1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Σχετικά έγγραφα
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (



STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

2 SFI

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Ανώτερα Μαθηματικά ΙI

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Delta Inconel 718 δ» ¼

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

p din,j = p tot,j p stat = ρ 2 v2 j,

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

v w = v = pr w v = v cos(v,w) = v w

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Õâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Blowup of regular solutions for radial relativistic Euler equations with damping

High order interpolation function for surface contact problem

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

ACTA ASTRONOMICA SINICA Mar., 2014 : P148; ÞÁ : A. ³ ÚÇ, Re Os Ir Mo Ru Pt Rh Â.

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Προσομοίωση Δημιουργία τυχαίων αριθμών

P ² μ Ê ² ƒ μ²μ Ö μë ± . Œ Ò, μ Ö. 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 É μ Ò É Ì μ²μ, Ê 3 ˆ É ÉÊÉ Ÿ±ÊÉ μ ²³ Š ( ),

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

P Œ.. ƒ Ò ±,. ƒμ²ó ±, Œ. ²ÓÎ ±,. ƒ. Œμ²μ± μ,.. ± Œ œ Š Œ ˆ ˆ Š Œ. ˆ É ÉÊÉ Éμ³ μ Ô, É μí±- ±, μ²óï

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1

tan(2α) = 2tanα 1 tan 2 α

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

ER-Tree (Extended R*-Tree)

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος

.. μ,. ˆ. É,.. ³ ²ÓÖ μ, ƒ.. ± 1,.. Š ±μ ± 2,.. Œ É μë μ,.. ± Ëμ μ,. Œ. μ μ 2, ƒ.. Ê ±μ,.. ÊÉ 2, ˆ. ƒ. ³ 1,.. ±

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

Ó³ Ÿ , º 3(180).. 313Ä320

Transcript:

31 6 Ʋ ± Vol.31 No.6 2011 12 Journal of Chinese Society for Corrosion and Protection Dec. 2011 Te-Ni-Cr Æ 3.5%NaCl»±½ ÁÄ à ÅÀ (Â Ç ¼ Ì ÓÎ Ú Â 730050) : Ë ÖÎ Î Te-Ni-Cr ÍÚ ±± Ú Ë ÁÐÈ Ø ¹ Ö± ÑØ Ö EDS XRD ± Ø Ó» Te-Ni-Cr Ø É Û Ö Ø«Ø µ ÅØ Ø Ù ÐÈ Á Ø Ö ÄÂ Ó XRD ¼ ± Ni 2O 3 Ø Ò ± ÖÓ Te-Ni-Cr Ø ¼«ÖØ «ß : Te-Ni-Cr NaCl ± : TB332 ² Û : A ² Ú : 1005 4537 2011Å06 0462 05 1 ¾ ÌÝ Ñ µ ½Đ Ï««ØÌÝÒ Ò «² ̾ Ò ÌÀ Ñ ÀÔÚ ÐÌÙÞÌÝ Ñ [1] ÇÌÒº ÙÒ ÅĐ «ĐÌÙ Òº Đ Å ¾ ««ĐÌÙ Ú«ÍÒÌÙ Ï Đ Đ± ÐÕ Å Õ³ Đß½«Å Õ ºÊÐ«Æ Ï «Ð ÕÍ ÃÁ [2] Åß ĐÌÙ Đ ÕÅ «Òº«Å Ð ÆÚ Đ Æ Â Òº«¾ Þ À Òº Ô¼«[3] ¾ Åß «Ç NiCr Å Te ÐÍÕ Í Te-Ni-Cr «Òº Te Åß Ç Đ Æ«± ĐÞĐ «À Te Ð ³ Å ² ÒºÁ» À Ô È Î «3.5 mass% NaCl «¾ «Đ Ð Í Te-Ni-Cr Ð : 2010-12-13 Å : Å 1956 Ë ÉÍ Ô¼ È ¹ ²Ô¼ ÐË ¼ : Å E-mail: ydst@163.com «Í¾Æ Õ Ð Ni-Cr ÌÙ Đ Æ 2 Đ Åß¼ ½ ßÄ Ä Ï 1 ß ÕÍ NiCr ß Õ ß 2 Æ ÌË Ü «Ï À «ß«ºÝØ Å ¼«Â 1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6 Ð Te Æ Ï Ï À ¼ «ÚÕ Ð ½ «Ù à ÙÐ ³» «Ð» Æ Ê φ6.0 mm 12 mm 800 À Ê ÞÆ «Ù ßÑÒ Úµ» «½ º É Ã» FA2004 Đ µ»ã Ï «µ Ê Ð² Ê«Î Ð ÕЫ½ ¾ «Ð Ü ÌÙ 168 h ³Î Ð µä ÙÌ «1:1 Ð µ Õ Ã Ï «Î Đ Á Ð À Ç«Đ Ð Õ Ð«X Ä Ä Õ Ä 3 3.1 µ MEF4A À Ð ÇÏ Te 1a ¼Ï Te 1b

6 { Lw : Te-Ni-Cr ` 9 3.5%NaCl 9 Yt%Z,o/ 463 Table 1 Range of Ni-Cr alloy powder composition (A) and chemical compositions of Ni-Cr alloy (B) (mass%) Ni Cr Mo Si B C Fe Rest A 50 60 16 19 2 4 3 5 2.84 0.5 1 12 15 <1.0 B 56.5 17.55 4.21 4.02 2.84 0.73 13.65 <1.0 remarks mesh count 150 280 HRC 60 65 mesh count 150 280 HRC 60 65 Table 2 Mass fraction of Te designed and measured (mass%) Sample Mass fraction Mass fraction number of Te designed of Te measured 1 0 0 2 0.3 0.29 3 0.5 0.47 4 0.8 0.79 5 1.0 0.97 6 2.0 1.94 # 1 a A ;V # Te s < _q_ *q75 1f! s bsc s B t ko E S koz K? OE so okk 8{ X ' /l$9 H6_ s*q fk In _ sb( ;f P * 3 *X 5 f} sb( ;f} 1 2 3 s1t;# 2 X a # X 3 + Te-Ni-Cr _ s { α H bc ko 1 + _ s β H sc ko 2 + γ H * 3 A ; V Te-Ni-Cr _ { sb( # NiCr _ { s B( f Te-Ni-Cr _ X β H s B( # γ H f # α HfVY β H+_ s WH 3.2 "fu7 V Æ $Y f l _+$Y _ KZVf}sV Q >` (1) (2)Æ V = wo w1 st D = 8.76 V ρ Fig.1 Porosity metallograph of the alloys (a) with Te, (b) without Te Table 3 The Microhardness of alloy (HV) Sample number Testing value 1 5 841 896 891 885 Mean 829 887 871 1 2161 2246 2161 2129 2246 2129 2179 2 1564 1413 1650 1514 1605 1431 1529 3 975 866 975 991 918 961 951 (1) (2) X wo +f}$y Z (g) w1 +$ Y $Y 5f Z (g) s +f} s*q } (m2 ) t +$ YX Æ (h) ρ + 4 sp (g/cm3) V +$Y f (g/m2h) D + $YO * a s $Y (mm/a)[4,5] M = Ty f $Y s $Y 2 + 2.54 10 4 mm/a z9 y [6] Te-Ni-Cr _ 8 3.5%NaCl 8 X $Y f Te W Zs0 ' m& G;# 3 a A ;V 8 3.5% NaCl 8 X ; +} Te s < s$y f Ni-Cr 0b 1_ # vbs $Y f Te WZs A Qf f 8 Te WZ+ 0.8%X $Y f Fig.2 Backscattering picture of tellurium-nickel-chromium Alloy dnm Q Q 0.06633 mm/a j 1X Æj 1 q } s V Q+ 0.051762 g/m h _# 3 s;f P*v 2

464 Å 31 Table 4 Corrosion rate of the alloys Sample number 1 2 3 4 5 6 Corrosion rate /mm a 1 0.07323 0.07124 0.06989 0.06633 0.07547 0.07529 /g (m 2 h 1 ) 0.058774 0.057871 0.057559 0.051762 0.063883 0.066983 D /mm a -1 0.080 0.076 0.072 0.068 0.064 0.060 0.056 0.052-0.5 0.0 0.5 1.0 1.5 2.0 2.5 Mass fraction of Te /% 0.080 0.076 0.072 0.068 0.064 0.060 0.056 0.052 Fig.3 Corrosion rate curves with Te content in 3.5% NaCl solution Fig.4 SEM morphology of sample 6 Ð Te Å «Đ Ò Ò «¼ Te Ï ««ÐÅ 1.0%Te «Đ. «Õ Â Ê È Ê Ñ«È¼ Ϋ½Û Ä Ú¹ 4 «Ð Ê «Ë¹ Ò «½ ÇÝ Á«È ÅĐ«Đ 3.3 º Ý Å Å «ÌÙ ÅÑÝ Æ Ó«ÊÐ ( Ô ) JSM-6700F Đ «Ê 168 h е Õ Ð«5 5a d Î«Õ Ê Ð «ÅÕ»ÅÕ Õ ÊÐ Ø Ú Đë5b e Î«Ð Ç «ÆÕ «¼ Ç Ç ¾ 5c«f Ϋ1 3 Ð V /g m -2 h -1 È Đ ««Ç«±Ö Ç Ü «ÕÐ Ü ¼Ò Ê Ò «ÛÅ ¾ «Î «² Ï È «Å Î É Ï Te ÁÐ«Ç «Ê Õ Ç È Đ «Õ Đ «Đ Î 3.4 Þ XRD ¹ µ 1 3 Ð ¾ 168 h Õ XRD 6 6 À È«Õ Ä 1 Ð Ä È«ÀÕ 3 Ð Ä È Î«Te-Ni-Cr 3.5%NaCl Ni 2 O 3 ßÑ ÒÏÕ À Ä Ni 3 Te 2 À«É ÅÏÕ À«¹ ÏÕ Ð Àà ÊÄ º«À 3.5 µ NaCl «ĐÑ 3.5%NaCl Đ Ï ß«½ Ò 3.5%NaCl ĐÑ «ÞĐ Đ Í ÊÈ [8] Ò ÌÙ Ð ± Ù [9] 3.5%NaCl «Þ Đ Ê Æ Đ Ù Ò «ÞĐÊÈ Ni Fe ÊÈ ÞĐ Æ Fe Fe 2+ + 2e (3) Ni Ni 3+ + 3e (4) Fe 2+ O 2 Fe 3+ + e (5) Ò Õ O 2 Ä Đ«ÊßµĐÑ Đ Æ 1/2O 2 + H 2 O + 2e 2OH (6) Te-Ni-Cr Î Đ «Te Ï Å«Đ Å «Å 0.8% T e «Đ ÒÑ 3.5%NaCl «ÊÐ «É

6 ß ÄÛ : Te-Ni-Cr 3.5%NaCl ر Ó» 465 Fig.5 SEM morphologies after wiping off corrosion products of samples 1 and 3 Fig.6 X-ray diffraction diagram of alloy È À «Ï Te Þ Î Te-NiCr λÅÕ Đ ÆTe Å ß Ç «Ô Ç Õ Õ Ñ ÃÃßÂ ß Õ«Å ËÔÑÈ «Þ Ï È Te Ð«Ð Ñ ½««ÄÑ «Î Æ Ð ÊÄÕ Ñ «Te Å Ð ÌÙ «Đ Î 4 (1) Ð Te Å «³ Ç «Å ÌÙ Đ ÐÅ 0.8%Te «Đ ÒÑ (2) 3.5%NaCl «Te-Ni-Cr Ê ĐÑ «Ð «Ç «Å Te»Å Te É ÁÐ«Ç ½ ËÔ«Þ ¾ Î (3) 3.5%NaCl «Ni ßÑ Fe ßÑ Ü Ü ³ [1] Wang D D, Li X B. General situation of seawater corrosion-resistant nickel-based materials [J]. Powder Metall Mater. Sci. Eng., 2003, 8(2): 147-151 (³, É ¹. «ÎÛ³ ÙÔ¼¹ [J]. Ð ² É, 2003, 8(2): 147-151) [2] Xie M H, Wang X M, Chen H X, et al. Resources applications and up-to-date development of extraction separation technology of Te [J]. Sichuan Nonferrous Met., 2005, (1): 5-8 (ÌÜÚ, ³ÏÜ, À ÏÜ. Ù ½ ² Å Ô ¼ [J]. Þ Ô, 2005, (1): 5-8) [3] Yang R C, Wang H, Zheng L P, et al. Characteristics and research trends of high performance Ni-base corrosion Resistant Alloys [J]. Mater. Rev., 2001, 15(11): 21-23 (Ü Æ, ³Ô, ÂÊ Ü. «Ù ²Ô¼ È [J]. Ñ, 2001, 15(11): 21-23) [4] GB10124-1988. Metal Material Uniform Corrosion Full Immersion Test Method in Lab[S]. 1990 (GB10124-1988. Ô Û ³ ² Û [S]. 1990) [5] Liu Y H, Zhang P F. Metal Corrosion Theory [M]. Beijing: Aviation Industry Press, 1993 ( Ú, Æ. Ô³ ºÈ [M], : Ï Å, 1993) [6] Schumacher M. Seawater Corrode Manual[M]. Beijing: National Defense Industry Press, 1985. 81-97 (Schumacher M. ÎÛ³ [M]. : Ç Ï Å, 1985: 81-97) [7] Huang G Q, Yu C J. The Corrosion behavior of nickel alloys in seawater [J]. Mater. Prot., 2004, 37(3): 16-19 (ÖÄ. «¾ÎÛ Ù³ ¹ [J]., 2004, 37(3): 16-19) [8] Liu X C, An C Q. Metal Corrosion [M]. Beijing: National Defense Industry Press, 2002: 54-58

466 Å 31 (, Æ. Ô³ [M]. : Ç Ï Å, 2002: 54-58) [9] Ye K M. Overview of Corrosion and Protection[M]. Beijing. People s Education Press, 1981: 114-115 ( Ù. Ô³ ² ¹ [M]. : Ù µï Å, 1981: 114-115) CORROSION BEHAVIOR OF Te-Ni-Cr ALLOY IN 3.5% NaCl SOLUTION SU Yixiang, BAO Yandong, LIAO Naifei, HOU Fenggang, DAI Yingqiu State Key Laboratory of Gansu Advanced Nonferrous Matel Materials, Lanzhou University of Technology, Lanzhou 730050 Abstract: A new Te-Ni-Cr alloys were prepared by powder metallurgy technology and the corrosion resistance of Te-Ni-Cr alloys were studied by OM, SEM, EDS and XRD in the 3.5% sodium chlorine solution. The results show that the microstructure of the alloys are changed by Te. There are bone-like dark gray structure on the surface of the alloy, playing protective role. Ni 2 O 3 and iron oxide were determined by the analysis of XRD. The calculated corrosion rate shows that Te-Ni-Cr alloy increases the corrosion resistance than tellurium-free alloy. Key words: Te-Ni-Cr alloy, NaCl solution, corrosion resistance