Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis



Σχετικά έγγραφα
Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis

ΘΕΜΑ 1. Λύση. V = V x. H θ y O V 1 H/2. (α) Ακίνητος παρατηρητής (Ο) (1) 6 = = (3) 6 (4)

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Ποια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; F N

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

Ποια μπορεί να είναι η κίνηση μετά την κρούση;

Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Το ελαστικο κωνικο εκκρεμε ς

ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 2015

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 15 Νοέµβρη 2015 Φυσική Προσανατολισµού - Μηχανική. Ενδεικτικές Λύσεις. Θέµα Α

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α

4 η Εργασία F o 60 o F 1. 2) ύο δυνάµεις F1

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 3

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο

ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ

2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 4 εκέµβρη 2016 Φυσική Προσανατολισµού - Μηχανική - ΙΙ. Ενδεικτικές Λύσεις. Θέµα Α

ΦΥΣ Διαλ Μη αδρανειακά συστήµατα Φαινοµενικό βάρος

ΦΥΣ Διαλ Δυναµική

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική

ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ

ΣΥΝΟΨΗ 2 ου Μαθήματος

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

5ο ιαγώνισµα - Επαναληπτικό ΙΙ. Θέµα Α

F Στεφάνου Μ. 1 Φυσικός

( ) = T 1 ) (2) ) # T 3 ( ) + T 2 ) = T 3. Ισορροπία Παράδειγµα. ! F! = m! a = 0. ! F y. # F g = 0! T 3 ! T 2. sin( 53 0

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

υ r 1 F r 60 F r A 1

5ο ιαγώνισµα - Επαναληπτικό ΙΙ. Θέµα Α

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

Έργο-Ενέργεια Ασκήσεις Έργου-Ενέργειας Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ Μεταβλητή δύναµη και κίνηση

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

1. Κίνηση Υλικού Σημείου

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις


ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

1. Εισαγωγή στην Κινητική

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Φυσικής Α Τάξης Ενιαίου Λυκείου Κυριακή 17 Μάη Θέµα Α. Ενδεικτικές Λύσεις

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

Στροφορµή. ΦΥΣ Διαλ.25 1

Εισαγωγή στις Φυσικές Επιστήµες - Κλασσική Φυσική Ιούλιος 2003 :

Κυκλική Κίνηση - Οριζόντια βολή

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι. Ενδεικτικές Λύσεις. Θέµα Α

Κεφάλαιο 11 Στροφορµή

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / ΘΕΜΑ Α Α1. α, Α2. α, Α3. β, Α4. γ, Α5. α. Σ, β. Σ, γ. Λ, δ. Σ, ε. Λ.

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!

ΦΥΕ14-5 η Εργασία Παράδοση

ΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι:

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

dv 2 dx v2 m z Β Ο Γ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

Θ.Ε. Εισαγωγή στις Φυσικές Επιστήµες Θέµατα* Τελικών Εξετάσεων στις «Εισαγωγικές Έννοιες Μαθηµατικών» Ιούλιος 2002

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

Εσωτερική Ροπή και Εσωτερική ύναµη

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση

Προσοχή : Να διαβάσετε τις οδηγίες στην τελευταία σελίδα! Θέµα 1ο

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΖΕΥΓΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΦΥΣ Διαλ.13. Παράδειγμα Τάσεων

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΕΡΓΑΣΙΑ 3 η. (αποστολή µέχρι ευτέρα 1/4/ βδοµάδα)

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Οκτωβρίου-2011

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Transcript:

3 Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis 3.1 Αδρανειακά και επιταχυνόµενα συστήµατα αναφοράς Οι δύο πρώτοι νόµοι του Νεύτνα ισχύουν µόνο όταν τα ϕαινόµενα παρατηρούνται µέσα σε µη επιταχυνόµενα συστήµατα αναφοράς. Τότε ένα σώµα µένει ακίνητο εάν δεν ασκείται καµία δύναµη. Αν ϑέλετε να µείνετε ακίνητοι µέσα σε ένα επιταχυνόµενο σύστηµα αναφοράς, π.χ. σε µια ϱόδα του λούνα-πάρκ ή σ ένα λεφορείο, τότε πρέπει να υποστείτε µια δύναµη, από την πλάτη του καθίσµατος στο λεφορείο για παράδειγµα. Ο ϑεµελιώδης νόµος της κλασικής µηχανικής είναι F = ma ή F = m dv Ως προς ποιο σύστηµα αναφοράς µετράµε τα µεγέθη a, v, r; ή F = m d2 r 2 1. Εάν το σύστηµα αναφοράς είναι µη επιταχυνόµενο, τότε αυτή είναι η σχέση ορισµού της δύναµης F (πραγµατικές δυνάµεις) 2. Αντίστροφα, εάν γνρίζουµε την πραγµατική (αληθινή) δύναµη F και σε κάποιο σύστηµα αναφοράς ισχύει µε ακρίβεια ότι F = ma, τότε αυτό είναι ένα αδρανειακό σύστηµα αναφοράς. Η Γη είναι ένα αδρανειακό σύστηµα αναφοράς ; Εξαρτάται από το ϐαθµό προσέγγισης και ακρίβειας του πειράµατος. Η Γη περιστρέφεται γύρ από τον άξονά της σε 24 ώρες, άρα όλα τα σηµεία της Γης έχουν µια γνιακή ταχύτητα. Οταν µετράµε λοιπόν την επιτάχυνση της ϐαρύτητας, δεν ϐρίσκουµε σε όλους τους τόπους την ίδια τιµή. Αυτό είναι το ϕαίνοµενο ϐάρος και µεταβάλλεται από τον Ισηµερινό ς τους πόλους κατά 0, 034 m/s 2, ενώ η συνολική µεταβολή είναι 0, 052 m/s 2 και το υπόλοιπο οφείλεται στο ελλειπτικό σχήµα της Γης. Μέτρηση του g στον Ισηµερινό : Βόρειος Πόλος g π = 9, 8324 m/s 2 Ισηµερινός g Ι = 9, 7810 m/s 2

54 Αδρανειακά και περιστρεφόµενα συστήµατα αναφοράς Ενας απλός τρόπος µέτρησης του g είναι ο ε- ξής. Ενα σώµα ϐρίσκεται σε ισορροπία κρεµασµένο από ένα ελατήριο. Για τον παρατηρητή στο κέντρο της Γης έχουµε B + F ελ = ma k mg + k = m 2 R k = m ( g 2 R ) R B F ελ Η δύναµη του ελατηρίου F ελ = k είναι αυτό που εµείς ονοµάζουµε Βάρος (ϕαινόµενο ϐά- ϱος), άρα µας δίνει τη µετρούµενη σε αυτό τον τόπο επιτάχυνση της ϐαρύτητας Σχήµα 3.1 g = GM R 2 g Ισηµερινού = g 2 R Μέτρηση του g στον πόλο : g πολ = g Ποιο σύστηµα αναφοράς είναι πρακτικά αδρανειακό ; Το σύστηµα τν Απλανών Αστέρν (χρίς απόδειξη). Αστέρια µε επιτάχυνση πειραµατικά µηδέν, επιτάχυνση < 10 6 m/sec 2. Η κεντροµόλος επιτάχυνση ενός σηµείου της Γης ς προς το κέντρο της είναι a κ, Γ 0, 034 m/s 2 ενώ η κεντροµόλος επιτάχυνση της Γης ς προς τον Ηλιο είναι 4, 4 10 3 m/s 2. Το ϕαινόµενο Doppler δίνει την ταχύτητα του Ηλιου ς προς το κέντρου του Γαλαξία µας v 3 10 5 ( m/s R 3 10 20 ) m τελικά η επιτάχυνση του Ηλιου ς προς το κέντρου του Γαλαξία µας (µη ανιχνεύσιµη και αµελητέα) είναι a κ, Η 3 10 10 m/s 2 3.2 Απόλυτη και σχετική επιτάχυνση Μπορούµε λοιπόν να ϐρούµε ένα αδρανειακό σύστηµα αναφοράς µέσα στο οποίο ισχύει F = ma µε µεγάλη ακρίβεια. Οι δυνάµεις (ϐαρυτικές, ηλεκτρικές) που έχουµε επικαλεστεί για να εξηγήσουµε την κίνηση τν άστρν και τν ηλεκτρονίν µείνονται συνεχώς (και ανάλογα µε το τετράγνο της απόστασης) όσο το σώµα αποµακρύνεται από τα γειτονικά του σώµατα. Εάν διαλέξουµε ένα µη αδρανειακό σύστηµα αναφοράς, ϕαίνονται να αναπτύσσονται δυνάµεις που δεν έχουν αυτην την ιδιότητα. Εµφανίζονται λοιπόν υποθετικές δυνάµεις που υπάρχουν µόνο και µόνο επειδή το σύστηµα αναφοράς είναι επιταχυνόµενο. Αδρανειακό σύστηµα αναφοράς: F = ma I όπου a I η επιτάχυνση που µετρά ένας παρατηρητής σε αδρανειακό (inertial) σύστηµα αναφοράς. Επιταχυνόµενο σύστηµα αναφοράς µε επιτάχυνση a 0 : Το σώµα που κινείται έχει επιτάχυνση a ς προς το δεύτερο σύστηµα, εποµένς a I = a + a 0 F = m (a + a 0 ) ma = F ma 0

3.2 Απόλυτη και σχετική επιτάχυνση 55 Εποµένς, έχουµε την εµφάνιση υποθετικής δύναµης (δύναµη αδράνειας) και εάν a = 0 τότε F 0 = ma 0 F + F 0 = 0 το οποίο δηλώνει ισορροπία µέσα στο επιταχυνόµενο σύστηµα αναφοράς. Παράδειγµα Εκκρεµές κρέµεται κατακόρυφα σε όχηµα που ηρεµεί. Οταν το όχηµα κινείται σε οριζόντιο επίπεδο µε επιτάχυνση a 0 = 1 m/s 2, µε ποια γνία ς προς την κατακόρυφο κρέµεται το εκκρεµές ; Πόση είναι η υποθετική δύναµη αδράνειας ; Επιτάχυνση της ϐαρύτητας g = 9, 81m/sec 2. Λύση: Για τον «ακίνητο» παρατηρητή έχουµε T + B = ma 0 Επίσης από κατακόρυφη ισορροπία έχουµε T cos θ = B = mg και από οριζόντια κίνηση B T θ a 0 T sin θ = ma 0 Για τον κινούµενο µε επιτάχυνση a 0 παρατηρητή tan θ = a 0 g Σχήµα 3.2 T + B + F 0 = 0, F 0 = ma 0 ˆ Τι είναι η F 0 ; Πού οφείλεται ; Πουθενά! Παράδειγµα - Πειράµατα µέσα σε ανελκυστήρα Ως προς τον παρατηρητή 1 έχουµε z F + B = ma 1 F = k lẑ B = mgẑ = a 0 ẑ a 0 Το σώµα ϐρίσκεται ακίνητο µέσα στον ανελκυστήρα k l mg = ma 0 k l = m(a 0 + g) 1 a 0 F B 2 Εάν a 0 = g τότε έχουµε l = 0, δηλαδή έχουµε ελεύθερη πτώση. Ως προς τον παρατηρητή 2 έχουµε F + B + F 0 = 0 F + B ϕαινόµενο = 0 Σχήµα 3.3 y F 0 = ma 0, B ϕαινόµενο = B + F 0 Παράδειγµα - Σύστηµα που περιστρέφεται (µε σταθερό) Ενα ϐιβλίο ϐρίσκεται επάν σε ένα τραπέζι. Θέλουµε το ϐιβλίο να παραµένει ακίνητο ς προς το τραπέζι, όταν αυτό περιστρέφεται µε = 20 στροφές/λεπτό. Το ϐιβλίο απέχει απόσταση R = 1, 5 m από τον άξονα περιστροφής, ο οποίος είναι κατακόρυφος. (α) Βρείτε τον συντελεστή τριβής (ϐ) Σχεδιάστε τη δύναµη τριβής και τη ϕυγόκεντρο δύναµη, ς συνάρτηση της απόστασης r.

56 Αδρανειακά και περιστρεφόµενα συστήµατα αναφοράς Λύση: T N B Σχήµα 3.4 Εχουµε N + B = 0 T = ma k T = T ˆr T ma = µn = µb µmg = m 2 R µg = 2 R Για να παραµείνει ακίνητο το σώµα επάν στον περιστρεφόµενο δίσκο, χρειάζεται µια δύναµη. Το σώµα έχει την τάση να κινηθεί εφαπτοµενικώς, δηλαδή κατά µήκος της ταχύτητας, και έτσι αποµακρύνεται από το κέντρο της τροχιάς. Στιγµιαία η κίνηση είναι ακτινική για κάποιον που περιστρέφεται µε το επίπεδο, άρα η τριβή είναι ακτινική. Η τάση του σώµατος να κινηθεί «ακτινικά», δηλαδή προς τα έξ, αποδίδεται σε µια δύναµη (υποθετική δύναµη όπς ϐλέπουµε), τη ϕυγόκεντρο δύναµη F 0 = m 2 r ˆr, F 0 = ma k. F F φυγόκεντρος µmg T R r Σχήµα 3.5

3.2 Απόλυτη και σχετική επιτάχυνση 57 υ=r Σχήµα 3.6: Για ένα µικρό χρονικό διάστηµα t, το τόξο και η ευθύγραµµη κίνηση ταυτίζονται. Παράδειγµα - Περιστρεφόµενο σύστηµα αναφοράς Για τον αδρανειακό παρατηρητή έχουµε a k = m v2 R ˆR = m 2 R ˆR = m 2 R B + F = ma k F cos θ = B F cos θ = mg F sin θ = m 2 R mg sin θ cos θ = m2 R tan θ = 2 R/g θ F θ R B Σχήµα 3.7 Εάν η γνία περιστροφής είναι θ, τότε η περίοδος περιστροφής είναι 2 = g tan θ R, 4π 2 T 2 = g tan θ R, T = 4π 2 R g tan θ Για το µη αδρανειακό παρατηρητή ϑα έχουµε F cos θ = mg F sin θ = F ϕυγόκεντρη

58 Αδρανειακά και περιστρεφόµενα συστήµατα αναφοράς και F + B + F φ = 0 F φ = m 2 R ˆR F φ = ma k προς τα έξ Πρόβληµα θ N F k T a κε B θ Σχήµα 3.8 Ενα κουτί µάζας M είναι ακίνητο σε επιταχυνόµενο όχηµα, σχήµατος κεκλιµένου επιπέδου. Εάν ο συντελεστής τριβής µεταξύ κουτιού και κεκλιµένου επιπέδου είναι µ, (α) να ϐρείτε τη µέγιστη επιτάχυνση a κε για να µένει ακίνητο το κουτί στο κινούµενο κεκλιµένο επίπεδο. (ϐ) εάν η επιτάχυνση του κεκλιµένου επιπέδου γίνει µεγαλύτερη, µε πόση επιτάχυνση κινείται το κουτί ς προς το κεκλιµένο επίπεδο ; Λύση: (α) Σχεδιάστε την υποθετική δύναµη F k : F k = ma κε F k + N + T + B = 0, T ma = µn (ϐ) F k + N + T + B = ma όπου το a είναι παράλληλο στο κεκλιµένο επίπεδο. T = T ma = µn κάθετα στο κεκλιµένο επίπεδο : παράλληλα στο κεκλιµένο επίπεδο : N = B cos θ + F k sin θ ma = B sin θ + F k cos θ T a = a κε (cos θ µ sin θ) g (sin θ + µ cos θ) 3.2.1 Μηχανή του Atwood Ο ανελκυστήρας κινείται προς τα κάτ µε επιτάχυνση a. Εστ m B > m A και a g. Για το µη αδρανειακό παρατηρητή, ο οποίος ϐλέπει επιτάχυνση γ, έχουµε Σώµα Α : T + m A a m A g = m A γ Σώµα Β: T m B a + m B g = m B γ

3.3 Απόλυτη και σχετική ταχύτητα 59 γ T γ m A T B A m B α B B Σχήµα 3.9 (m A m B )(a g) = (m A + m B )γ γ = m B m A m B + m A (g a), Για την περίπτση όπου a > g έχουµε για το σώµα Α και το σώµα Β: T + m A g m A a = m A γ T m B g + m B a = m B γ a g (m A m B )g (m A m B )a = (m A + m B )γ γ = (m A m B )(g a) m A + m B = (m B m A )(a g) m B + m A γ m A T B A T BB m B γ α a>g Σχήµα 3.10 3.3 Απόλυτη και σχετική ταχύτητα Σύµφνα µε όλα τα πειράµατα που έχουν γίνει ς τώρα, η απόλυτη ταχύτητα δεν έχει ϕυσικό νόηµα. Θεµελιώδης υπόθεση του Γαλιλαίου «Οι ϐασικοί νόµοι της ϕυσικής είναι ταυτόσηµοι για όλα τα συστήµατα αναφοράς που κινούνται µε οµοιό- µορφη ταχύτητα το ένα ς προς το άλλο.» Παρατηρητής σε εργαστήριο χρίς παράθυρα δεν µπορεί να αποφανθεί εάν κινείται ή είναι ακίνητος (σταθερή ταχύτητα) ς προς το αδρανειακό σύστηµα αναφοράς τν απλανών αστέρν.

60 Αδρανειακά και περιστρεφόµενα συστήµατα αναφοράς Εάν λοιπόν δύο παρατηρητές παρακολουθούν κάποιο ϕαινόµενο, και κινούνται µε σχετική ταχύτητα σταθερή, τότε µε τη ϐοήθεια τν νόµν της ϕυσικής µπορούµε να προβλέψουµε τις µετρήσεις του δεύτερου παρατηρητή, εάν ξέρουµε τις µετρήσεις του πρώτου. 3.4 Μετασχηµατισµός Γαλιλαίου Εχουµε δύο αδρανειακά καρτεσιανά συστήµατα συντεταγµένν S και S. Παίρνουµε για απλότητα, y y, z z. Το S κινείται ς προς το S µε v = v ˆ και προφανώς v σταθερή. 1. Εάν έχουµε δύο σειρές ϱολογιών που είναι πανοµοιότυπα, µια σειρά στο S και µία στο S κατά µήκος τν αξόνν και, και συγχρονισµένα µεταξύ τους, δείχνουν όλα την ίδια ώρα για κάθε σύστηµα αναφοράς. Τότε µπορούµε να συγκρίνουµε την ένδειξη τν ϱολογιών του S µε τα ϱολόγια του S, και έχουµε όταν ϐέβαια για παράδειγµα v = 10 4 m/s. t t v 3 10 8 m/s = c 2. εάν έχουµε έναν χάρακα µήκους L, όπς τον µετράµε στο σύστηµα S όπου είναι ακίνητος, τότε ορίζοντας σαν µήκος L του χάρακα στο σύστηµα S τη ϑέση τν άκρν του την ίδια χρονική στιγµή, έχουµε L L 3.4.1 Εξισώσεις µετασχηµατισµού Γαλιλαίου Εάν t = 0 όταν t = 0 και τα άκρα τν δύο συστηµάτν ταυτίζονται, τότε Άρα για την πρόσθεση τν ταχυτήτν έχουµε t = t, = + vt, y = y, z = z u = d = d = d + v = u + v u y = u y u z = u z u = u + v Ακόµη a = u t, u = u a = a F = ma = ma = F a = u t, t = t Εάν το τονούµενο σύστηµα αναφοράς S κινείται µε επιτάχυνση a 0 και αρχική ταχύτητα v κατά µήκος του άξονα τν, ς προς το αδρανειακό σύστηµα αναφοράς S, τότε t = t, = + vt + 1 2 a 0t 2, y = y, z = z Για τον νόµο του Νεύτνα στο αδρανειακό σύστηµα αναφοράς έχουµε F = m d2 2, Ενώ για το µη αδρανειακό σύστηµα αναφοράς ισχύει και d 2 2 F y = m d2 y 2, F z = m d2 z 2 = d2 2 a 0 m d2 2 = md2 2 ma 0 = F ma 0 m d2 y 2 = y md2 2 = F y, m d2 z 2 = z md2 2 = F z Για τον µη αδρανειακό παρατηρητή εµφανίζεται λοιπόν στις εξισώσεις κίνησης µία πρόσθετη υποθετική δύναµη F 0 = ma 0 ανάλογη της επιτάχυνσης του µη αδρανειακού συστήµατος αναφοράς.

3.5 ιατήρηση της ορµής 61 3.5 ιατήρηση της ορµής Ο νόµος διατήρησης της ορµής «αποδείχθηκε» χρησιµοποιώντας την αρχή της ράσης-αντίδρασης που απαιτεί άπειρη ταχύτητα αλληλεπίδρασης. Α. Μπορούµε να τον επαναδιατυπώσουµε ή «αποδείξουµε» από την Αρχή του Γαλιλαίου για το αναλλοίτο τν νόµν και τις Αρχές ιατήρησης της ενέργειας και µάζας. Εστ δύο σώµατα 1 και 2, αρχικά ελεύθερα, µε ταχύτητες v 1 και v 2. Μετά την κρούση έχουν ταχύτητες w 1 και w 2. Νόµος διατήρησης της ενέργειας (στο σύστηµα S): 1 2 m 1v 2 1 + 1 2 m 2v 2 2 = 1 2 m 1w 2 1 + 1 2 m 2w 2 2 + ε (3.1) Η ενέργεια ε παριστάνει τη µεταβολή στην εστερική ενέργεια τν δύο σµάτν και είναι αναλλοίτη ποσότητα, όπς δείχνει το πείραµα. Νόµος διατήρησης της ενέργειας (στο σύστηµα S ): Μετασχηµατισµός ταχυτήτν (µεταξύ S και S ): 1 2 m 1v 2 1 + 1 2 m 2v 2 2 = 1 2 m 1w 2 1 + 1 2 m 2w 2 2 + ε (3.2) v 1 = v + v 1 w 1 = v + w 1 (3.3) v 2 = v + v 2 w 2 = v + w 2 Αντικαθιστούµε την (3.3) στην (3.2), δεχόµαστε την (3.1) και παίρνουµε (m 1 v 1 + m 2 v 2 ) v = (m 1 w 1 + m 2 w 2 ) v για κάθε v. Άρα m 1 v 1 + m 2 v 2 = m 1 w 1 + m 2 w 2 (3.4) Αρχή ιατήρησης της ορµής. Εποµένς Αναλλοίτο + Αρχή ιατήρησης της ενέργειας Αρχή ιατήρησης της ορµής Β. Εάν σε ένα σύστηµα έχουµε 1. Αρχή διατήρησης ενέργειας 2. Αρχή διατήρησης ορµής και το αναλλοίτο τν νόµν σύµφνα µε τους µετασχηµατισµούς Γαλιλαίου για δύο αδρανειακά συστήµατα αναφοράς, τότε αποδεικνύεται ότι ισχύουν τα (3.2) και (3.4) σε οποιοδήποτε άλλο αδρανειακό σύστηµα αναφοράς. Πρόβληµα - Εφαρµογή Μέσα σε ένα όχηµα που κινείται σε σιδηροτροχιές, σε ευθεία γραµµή και µε ταχύτητα 5 m/s, έχουµε κρούση µιας µάζας Α, 0, 1 kgr που κινείται µε ταχύτητα 1 m/s στην ίδια κατεύθυνση µε το όχηµα µε µια δεύτερη µάζα Β, 0, 05 kgr που κινείται µε ταχύτητα 5 m/s σε κατεύθυνση αντίθετη του οχήµατος. Οι ταχύτητες τν δύο µαζών αναφέρονται ς προς το όχηµα. Μετά την κρούση η µάζα Β ϐρίσκεται ακίνητη µέσα στο όχηµα. (α) Ποια είναι η ταχύτητα της µάζας Α ; Πόση κινητική ενέργεια χάθηκε ; (ϐ) Τι ϐλέπει ένας παρατηρητής ακίνητος ς προς τις σιδηροτροχιές ;

62 Αδρανειακά και περιστρεφόµενα συστήµατα αναφοράς A B S S Σχήµα 3.11 Λύση: (α) Εχουµε v Α = 1 m/s ˆ v }{{} Β = 5 m/s ˆ v Β = 0 }{{} προ µετά ˆv Α =? = 1, 5 m/s ˆ Από διατήρηση ορµής έχουµε m A v A + m B v B = m A v A + m B v B 0, 1 1 0, 05 5 = 0, 1 v A + 0 v A = 0, 1 0, 25 0, 1 0, 15 = 0, 1 (ϐ) Ακίνητος παρατηρητής E κιν (προ) = 1 2 m Av 2 A + 1 2 m Bv 2 B = 1350 2000 Kgr m2 /s 2 } {{ } Joule E κιν (µετά) = 1 2 m Av 2 A + 1 2 m Bv 2 B = 225 2000 Joule E k = E κιν(µετά) E κιν(προ) = 1125 2000 Joule E k < 0 χάθηκε ενέργεια u A = v 0 + v A = 6 m/sec ˆ u B = v 0 + v B = 0 u A = v 0 + v A = 3, 5 m/sec ˆ u B = v 0 + v B = 5 m/sec ˆ p προ = p µετά, µας δίνει τα ίδια αποτελέσµατα E S κιν(προ) = 1 2 m Au 2 A + 1 2 m Bu 2 B = 3600 2000 Joule E S κιν(µετά) = 1 2 m Au 2 A + 1 2 m Bu 2 B = 2475 2000 Joule E S k = E κιν(µετά) E κιν(προ) = 1125 2000 E S k = E κ(τρένο) Χάθηκε ενέργεια κατά την κρούση από τις εστερικές δυνάµεις τριβής, πραγµατικές δυνάµεις.

3.6 Περιστρεφόµενα Συστήµατα Αναφοράς - ύναµη Coriolis 63 3.6 Περιστρεφόµενα Συστήµατα Αναφοράς - ύναµη Coriolis 3.6.1 Σχετικά προβλήµατα Πρόβληµα 1 Ενα έντοµο κινείται µε ταχύτητα v κατά µήκος ϱάβδου που περιστρέφεται γύρ από το ένα άκρο της, ο άξονας περιστροφής είναι κάθετος της ϱάβδου. Η γνιακή ταχύτητα περιστροφής της ϱάβδου ς προς την επιφάνεια της Γης είναι. Υπολογίστε την ταχύτητα και την επιτάχυνση του εντόµου ς προς την επιφάνεια της Γης. Πρόβληµα 2 Λεπτή ϱάβδος µήκους L περιστρέφεται µε γνιακή ταχύτητα, σε οριζόντιο επίπεδο, γύρ από κατακόρυφο άξονα που διέρχεται από το ένα άκρο της. Κατά µήκος της ϱάβδου κυλά, χρίς τριβή, σφαιρίδιο µάζας m, το οποίο ξεκινά από το σταθερό άκρο της ϱάβδου µε αρχική ταχύτητα v 0. Πότε ϕθάνει στο L; Πόση δύναµη ασκεί η ϱάβδος στο σφαιρίδιο Πρόβληµα 3 Πόση είναι η οριζόντια απόκλιση ενός σώµατος που πέφτει κατακόρυφα στον Ισηµερινό λόγ της επιτάχυνσης Coriolis; Πρόβληµα 4 Λεπτή ϱάβδος µήκους L = 1 m περιστρέφεται µε γνιακή ταχύτητα = 10 rad/sec σε οριζόντιο επίπεδο, γύρ από κατακόρυφο άξονα που διέρχεται από το ένα άκρο της, Ρ. Σε εστερική ορθογώνια εσοχή και κατά µήκος της ϱάβδου µπορεί να κυλά, χρίς τριβή, σφαιρίδιο µάζας M = 1 Kgr. Το σφαιρίδιο είναι προσαρτηµένο στην άκρη αβαρούς ελατηρίου ϕυσικού µήκους L/2 και σταθεράς K = 1200 Nt/m. Το άλλο άκρο του ελατηρίου έχει καρφθεί στο περιστρεφόµενο άκρο Ρ της ϱάβδου. Εστ ότι τη χρονική στιγµή t = 0 το σφαιρίδιο ϐρίσκεται σε απόσταση L/3 από το Ρ και έχει ταχύτητα v 0 = 5 m/sec µε ϕορά από το Ρ προς το Ρ. (α) Υπολογίστε και σχεδιάστε τις δυνάµεις που δέχεται το σφαιρίδιο για t = 0, όπς αυτές τις µετράει ακίνητος παρατηρητής. (ϐ) Υπολογίστε και σχεδιάστε τις δυνάµεις που δέχεται το σφαιρίδιο για t = 0, όπς αυτές τις µετράει παρατηρητής Π που περιστρέφεται µαζί µε τη ϱάβδο. (γ) είξτε ότι σύµφνα µε τον Π, η ολική δύναµη που ασκείται στο σφαιρίδιο µηδενίζεται όταν αυτό ϐρίσκεται σε κάποιο σηµείο Α της ϱάβδου. (δ) είξτε ότι η κίνηση του σφαιριδίου ς προς τον παρατηρητή Π είναι αρµονική ταλάντση γύρ από το σηµείο Α και ϐρείτε την κυκλική της συχνότητα. z Ρ y L Σχήµα 3.12 Ρ 3.6.2 ύναµη Coriolis Εστ ένα στερεό σώµα (πχ. η Γη) το οποίο περιστρέφεται µε γνιακή ταχύτητα γύρ από ένα σταθερό σηµείο Ο.

64 Αδρανειακά και περιστρεφόµενα συστήµατα αναφοράς Στο σηµείο Ρ ένα σµατίδιο κινείται µε ταχύτητα u ς προς το ακίνητο σύστηµα αναφοράς (, y, z) u = dr Πόση είναι η ταχύτητα του σµατιδίου στο σηµείο Ρ ς προς το τοπικό περιστρεφόµενο, µε το στερεό σώµα, σύστηµα αναφοράς (, y, z ); Πώς συνδέονται οι δύο µετρήσεις ; z R z r r y Ρ y Σχήµα 3.13 r = R + r r = ˆ + y ŷ + z ẑ ( ) dr u = η ταχύτητα του Ρ ς προς τον Ο v = d ˆ + dy ŷ + dz ẑ η ταχύτητα του Ρ ς προς το τοπικό σύστηµα αναφοράς. ( ) dr v = ( ) dr = ( ) dr + v + d dy dz + y + z } {{ } µεταβολή του r λόγ περιστροφής του Είναι ισοδύναµο µε την περιστροφή του ς προς το Ρ κατά ( ) ϑερώντας το Ρ στιγµιαία ακίνητο = r. ( ) dr = R διότι r = R + r. u = v + r ds = R sin θdφ ds dφ = R sin θ = R sin θ ds = R, ds (, R) ( dr ds = R(t + ) R(t) = dr ) = R

3.6 Περιστρεφόµενα Συστήµατα Αναφοράς - ύναµη Coriolis 65 dφ ds θ R(t+) R(t) Σχήµα 3.14 Πόση είναι η επιτάχυνση του σµατιδίου στο σύστηµα ; Πώς συνδέονται οι µετρήσεις στα δύο συστήµατα και ; ( ) du a = είναι η επιτάχυνση του σµατιδίου Ρ στο «αδρανειακό» σύστηµα αναφοράς Ο. Για την επιτάχυνση γ στο περιστρεφόµενο σύστηµα αναφοράς έχουµε γ = dv ˆ + dv ( ) y dv y z dv + z = είναι η µεταβολή της ταχύτητας v ς προς τον. ( ) ( ) ( ) du dv dr = + } {{ } } {{ } (?) (v+ r) διότι υποθέσαµε d = 0 ( ) dv = ( ) dv + v όπου v είναι η µεταβολή της ταχύτητας του σµατιδίου Ρ ς προς το χρόνο λόγ περιστροφής του συστήµατος αναφοράς, υποθέτοντας ότι στιγµιαία το Ρ έχει σταθερή ταχύτητα v ς προς το κινούµενο σύστηµα αναφοράς. Εποµένς έχουµε a = γ + 2 ( v) + ( r) F = ma F = mγ + 2m v + m ( r) mγ = F 2m v m ( r) F Coriolis = 2m v όπου v η ταχύτητα κινητού ς προς την περιστρεφόµενη Γη και το διάνυσµα περιστροφής της Γης. F ϕυγόκεντρος = m ( r) είναι η ϕυγόκεντρος δύναµη λόγ περιστροφής, και γ είναι η επιτάχυνση στο κινούµενο σύστηµα αναφοράς. Εφαρµογή : = ẑ Σχετική κίνηση επάν στο επίπεδο (, y), ή ϑέτοντάς το αλλιώς, γύρ από τον Ισηµερινό της Γης. Το σύστηµα αναφοράς (, y ) περιστρέφεται µε σταθερή γνιακή ταχύτητα, ς προς το ακίνητο αδρανειακό σύστηµα αναφοράς (, y). Το σηµείο P έχει συντεταγµένες (, y) ή (, y ) = ( R, y R ). για τα µοναδιαία διανύσµατα (δες σχήµα) ισχύει r = ˆ + yŷ = R ˆ + y R ŷ

66 Αδρανειακά και περιστρεφόµενα συστήµατα αναφοράς ˆ = aˆ + βŷ όπου a = ˆ ˆ = cos φ = cos(t), β = ŷ ŷ = sin φ = sin(t) τελικά έχουµε : y φ y φ=t ˆ = ˆ cos(t) + ŷ sin(t) ŷ = ˆ sin(t) + ŷ cos(t) Οι συντεταγµένες του P ικανοποιούν τις σχέσεις = R cos(t) y R sin(t), y = R sin(t)+y R cos(t) z = z R y y =y R y Ρ(t) = R φ=t Σχήµα 3.15 Για την ταχύτητα u του σηµείου P στα δύο συστήµατα αναφοράς έχουµε ορίζοντας d = ẋ, dy = ẏ ϐρίσκουµε και ẋ = ẋ R cos(t) R sin(t) ẏ R sin(t) y R cos(t) ẏ = ẋ R sin(t) + R cos(t) + ẏ R cos(t) y R sin(t) u = ẋˆ + ẏŷ = ẋ R ˆ + ẏ R ŷ ˆ ẏ R + ŷ ẋ R = v + r όπου v = ẋ R ˆ + ẏ R ŷ. Για την επιτάχυνση a ϐρίσκουµε ẍ = ẍ R cos(t) 2ẋ R sin(t) 2 R cos(t) ÿ R sin(t) 2ẏ R cos(t) + 2 y R sin(t) ÿ = ẍ R sin(t) + 2ẋ R cos(t) 2 R sin(t) + ÿ R cos(t) 2ẏ R sin(t) 2 y R cos(t) a = ẍˆ + ÿŷ = ẍ R ˆ + ÿ R ŷ + 2ẋ R ŷ 2ẏ R ˆ 2 R ˆ 2 y R ŷ = γ + 2 v 2 r

3.6 Περιστρεφόµενα Συστήµατα Αναφοράς - ύναµη Coriolis 67 όπου γ = ẍ R ˆ + ÿ R ŷ. Πρόβληµα 1 ˆ ŷ ẑ v = 0 0 = ˆ ẏ R + ŷ ẋ R ẋ R ẏ R 0 ˆ ŷ ẑ r = 0 0 = ˆ y R + ŷ R R y R 0 ˆ ŷ ẑ ( r) = 0 0 = ˆ 2 R ŷ 2 y R = 2 r y R R 0 Ταυτίζουµε τη ϱάβδο µε τον άξονα που περιστρέφεται µε γνιακή ταχύτητα. Εχουµε όπου v = ẋ R ˆ, γ = ẍ R ˆ, r = R ˆ ˆ = ˆ cos(t) + ŷ sin(t) ŷ = ˆ sin(t) + ŷ cos(t) διότι R = vt, γ = 0. { u u y u = v + r = v cos(t) R sin(t) = v sin(t) + R cos(t) 0 a = 2 v + ( r) } {{ } + γ 2 r a = γ cos(t) 0 2v sin(t) 2 R cos(t) a y = γ sin(t) 0 + 2v cos(t) 2 R sin(t) y y υ θ=t Σχήµα 3.16 Ισοδύναµα σε πολικές συντεταγµένες έχουµε : Πρόβληµα 2 u = dr = dr dθ ˆr + r ˆθ = v ˆr + r ˆθ = v }{{} ˆr ˆ + r a = du = r(dθ )2 ˆr + 2 dr dθ ˆθ = r 2 ˆr + 2v ˆθ = 2 r + 2 v

68 Αδρανειακά και περιστρεφόµενα συστήµατα αναφοράς Λύση: (1) y L F υ Σχήµα 3.17 F = ma a = ( r r θ 2) ˆr + θ = dθ = σταθερή ( 2ṙ θ + r θ) ˆθ Η δύναµη F είναι κάθετη στη ϱάβδο, ασκείται από τη ϱάβδο στο σφαιρίδιο, διότι δεν υπάρχει τριβή, εποµένς F = F ˆθ ( r 2 r = 0 και m 2ṙ θ ) + r θ = F F = 2mṙ r = 2 r r = Ae t + Be t dr = v 0 v 0 = A B = (A B) και r(t = 0) = 0 A + B = 0 t=0 A = B v 0 = 2A A = v 0 2 r(t) = v 0 ( e t e t) = v 0 2 sinh(t) για t = t 0 στο σφαιρίδιο ϕτάνει στο άκρο L της ϱάβδου, εποµένς L = v 0 sinh(t 0) Λύση: (2) mγ = F 2m v m ( r) = ẑ, r = rˆr, v = dr ˆr, γ = d2 r 2 ˆr Η ταχύτητα v του σφαιριδίου είναι κατά µήκος της ϱάβδου για τον περιστρεφόµενο παρατηρητή, το ίδιο και η επιτάχυνση γ. v = ṙẑ ˆr = ṙ ˆθ από τις οποίες προκύπτουν F = F ˆθ, ( r) = 2 rˆr m r = m 2 r r = 2 r (3.5) F 2mṙ = 0 F = 2mṙ

3.6 Περιστρεφόµενα Συστήµατα Αναφοράς - ύναµη Coriolis 69 Από την (3.5) παίρνουµε r(t) = Ae t + Be t όπς προηγουµένς στη λύση 1. Τα r, v και γ είναι αντίστοιχα η ϑέση, η ταχύτητα και η επιτάχυνση, όπς τα ϐλέπει ο περιστρεφόµενος παρατηρητής. Πρόβληµα 3 y Σχήµα 3.18 υ z v είναι η ταχύτητα σώµατος που πέφτει τοπικά. v = vẑ Επιτάχυνση Coriolis για τον κιν. παρατηρητή = 2 v = +2vŷ ẑ = 2v ˆ εποµένς η εξίσση του Νεύτνα για τον κινούµενο παρατηρητή είναι d 2 2 = 2v Προσεγγιστικά η ταχύτητα v = gt, διότι το σώµα πέφτει µε επιτάχυνση την επιτάχυνση της ϐαρύτητας g στον ισηµερινό (ϕαινόµενο g) d2 d(t = 0) = 2gt µε τη συνθήκη = 0 2 d = gt2 (ολοκλήρση) Για ελεύθερη πτώση από ύψος h = (1/2)gt 2. = 1 3 gt3 = 1 3 g ( 2h g ) 3/2 εύτερη µατιά στο ίδιο ϑέµα : Ταυτίζουµε την ακτινική διεύθυνση µε τον άξονα z mγ = F 2m v m ( r) F = mg ˆr mgẑ r (R + z)ẑ + ˆ Rẑ + (zẑ + ˆ) ( r) = 2 r 2 (R + z) ẑ 0 ( r) 2 Rẑ v = v ˆ + v z ẑ ˆ ŷ ẑ v = 0 0 = ˆv z ẑv v 0 v z

70 Αδρανειακά και περιστρεφόµενα συστήµατα αναφοράς r Σχήµα 3.19 m dv z = mg + 2mv + m 2 R m dv = 2mv z m dv z = m ( g 2 R ) = mg ϕαινόµενο, v 0 όπου το v είναι αµελητέο ς προς το g ϕ!!! (αποσύζευξη τν εξισώσεν) Πρόβληµα 4 dv z = g ϕ v z = g ϕ t dv = 2g ϕt v = g ϕ t 2 d = g ϕt 2 (t) (0) = 1 3 g ϕt 3 y F ρ F ελ Ρ Ρ Ρ υ 0 Σχήµα 3.20 (α) Για τη χρονική στιγµή t = 0 έχουµε Για τον ακίνητο παρατηρητή ισχύει F ελ = k l = k ( 2L 3 L ) = 200 Nt 2 F = Ma = M ( r r 2) ˆr + 2M dr ˆθ v 0 = dr και F ϱ = F ϱ ˆθ = 2Mv0 = 100 Nt (ϐ) Για παρατηρητή περιστρεφόµενο µαζί µε τη ϱάβδο ισχύει Για τη χρονική στιγµή t = 0 έχουµε Mγ = F 2M v M ( r) F = F ελ ˆr + F ϱ ˆθ F Coriolis = 2M v = 2M dr dr ˆ ˆr = 2M ˆθ F ϕυγόκεντρος = M ( r) = M 2 r ˆr F ελ = 200 Nt F Coriolis = 2Mv 0 = 100 Nt F ϕυγόκεντρος = 100 3 Nt

3.6 Περιστρεφόµενα Συστήµατα Αναφοράς - ύναµη Coriolis 71 κι εφόσον η επιτάχυνση γ δεν έχει ˆθ συνιστώσα : γ = d2 r ˆr 2 F ϱ 2M dr = 0 F ϱ = 2Mv 0 = 100 Nt (γ) ύναµη ακτινική κατά µήκος της ϱάβδου (δ) M d2 r 2 = F ελ + M 2 r επιτάχυνση µηδέν F ελ + M 2 r 0 = 0 ( ) L όπου F ελ = k 2 r ( ) L k 2 r 0 + M 2 r 0 = 0 k L 2 = ( k M 2) r 0 για τη ϑέση ισορροπίας r 0 = k(l/2) k M 2 = r Ισορροπίας r Ι = 6 11 m ( ) L Mr = k 2 r + M 2 r = ( k M 2) + kl 2 = ( k M 2) r + ( k M 2) r 0 = ( k M 2) (r r 0 ) δηλαδή έχουµε ταλάντση µε συχνότητα = r r 0 M = D όπου D = k M 2 = D M = 2 0 2 0 = k M2 M = k M 2 > 0 γύρ από το σηµείο ισορροπίας r 0. 2 0 = (1200 100)sec 2 = 1100 sec 2 0 = 1100 sec 1

72 Αδρανειακά και περιστρεφόµενα συστήµατα αναφοράς