε να προσεγγίζει καλύτερα τον Α τότε έχουµε x (k+) = x (k) + τ(i ωl) D (b Ax (k) ), k = 0,,... (4) ή όπου x (k+) = L τ,ω x (k) + τ(i ωl) c (4) L τ,ω = I τ(i ωl) D A. (44) Αριθµητική Ανάλυση 7 Οκτωβρίου 06 47 / 7

Επαναληπτική Επιταχυντική µέθοδος της ιαδοχικής Υπερµείωσης (Extrapolated Successive Overrelaxation (ESOR)) Προκειµένου να ϐρούµε την εξίσωση των συνιστωσών η (4) µπορεί να γραφτεί σαν x (k+) = ( τ)x (k) + ωlx (k+) + (τ ω)lx (k) + τ Ux (k) + τ c (45) οπότε έχουµε x (k+) i = ( τ)x (k) i +τ i + ω ^a ij x (k+) i j + (τ ω) n j=i+ j= j= ^a ij x (k) j ^a ij x (k) j + τ ^b i, i =,,..., n. (46) Κατά την υλοποίηση της ESOR είναι δυνατόν να γίνει εξοικονόµηση των υπολογισµών αν αποθηκευτεί η ποσότητα Lx (k) προκειµένου να χρησιµοποιηθεί στην επόµενη επανάληψη. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 48 / 7

Επαναληπτική µέθοδος της ιαδοχικής Υπερµείωσης (Successive Overrelaxation (SOR) ) Αν ϑέσουµε τ = ω στην ESOR λαµβάνουµε τη δηµοφιλή Successive Overrelaxation(SOR) µέθοδο, η οποία δίνεται διαδοχικά από τους τύπους x (k+) = x (k) + ω(i ωl) D (b Ax (k) ) (47) x (k+) = L ω x (k) + ω(i ωl) c (48) όπου ή L ω = I ω(i ωl) D A. (49) L ω = (I ωl) [( ω)i + ωu] είναι ο επαναληπτικός πίνακας της ε.µ. SOR. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 49 / 7

Επαναληπτική µέθοδος ( Successive Overrelaxation (SOR)) Επίσης η SOR γράφεται και σαν x (k+) = (I ωl) [( ω)i + ωu]x (k) + ω(i ωl) c (50) ή x (k+) = ( ω)x (k) + ω[lx (k+) + Ux (k) + c]. (5) Παρατηρήστε ότι η ποσότητα της αγκύλης είναι η GS µέθοδος, συνεπώς η (5) λαµβάνει τη µορφή x (k+) = ( ω)x (k) + ωx (k+) GS (5) όπου x (k+) GS συµβολίζει την k + επανάληψη της GS µεθόδου. Η (5) υπήρξε η αφετηρία της ανακάλυψης της SOR µεθόδου. Τέλος, υπό µορφή συνιστωσών η SOR δίνεται από τους τύπους x (k+) i = ( ω)x (k) i i + ω j= ^a ij x (k+) j + ω n j=i+ ^a ij x (k) j + ω^b i, i =,,..., n. (5) Αριθµητική Ανάλυση 7 Οκτωβρίου 06 50 / 7

Σύγκλιση της ε.µ. SOR Αν λ i είναι οι ιδιοτιµές του L ω, τότε det(l ω) = n λ i i= Αλλά det(l ω) = det { (I ωl) [( ω)i + ωu] } det { (I ωl) } det {( ω)i + ωu} = ( ω) n = ( ω) n Αρα n n [ρ(l ω)] n λ i = λ i = ( ω) n = ω n i= i= ω ρ(l ω) Αριθµητική Ανάλυση 7 Οκτωβρίου 06 5 / 7

Σύγκλιση της ε.µ. SOR Για να συγκλίνει η ε.µ. SOR ϑα πρέπει να ισχύει ρ(l ω ) < Αρα ή ω < 0 < ω < Εποµένως, αν η ε.µ. SOR συγκλίνει τότε 0 < ω <. Η ϐέλτιστη τιµή ω b της παραµέτρου ω προσδιορίζεται έτσι ώστε να ελαχιστοποιείται η ϕασµατική ακτίνα ρ(l ω ) του επαναληπτικού πίνακα της ε.µ. SOR. Η µελέτη της ρ(l ω ) σαν συνάρτηση της ω ϕαίνεται στο ακόλουθο σχήµα. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 5 / 7

Μελέτη της ϕασµατικής ακτίνας ρ(l ω ) S(L ω).0 (, ) (, µ ) (ω b, ω b ).0 ω b.0 ω ω b = + ρ(b), ρ(l ω b ) = ω b Αριθµητική Ανάλυση 7 Οκτωβρίου 06 5 / 7

Επαναληπτική µέθοδος SOR Υπό µορφή πινάκων ή x (k+) = ( ω)x (k) + ωx (k+) GS, k = 0,,, x (k+) = ( ω)x (k) + ω(lx (k+) + Ux (k) + c), k = 0,,, Υπό µορφή συντεταγµένων x (k+) i = ( ω)x (k) i i + ω( j= i = ()n a ij x (k+) j a ii n j=i+ a ij x (k) j + b i ) a ii a ii Αριθµητική Ανάλυση 7 Οκτωβρίου 06 54 / 7

Επαναληπτική µέθοδος SOR Παράδειγµα ίνεται το γραµµικό σύστηµα x x = x +x x = 0 x +x = Να δειχθεί ότι η µέθοδος του SOR συγκλίνει και να ϐρεθούν οι τρείς πρώτες επαναλήψεις, αν x (0) = (, 0, ). Λύση Η µέθοδος SOR δίνεται από το ακόλουθο επαναληπτικό σχήµα : x (k+) = ( ω)x (k) + ωx (k+) GS, όπου x (k+) GS είναι το επαναληπτικό διάνυσµα που προκύπτει από την εφαρµογή της Gauss-Seidel µεθόδου. Εποµένως, για το τριδιαγώνιο σύστηµα του προηγούµενου παραδείγµατος, η SOR παράγει το επαναληπτικό σχήµα : Αριθµητική Ανάλυση 7 Οκτωβρίου 06 55 / 7

Επαναληπτική µέθοδος SOR x (k+) = ( ω)x (k) + ω ( + x(k) ) x (k+) = ( ω)x (k) + ω (x(k+) + x (k) ), k = 0,,... x (k+) = ( ω)x (k) + ω ( + x(k+) ). Η ϐέλτιστη τιµή του ω δίνεται από τον τύπο (Θεώρηµα.4.6) ω b = + ρ(b) ή ενώ ω b = = + 4 +.76. ρ(ω b ) = ω b 0.76. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 56 / 7

Επαναληπτική µέθοδος SOR Λαµβάνοντας, x (0) = (, 0, ) T, δηλαδή, x (0) =, x (0) = 0 και x (0) = έχουµε για k = 0 x () 4 = ( + ) + + ( + 0) = + = + 0.44 x () 4 = ( + ) 0 + + ( + 4( + ) + ) = ( + ) 0.8984 x () 4 = ( + ) + + 4( + ) ( + ( + ) ) = 4 ( + ) 0.8995 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 57 / 7

Αλγόριθµος της ε.µ SOR. ιάβασε n, ω, ɛ, maxiter. Για i = ()n επανάλαβε για j = ()n + επανάλαβε ιάβασε a ij ιάβασε x0 i. itcount = 0 4. Οσο ισχύει itcount maxiter επανάλαβε 4. Για i = ()n επανάλαβε x i = ( ω)x0 i+ i +ω( j= a ij a ii x j n j=i+ a ij a ii x0 j + bi a ii ) 4. itcount = itcount + 4. Αν x x0 < ɛ τότε Για i = ()n επανάλαβε Τύπωσε x i Τέλος. 4.4 Για i = ()n επανάλαβε x0 i = x i 5. Τύπωσε( Οχι σύγκλιση µετά από maxiter επαναλήψεις ) 6. Τέλος Αριθµητική Ανάλυση 7 Οκτωβρίου 06 58 / 7

Ασκηση ίνεται το γραµµικό σύστηµα: α 0 α α 0 α x x x = α α α, α R. Να ϐρεθεί ικανή και αναγκαία συνθήκη έτσι ώστε η ε.µ. (GS) να συγκλίνει.. Να δοθούν οι εξισώσεις υπο µορφή συνιστωσών της επαναληπτικής µεθόδου Gauss-Seidel(GS) για την επίλυση του ανωτέρω γραµµικού συστήµατος.. Για α = και x (0) = b να υπολογιστεί η προσεγγιστική τιµή x () της ε.µ. α) GS β) SOR για ω = /. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 59 / 7

Λύση Είναι: A = α 0 α α 0 α, b = α α α Η ϐασική διάσπαση του A είναι όπου D = 0 0 0 0 0 0, CL = A = D C L C U 0 0 0 α 0 0 0 α 0, CU = 0 α 0 0 0 α 0 0 0 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 60 / 7

Λύση ή D A = I L U όπου L = D C L = 0 0 0 α/ 0 0 0 α/ 0, U = D C U = 0 α/ 0 0 0 α/ 0 0 0 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 6 / 7

. Επαναληπτικός πίνακας της ε.µ GS Ο επαναληπτικός πίνακας της ε.µ GS είναι ο L = (I L) U Είναι: I L = 0 0 α/ 0 0 α/ Υπολογισµός του (I L) = (I L)(I L) = I x 0 0 y y 0 z z z Αριθµητική Ανάλυση 7 Οκτωβρίου 06 6 / 7

(I L)(I L) = I 0 0 α/ 0 0 α/ x 0 0 y y 0 z z z x 0 0 ( α/)x + y y 0 ( α/)y + z ( α/)y + z z x = y = α/, y = z = α /4, z = α/, z = = = 0 0 0 0 0 0 0 0 0 0 0 0 Αρα (I L) = 0 0 α/ 0 α /4 α/ Αριθµητική Ανάλυση 7 Οκτωβρίου 06 6 / 7

Εποµένως L = (I L) U = 0 α/ 0 0 α /4 α/ 0 α /8 α /4 Ικανή και αναγκαία συνθήκη σύγλισης της ε.µ. GS Η ε.µ GS συγλίνει ρ(l ) < Εύρεση των ιδιοτιµών του L det(l λi) = 0 λ α/ 0 0 α /4 λ α/ 0 α /8 α /4 λ = 0 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 64 / 7

Εύρεση των ιδιοτιµών του L det(l λi) = 0 λ α/ 0 0 α /4 λ α/ 0 α /8 α /4 λ = 0 ϱίζες : λ = 0, 0, α / Ικανή και αναγκαία συνθήκη σύγκλισης της ε.µ. GS Αν α = 0 τότε ρ(l ) = 0 <, οπότε η ε.µ. GS συγλίνει. Αν α 0 τότε ρ(l ) = α /, οπότε πρέπει : α / < < α < Αρα α (, ). Αριθµητική Ανάλυση 7 Οκτωβρίου 06 65 / 7

Επαναληπτική µέθοδος Gauss-Seidel (GS) Υπό µορφή πινάκων : x (k+) = (I L) Ux (k) + c, k = 0,,, x (k+) = Lx (k+) + Ux (k) + c, k = 0,,, Υπό µορφή συνιστωσών : x (k+) i i = j= a ij x (k+) j a ii n j=i+ a ij x (k) j + b i, i = () a ii a ii Αριθµητική Ανάλυση 7 Οκτωβρίου 06 66 / 7

. Οι εξισώσεις υπο µορφή συνιστωσών της ε.µ. GS για την επίλυση του ανωτέρω γραµµικού συστήµατος είναι οι : x (k+) = x (k+) = α x(k+) + α x(k) x (k+) = α x(k) + α + α α x(k+) + α, k = 0,, Αριθµητική Ανάλυση 7 Οκτωβρίου 06 67 / 7

. Υπολογισµός της προσεγγιστικής τιµής x () Για α = η ε.µ. GS δίνεται από το ακόλουθο επαναληπτικό σχήµα : x (k+) = ( + x(k) ) x (k+) = (x(k+) + x (k) ), k = 0,,,... x (k+) = ( + x(k+) ). Για x (0) = b = (, 0, ) T, δηλαδή για x (0) =, x (0) = 0 και x (0) =, έχουµε για k = 0 x () = ( + x(0) ) = ( + 0) = x () = (x() + x (0) ) = ( + ) = 4 x () = ( + x() ) = ( + 4 ) = 7 8. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 68 / 7

k = x () = ( + x() ) = ( + 4 ) = 7 8 x () = (x() + x () ) = (7 8 + 7 8 ) = 7 8 x () = ( + x() ) = ( + 7 8 ) = 5 6 k = x () = ( + x() ) = ( + 7 8 ) = 5 6 x () = (x() + x () ) = (5 6 + 5 6 ) = 5 6 x () = ( + x() ) = 5 ( + 6 ) =. Αριθµητική Ανάλυση 7 Οκτωβρίου 06 69 / 7

β) ε.µ SOR x (k+) = ( ω)x (k) + ω ( α +αx(k) ) x (k+) = ( ω)x (k) + ω ( α +αx(k+) +αx (k) ) x (k+) = ( ω)x (k) + ω ( α +αx(k+) ), k = 0,,, Αριθµητική Ανάλυση 7 Οκτωβρίου 06 70 / 7

Για α = και x (0) = b = [, 0, ] T και για ω = / έχουµε : k = 0 i = i = x () = x(0) x () = x(0) i = + + x () = x(0) + ( + x(0) ) = + 4 ( + 0) = 4 (0 + x() + x (0) ) = 0 + 7 (/4 + ) = 4 6 ( + x() ) = + 55 ( + 7/6) = 4 64 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 7 / 7

k = i = i = x () = x() i = x () = x() + x () = x() + + ( + x() ) = 4 + 47 ( + 7/6) = 4 64 (0 + x() + x () ) = 7 6 + 4 (47/64 + 55/64) = 58 56 ( + x() ) = 5 64 + 854 ( + 58/56) = 4 04 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 7 / 7