On the linear convergence of the general alternating proximal gradient method for convex minimization

Σχετικά έγγραφα


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Probabilistic Approach to Robust Optimization

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

High order interpolation function for surface contact problem

A summation formula ramified with hypergeometric function and involving recurrence relation

Quick algorithm f or computing core attribute

Sparse Modeling and Model Selection

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Im{z} 3π 4 π 4. Re{z}

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Prey-Taxis Holling-Tanner

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Gradient Descent for Optimization Problems With Sparse Solutions

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

The ε-pseudospectrum of a Matrix

New Adaptive Projection Technique for Krylov Subspace Method

Adaptive grouping difference variation wolf pack algorithm

Ax = b. 7x = 21. x = 21 7 = 3.

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Hydraulic network simulator model

ZZ (*) 4l. H γ γ. Covered by LEP GeV

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Blowup of regular solutions for radial relativistic Euler equations with damping

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Editorís Talk. Advisor. Editorial team. Thank

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

A research on the influence of dummy activity on float in an AOA network and its amendments

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Research on model of early2warning of enterprise crisis based on entropy

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Resilient static output feedback robust H control for controlled positive systems

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Single-value extension property for anti-diagonal operator matrices and their square

Simplex Crossover for Real-coded Genetic Algolithms

rs r r â t át r st tíst Ó P ã t r r r â

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Research on real-time inverse kinematics algorithms for 6R robots

.. μ,. ˆ. É,.. ³ ²ÓÖ μ, ƒ.. ± 1,.. Š ±μ ± 2,.. Œ É μë μ,.. ± Ëμ μ,. Œ. μ μ 2, ƒ.. Ê ±μ,.. ÊÉ 2, ˆ. ƒ. ³ 1,.. ±

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Congruence Classes of Invertible Matrices of Order 3 over F 2

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

m, = C r,p (A) = inf{c r,p (O); A O B, O m8}.

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

ER-Tree (Extended R*-Tree)

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Τμηματοποίηση με χρήση τυχαίων πεδίων Markov. Κοινή ιδιότητα σημείων τμήματος Εισαγωγή χωρικής πληροφορίας Εξομάλυνση πεδίου κατατάξεων

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

IMES DISCUSSION PAPER SERIES

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

v w = v = pr w v = v cos(v,w) = v w

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

Homomorphism in Intuitionistic Fuzzy Automata

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ƒ ² ± Ñ Ò É ÉÊÉ Ô É Î ± Ì Ö ÒÌ ² μ Å μ Ò Í μ ²Ó μ ± ³ ʱ ²μ Ê, Œ ±

Transcript:

2014c9 $ Ê Æ Æ 118ò 13Ï Sept., 2014 Operations Research Transactions Vol.18 No.3 2ÂOCqFÝŽ{ 5Âñ Û 1 M ^1, Á éü Œ à¼êú3 5åe4z K, 3O {µee, J Ñ2ÂOCqFÝŽ{. 3 ½^ e, TŽ{äkÛ9 5Âñ5. êš L ²TŽ{kÐêŠLy. ' c O { 2ÂOCqFÝŽ{ ÛÂñ Q- 5Âñ ã aò O224 2010 êæ aò 90C25 On the linear convergence of the general alternating proximal gradient method for convex minimization WAN Rui 1 XU Zi 1, Abstract In this paper, we propose a general alternating proximal gradient method for linear constrained convex optimization problems with the objective containing two separable functions. Our method is based on the framework of alternating direction method of multipliers. The global and linear convergence of the proposed method is established under certain conditions. Numerical experiments show that the algorithm has good numerical performance. Keywords alternating direction method of multipliers, general alternating proximal gradient method; global convergence, Q-linear convergence Chinese Library Classification O224 2010 Mathematics Subject Classification 90C25 0 Ú ó Ä3 5å^ e, ü Œ à¼êú4z K, ÙêÆ. min fx + gy x R n,y Rp s. t. Ax + By = b, 0.1 Ù A R m n, B R m p, b R m. f : R n R, g : R p RÑ à¼ê. ÂvFϵ2013c1014F * Ä7 8µI[g, ÆÄ7]Ï 8 No. 11101261 1. þ ŒÆnÆêÆX, þ 200444, Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, China ÏÕŠö Corresponding author, Email: xuzi@shu.edu.cn

2, M ^ 18ò Cc5, Ï à`z. 0.1 3DÕ`zÚ$ `z K A^, ²Úåé õïä<úó óšö '5. ùa Kéõ5uØ a [1]!$ ÝW [2,3]! ã?n [4,5] ÚÚO [6]. '5 KäkDÕ½ö$. éu. 0.1, «k { O { Alternating Direction Method of Multipliers, { ADMMŽ{. S ª x k+1 =argmin x L µ x, y k, λ k, y k+1 =argmin y L µ x k+1, y, λ k, λ k+1 = λ k 1 µ Axk+1 + By k+1 b, 0.2 Ù L µ x, y, λ = fx + gy λ T Ax + By b + 1 Ax + By b 2 2 O2. KF¼ ê. ADMMŽ{éuã?n!Ø a!åìæs!œ½5yúúo JÑ zà`z KÑé ^. `³3ur Œ5 K=z $ ê f K, ù3 S JpOŽÇ. ADMMŽ{ÛÂñ5 ²Øy. Cc5, k'admmž{9ùc/ž{âñ ÇJ kéõ. GoldfarbÚ Ma [7] y²8i¼ê1w, ÙFÝLipschitzëYž, ^ADMMJacobid/, 8 I¼êeü Ç O 1 1 k, Œ±\ O k. fx Úgy k ¼ê1w, Ù 2 FÝLipschitzëY, ^Gauss-Seideld/, Goldfarb [8] y²âñ Ç O 1 k. HeÚ Yuan [9] ^C تn, 3ü f K k Œ cje, y² Douglas-RachfordO Ž{Âñ Ç O 1 k. Goldstein[10] 38I¼êrà, Ù ¼ê g¼ê, ü f KÑŒ ^ e, y²admmc/ªé ó8i¼êšâñ Ç O 1 k. 3fÚg k rà, ÙFÝ LipschitzëY 2 ^ e, DengÚYin [11] ^2ÂADMMŽ{, y² 5Âñ Ç O 1, Ù c < 1. c k éu. 0.1, Ma [12] JÑOCqFÝŽ{ Alternating Proximal Gradient Method, { APGMŽ{, ÙS ª x k+1 =argmin x fx + 1 x x k τ 1 A T Ax k + By k b µλ k 2 τ 2, 1 y k+1 =argmin y gy + 1 y y k τ 2 B T Ax k+1 + By k b µλ k 2 τ 2, 0.3 2 λ k+1 = λ k 1 µ Axk+1 + By k+1 b, y²τ 1 < 1/λ max A T A, τ 2 < 1/λ max B T Bž, dapgms{x k, y k, λ k } Âñ. `:3uš / f K. Äud, JÑ APGMŽ{, =2ÂAPGMŽ{, ÙS ª x k+1 =argmin x fx+ 1 x x k τ 1 A T Ax k +By k b µλ k 2 τ 2+ 1 1 2 x xk T P x x k, y k+1 =argmin y gy+ 1 y y k τ 2 B T Ax k+1 +By k b µλ k 2 τ 2+ 1 2 2 y yk T Qy y k, λ k+1 = λ k 1 µ Axk+1 + By k+1 b, Ù P, Q é Ý, P, QŒ±Šâ Sœ¹ÀJ. 0.4

3Ï 2ÂOCqFÝŽ{ 5Âñ Û 3 e5, y²2âapgmž{ûâñ5 5Âñ Ý. d, ŠXe b. b0.1. 0.1 3KKT:, P u = x, y, λ T, Kx, y, λ vkkt^ : b0.2 ¼êf ÚgÑ à¼ê. dfúgà5œ, 3v f, v g 0, A T λ fx, 0.5 B T λ gy, 0.6 Ax + By b = 0. 0.7 s 1 s 2, x 1 x 2 v f x 1 x 2 2, x 1, x 2, s 1 fx 1, s 2 fx 2, 0.8 t 1 t 2, y 1 y 2 v g y 1 y 2 2, y 1, y 2, t 1 gy 1, t 2 gy 2. 0.9 XJfÚg rà, Kv f, v g > 0, džv f Úv g O fúgrà~ê. b0.3 τ 1 < 1/λ max A T A τ 2 < 1/λ max B T B. 1 ÛÂñ! y²2âapgmž{ûâñ5. z[12] Ún3.1Ú½n3.2y ²aq, Œ±y²XeÚn1.1Ú½n1.1. Pu k = x k, y k, λ k T cs :, u = x, y, λ T b0.1 KKT:, H = P Q + 1 I, Ù P = P + 1 µτ 1 I 1 µ AT A, ÀJÜ P, Q, H½. µi Ún1.1 3b0.1 0.3 á^ e, 3η > 0, d2âapgmž{ 0.4 S{x k, y k, λ k } v u k u 2 H u k+1 u 2 H η u k u k+1 2 H + 2v f x k+1 x 2 + 2v g y k+1 y 2. 1.1 dún1.1, Œ±2ÂAPGMŽ{ 0.4 ÛÂñ5. ½n1.1 3b0.1 0.3 á^ e, 2ÂAPGMŽ{0.4S{x k, y k, λ k } Âñ. 0.1 `. y² d 1.1 Œ, u k u 2 H 4~ke., ± uk u 2 H Âñ, {uk }3 ; p, 3Âñf{u kj }, Ù u kj = x kj, y kj, λ kj T, Plim j u kj = û, Ù û = x, ŷ, λ T. e y²û KKT:. dún1.1œ, k ž, u k u k+1 0, =x k x k+1 0, y k y k+1 0, λ k λ k+1 0. Ï λ k+1 = λ k 1 µ Axk+1 + By k+1 b, Œ± Ax k + By k b 0.

4, M ^ 18ò ±j, k A x + Bŷ b = 0. 1.2 Ï { x k+1 =argmin x fx+ 1 x x k τ 1 A T Ax k +By k b µλ k 2 2 + 1 } τ 1 2 x xk T P x x k, Œ `5^ P + 1 I 1 µτ 1 µ AT A x k x k+1 1 µ AT By k y k+1 + A T λ k+1 fx k+1. 1.3 Ón, { y k+1 = argmin y gy+ 1 y y k τ 2 B T Ax k+1 +By k b µλ k 2 τ 2+ 1 } 2 2 y yk T Qy y k, Œ `5^ Q + 1 I 1 µ BT B y k y k+1 + B T λ k+1 gy k+1. 1.4 Ï 1.3 éuz kñ á, ±k P + 1 I 1 µτ 1 µ AT A x kj x kj+1 1 µ AT By kj y kj+1 + A T λ kj+1 fx kj+1. 1.5 j ž, kx k j xk j+1 0, yk j yk j+1 0, ± A T λ f x. 1.6 Ón, Œ B T λ gŷ. 1.7 d 1.2, 1.6, 1.7, Œû = x, ŷ, λ T v. 0.1 KKT^, qï 0.1 à`z K, ±. 0.1 `. û 1 = x 1, ŷ 1, λ 1 T, û 2 = x 2, ŷ 2, λ 2 T {x k, y k, λ k T }ü 4 :, Œû 1, û 2 Ñ. 0.1 `. d 1.1 Œ u k+1 û i 2 H u k û i 2 H, i = 1, 2. 1.8 P ^ ü>4 lim k uk û i H = η i < +, i = 1, 2. u k û 1 2 H u k û 2 2 H = 2 u k, û 1 û 2 H + û 1 2 H û 2 2 H, 1.9, Œ η 2 1 η 2 2 = 2 û 1, û 1 û 2 H + û 1 2 H û 2 2 H = û 1 û 2 2 H, 1.10

3Ï 2ÂOCqFÝŽ{ 5Âñ Û 5 Óž, η 2 1 η 2 2 = 2 û 2, û 1 û 2 H + û 1 2 H û 2 2 H = û 1 û 2 2 H, 1.11 Ü 1.10 Ú 1.11 Œ û 1 û 2 2 H = 0. l{x k, y k, λ k T }4 :. ± u k Âñ u. 2 5Âñ!, y²2âapgmž{ 5Âñ5. =y²3δ > 0, u k u 2 H u k+1 u 2 H δ u k+1 u 2 H 2.1 á, Ù u b0.1 KKT:, ={u k }Q- 5Âñ. e, ü«œ/o λ k+1 λ 2. kšxeb. b2.1 ¼êgFÝ g LipschitzëY, = y 1, y 2 R p, k gy 1 gy 2 L g y 1 y 2 á, Ù L g glipschitz~ê. Ún2.1 3b0.1 0.3Úb2.1 á^ e, bb1, Kéu? 0 < ρ 1 < 1, k á, Ù λ k+1 λ 2 c 1 y k+1 y 2 + c 2 y k y k+1 2 2.2 c 1 = L 2 g1 ρ 1 1 λ 1 min BBT > 0, c 2 = ρ 1 1 Q + 1 I 1 µ BT B 2 λ 1 min BBT > 0. y² d `5^ 0.6 Ú 1.4 ±9 g LipschitzëY, Œ± B T λ k+1 λ + Q + 1 I 1 µ BT B y k y k+1 2 = gy k+1 gy 2 2.2.a 2.2.b L 2 g y k+1 y 2. 2.3 ^ت [11] u + v 2 1 1 ρ 1 v 2 + 1 ρ 1 u 2, 0 < ρ 1 < 1. 2.4 2.3 >Œ±=z B T λ k+1 λ + Q + 1 I 1 µ BT B y k y k+1 1 1 Q 1 + I 1 ρ 1 µ BT B 2 y k y k+1 2 +1 ρ 1 λ min BB T λ k+1 λ 2. 2.5 2

6, M ^ 18ò éá 2.3 Ú 2.5, k 1 1 ρ 1 λ min BB T λ k+1 λ 2 L 2 g y k+1 y + 2 Q+ 1 1 I 1 ρ 1 µ BT B 2 y k y k+1 2, = 2.6 λ k+1 λ 2 L 2 g1 ρ 1 1 λ 1 min BBT y k+1 y 2 +ρ 1 1 Q+ 1 I 1 µ BT B 2 λ 1 min BBT y k y k+1 2. 2.7 ùp, 0 < ρ 1 < 1, dbb1, Œc 1 > 0, c 2 > 0. ùpc 1, c 2 O X 2.2.a 9 2.2.b ½Â. Ún á. ½n2.1 3Ún2.1b^ e, egrà, A, K3δ > 0, 2.1 á. y² Ï u k u 2 H u k+1 u 2 H x k x k+1 2 P+ y k y k+1 2 Q+ 1 I 1 ρ λmaxbt BI +µ ρ λk λ k+1 2 +2v f x k+1 x 2 + 2v g y k+1 y 2, Ù ρ = µ 1+τ2λmaxBT B 2. λ k+1 = λ k 1 µ Axk+1 + By k+1 b, K λ k λ k+1 2 = 1 µ 2 Axk+1 x + By k+1 y 2. ^ 2.4 Œ, µ ρ λ k λ k+1 2 = µ ρ µ 2 Ax k+1 x + By k+1 y 2 Ù 0 < ρ 2 < 1. éá 2.8, 1.1 Œ±=z µ ρ [ µ 2 1 ρ 2 λ min A T A x k+1 x 2 + 1 1 λ max B T B y k+1 y 2] ρ 2 = 1 τ 2λ max B T B [ 1 ρ 2 λ min A T A x k+1 x 2 + 1 1 λ max B T B y k+1 y 2]. 2.8 ρ 2 u k u 2 H u k+1 u 2 H x k x k+1 2ˆP + y k y k+1 2 Q+ 1 µτ I 1 2 ρ λmaxbt BI [ + 2v f + 1 τ 2λ max B T B ] 1 ρ 2 λ min A T A x k+1 x 2 [ + 2v g + 1 τ 2λ max B T B 1 1 ] λ max B T B y k+1 y 2. ρ 2

3Ï 2ÂOCqFÝŽ{ 5Âñ Û 7 ^Ún2.1, Œ± u k u 2 H u k+1 u 2 H c 3 x k+1 x 2 + c 4 y k+1 y 2 + c 5 λ k+1 λ 2, 2.9 Ù c 3 = 2v f + 1 τ 2λ max B T B 1 ρ 2 λ min A T A, 2.10 1 1 λ max B T B ρ 2 c 4 = 2v g + 1 τ 2λ max B T B c 1 c 2 λ min Q + 1 I 1 ρ λ maxb T BI c 5 = λ min Q + 1 I 1 ρ λ maxb T BI, 2.11 /c 2. 2.12 c 1, c 2 OX 2.2.a 9 2.2.b ª ½Â. Ï 0 < ρ 2 < 1, dba, Œc 3 > 0. qï v g > 0, Àρ 1, ρ 2 ve ü ^ : 0 < ρ 1 < 1 1 + N < 1, 0 < 1 1 + M < ρ 2 < 1 ž, c 4 > 0, Ù N = L 2 g M = Q + 1 I 1 µ BT B 2 4µv g λ max B T B1 τ 2 λ max B T B > 0, λ min Q + 1 I 1 ρ λ maxb T BI 2v g + 1 τ 2λ max B T B 1 1 ρ 2 λ max B T B c 2 > 0 y, w,kc 5 > 0. { δ = min c 3 λ 1 max P, c 4 λ 1 max Q + 1 I, c 5 µ 1} > 0, K 2.1 y. b2.2 ¼êfFÝ f LipschitzëY, = x 1, x 2 R n, k fx 1 fx 2 L f x 1 x 2 á, Ù L f flipschitz~ê. Ún2.2 3b0.1 0.3Úb2.2 á^ e, ba1, Kéu? 0 < t < 1Ú? t 1 > 0, k > 0, λ k+1 λ 2 c 6 x k+1 x 2 + c 7 x k x k+1 2 + c 8 y k y k+1 2 2.13 á, Ù c 6 = L 2 f 1 t 1 λ 1 min AAT > 0, c 7 = t 1 1 + t 1 λ 1 min AAT λ max P T P > 0, c 8 = t 1 µ 1 1 + t 1 λ max B T AA T Bλ 1 min AAT 0. 2.13.a 2.13.b 2.13.c

8, M ^ 18ò y² d `5^ 0.5 Ú 1.3 ±9 f LipschitzëY, Œ± A T λ k+1 λ + P x k x k+1 1 µ AT By k y k+1 2 = fx k+1 fx 2 L 2 f x k+1 x 2. ^ 2.4, 0 < t < 1k A T λ k+1 λ + P x k x k+1 1 µ AT By k y k+1 1 t A T λ k+1 λ 2 + 1 1 P x k x k+1 1 t µ AT By k y k+1 2 2 2.14 1 tλ min AA T λ k+1 λ 2 + 1 1 P x k x k+1 1 t µ AT By k y k+1 2. 2.15 ^e ت [11] u + v 2 1 + 1 t 1 u 2 + 1 + t 1 v 2, t 1 > 0. 2.16 K P x k x k+1 1 µ AT By k y k+1 2 1 + 1 t P x k x k+1 2 + 1 + t 1 1 1 µ AT By k y k+1 2 1 + 1 t 1 λ max P T P x k x k+1 2 +1 + t 1 1 µ λ maxb T AA T B y k y k+1 2. 2.17 ± A T λ k+1 λ + P x k x k+1 1 µ AT By k y k+1 1 tλ min AA T λ k+1 λ 2 + 1 1 t 2 1 + 1 t 1 λ max P T P x k x k+1 2 + 1 1 1 + t 1 1 t µ λ maxb T AA T B y k y k+1 2. 2.18 éá 2.14 Ú 2.18 Œ± 1 1 tλ min AA T λ k+1 λ 2 L 2 f x k+1 x 2 + 1+ t 1 1 λ max t P T P x k x k+1 2 1 1 + t 1 1 + t 1 1 µ λ maxb T AA T B y k y k+1 2. 2.19 ± λ k+1 λ 2 c 6 x k+1 x 2 + c 7 x k x k+1 2 + c 8 y k y k+1 2. À0 < t < 1Út 1 > 0, dba1, ±kc 6 > 0, c 7 > 0, c 8 0, Ù c 6, c 7, c 8 Od 2.13.a, 2.13.b ±9 2.13.c ½Â. Ún á.

3Ï 2ÂOCqFÝŽ{ 5Âñ Û 9 ½n2.2 3Ún2.2b^ e, efrà, B, K3δ > 0, 2.1 á. y² éu? 0 < t 2 < 1, k µ ρ λ k λ k+1 2 = µ ρ µ 2 Ax k+1 x + By k+1 y 2 µ ρ [ µ 2 1 t 2 λ min B T B y k+1 y 2 + 1 1 λ max A T A x k+1 x 2] t 2 = 1 τ 2λ max B T B éá 1.1 Ú 2.20, Œ± [ 1 t 2 λ min B T B y k+1 y 2 + 1 1 λ max A T A x k+1 x 2]. t 2 2.20 u k u 2 H u k+1 u 2 H x k x k+1 2ˆP + y k y k+1 2 Q+ 1 I 1 ρ λmaxbt BI ÏB [ + [ + 2v f + 1 τ 2λ max B T B 2v g + 1 τ 2λ max B T B 1 1 ] λ max A T A x k+1 x 2 t 2 ] 1 t 2 λ min B T B y k+1 y 2., ±c 8 > 0, Ù c 8 d 2.13.c ½Â. ^Ún2.2, Œ± u k u 2 H u k+1 u 2 H c 9 x k+1 x 2 + c 10 y k+1 y 2 + c 11 λ k+1 λ 2, 2.21 Ù c 9 = 2v f + 1 τ 2λ max B T B 1 1 λ max A T A t 2 c 6 c 8 λ min Q + 1 I 1 ρ λ maxb T BI, 2.22 c 10 = 2v g + 1 τ 2λ max B T B 1 t 2 λ min B T B, 2.23 c 11 = λ min Q + 1 I 1 ρ λ maxb T BI /c 8, 2.24 c 6, c 8 OX 2.13.a 9 2.13.c ª ½Â. Ï 0 < t 2 < 1, dbb, ±w,kc 10 > 0, c 11 > 0. qï v f > 0, Àt, t 1, t 2 ve n ^ : 1 0 < t < < 1, 1 + N 1 λ max t 1 > µ P T λ P min Q + 1 I 1 λ max B T AA T B ρ λ maxb T BI λ min P > 0, 1 < t 2 < 1 1 + M 1 ž, c 9 > 0, Ù M 1 = 4µv f λ max A T A1 τ 2 λ max B T B > 0,

10, M ^ 18ò N 1 = t 1 L 2 f 1 + t 1 λ max P T P λ min P 2v f + 1 τ 2λ max B T B 1 1 t 2 λ max A T A > 0. δ = min{c 9 λ 1 max P, c 10 λ 1 max Q + 1 I, c 11 µ 1 } > 0, K 2.1 y. íø f ÚgÑ rà¼êž, KA1, f LipschitzëY½B1, g LipschitzëYž, 3δ > 0, 2.1 á. Œ±w, P = 0, Q = 0ž, z[12] APGMŽ{ JÑŽ{A~, ±, Œ±APGMŽ{ 0.3 3ƒÓ^ e, Q- 5Âñ. 3 êšá Ä5 K [13], ÙêÆ. min x x R n 1 + α x 2 2 + 1 2β Ax b 2 2, 3.1 Ù A R m n, α > 0, β > 0 ëê, x 1 = n i=1 x i. 3.1 Œ±d= min y 1 + α x 2 x R n,y R n 2 + 1 2β Ax b 2 2 én wñ8i¼ê'ux, y Œ. s. t. x y = 0. 3.2 ÀXe4 ØÓP, QŠ, 5ÿÁ2ÂOCqFÝŽ{ÛÂñ5 9ÛÜÂñ Ý. œ/1: P = 0, Q = 0; œ/2: P = 0, Q = 1 µ 1 I; œ/3: P = 1 µ 1 µτ 1 I, Q = 0; œ/4: P = 1 µ 1 µτ 1 I, Q = 1 µ 1 I. À½m = 250, n = 1000. æ^xe { Å ÝA. k z ƒññlio ÙN0, 1 ÅÝ,, éa1 þ?1ioz. 2 ¹k25 š" þdõ þx 0 R n, z þþñlio Ù. @o*ÿ þb = Ax 0 + ε, Ù ε N0, 10 3 I. À ½.ëêα = 0.1, β = 0.01, Ž{ëêµ = 0.01, τ 1 = 0.95, τ 2 = 0.95. ÅØÓ ÝA, Ù ëêñøc, õgáuys :u k `u ØkaqêŠLy, l? À4 ã, ã1, Ù, î L«S gê, p L«Ø. lã1, Œ±w u k u 2 H Åì~ ªCu0, =d2âapgmž{ 0.4 S S{u k }Âñ `u. lã2 w u k+1 u 2 H / uk u 2 H Š301ƒm, =3δ > 0, uk u 2 H uk+1 u 2 H δ uk+1 u 2 H, l`²{uk } Q- 5Âñ.

3Ï 2ÂOCqFÝŽ{ 5Âñ Û 11 10 4 10 2 P=0,Q=0 P=1/µ 1/µ*τ1I,Q=0 P=0,Q=1/µ 1/µ*τ2I P=1/µ 1/µ*τ1I,Q=1/µ 1/µ*τ2I 10 4 10 2 P=0,Q=0 P=1/µ 1/µ*τ1I,Q=0 P=0,Q=1/µ 1/µ*τ2I P=1/µ 1/µ*τ1I,Q=1/µ 1/µ*τ2I 10 0 10 0 u k u 2 H 10 2 10 4 u k u 2 H 10 2 10 6 10 4 10 8 10 6 10 10 0 50 100 150 200 10 8 0 50 100 150 200 10 4 10 2 P=0,Q=0 P=1/µ 1/µ*τ1I,Q=0 P=0,Q=1/µ 1/µ*τ2I P=1/µ 1/µ*τ1I,Q=1/µ 1/µ*τ2I 10 4 10 2 P=0,Q=0 P=1/µ 1/µ*τ1I,Q=0 P=0,Q=1/µ 1/µ*τ2I P=1/µ 1/µ*τ1I,Q=1/µ 1/µ*τ2I 10 0 10 0 u k u 2 H 10 2 u k u 2 H 10 2 10 4 10 4 10 6 10 6 10 8 0 50 100 150 200 10 8 0 50 100 150 200 ã1 2ÂOCqFÝŽ{ÛÂñ u k+1 u 2 H / uk u 2 H 1 0.95 0.9 0.85 0.8 P=0,Q=0 P=1/µ 1/µ*τ1I,Q=0 P=0,Q=1/µ 1/µ*τ2I P=1/µ 1/µ*τ1I,Q=1/µ 1/µ*τ2I 0.75 0 50 100 150 200 ã2 2ÂOCqFÝŽ{ 5Âñ ë z [1] Yang J, Zhang Y. Alternating direction algorithms for l 1 problems in compressive sensing [J]. SIAM Journal on Scientific Computing, 2011, 33: 250-278.

12, M ^ 18ò [2] Candès E J, Recht B. Exact matrix completion via convex optimization [J]. Foundations of Computational Mathematics, 2009, 9: 717-772. [3] Candès E J, Tao T. The power of convex relaxation: near-optimal matrix completion [J]. IEEE Translations on Information Theory, 2009, 56: 2053-2080. [4] Qin Z W, Goldfarb D, Ma S Q. An alternating direction method for total variation denoising [EB/OL]. [2013-10-05]. http://arxiv.org/pdf/1108.1587.pdf. [5] Wang Y, Yang J, Yin W T, et al. A new alternating minimization algorithm for total variation image reconstruction [J]. SIAM Journal on Imaging Sciences, 2008, 1: 248-272. [6] Yuan X M. Alternating direction methods for sparse covariance selection selection [EB/OL]. [2013-09-10]. http://www.optimization-online.org/db FILE/2009/09/2390.pdf [7] Goldfarb D, Ma S Q. Fast multiple splitting algorithms for convex optimization [J]. SIAM Journal on Optimization, 2012, 222: 533-556. [8] Goldfarb D, Ma S Q, Scheinberg K. Fast alternating linearization methods for minimizing the sum of two convex functions [J]. Mathematical Programming Series A, 2013, 1411-2: 349-382. [9] He B S, Yuan X M. On non-ergodic convergence rate of douglas-rachford alternating direction method of multipliers multipliers [EB/OL]. [2013-10-07]. http://www.math.hkbu.edu.hk1- xmyuan/paper/adm-hy-jan16.pdf. [10] Goldstein T, Donoghue B O, Setzer S, et al. Fast alternating direction optimization methods [R]. California: University of California, Los Angeles, 2012, 12-35. [11] Deng W, Yin W T. On the global and linear convergence of the generalized alternating direction method of multipliers [R]. State of Texas: Rice University, 2012, 12-14. [12] Ma S Q. Alternating proximal gradient method for convex minimization [EB/OL]. [2013-08-20]. http://www.optimization-online.org/db FILE/2012/09/3608.pdf. [13] Zou H, Hastie T. Regularization and variable selection via the elastic net [J]. Journal of the Royal Statistical Society: Series B Statistical Methodology, 2005, 672: 301-320.