Η τέχνη των Μαθηματικών και τα Μαθηματικά της τέχνης



Σχετικά έγγραφα
ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

Project Α Λυκείου. Ομάδα 3 η Θέμα: Μαθηματικά στην Ακρόπολη Χρυσή τομή- ο αριθμός φ

Υποομάδα 3 Θέμα: Χρυσός Αριθμός Φ- Χρυσή Τομή

0,1,1,2,3,5,8,13,21,34,55,89...

Ο χρυσός αριθμός φ. Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ΤΑΞΗ Ε. Pc8 ΝΤΙΝΟΣ & ΒΑΣΙΛΙΚΗ Η ΙΣΤΟΡΙΑ ΤΗΣ ΑΚΡΟΠΟΛΗΣ

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Χρυσή τομή. 3.1 Εισαγωγή

Μυρτώ Παπαδοπούλου Ισαβέλλα Παπαδοπούλου Ά3α

Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΖΩΓΡΑΦΙΚΗ

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

Ο Παρθενώνας, ναός χτισμένος προς τιμήν της Αθηνάς, προστάτιδας της πόλης της Αθήνας, υπήρξε το αποτέλεσμα της συνεργασίας σημαντικών αρχιτεκτόνων

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Λουλούδια και Αριθμοί. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ ΣΤΡΟΒΟΛΟΥ Εργασία της Σοφίας Ευαγγέλου A 3 Καθηγήτρια : Ελένη Μελαχροινού

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του

Βασικές Γεωμετρικές έννοιες

Κανονικά πολύγωνα Τουρναβίτης Στέργιος

Ιωάννης Σ. Μιχέλης Μαθηματικός

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

Ιωάννης Σ. Μιχέλης Μαθηματικός

Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ. Ηρεμία, στατικότατα, σταθερότητα

Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή»

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci»

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ»

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Ερωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά.

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013

ιαχειριστής Έργου ΣΟΥΓΑΡΗΣ ΙΩΑΝΝΗΣ Ιούνιος 14

1 ΘΕΩΡΙΑΣ...με απάντηση

Μαθηματικά προσανατολισμού Β Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΜΠΥΛΕΣ

Φύση και Μαθηματικά. Η χρυσή τομή φ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

Ακρόπολη. Υπεύθυνος Καθηγητής: Κος Βογιατζής Δ. Οι Μαθητές: Τριτσαρώλης Γιώργος. Τριαντόπουλος Θέμης. Ζάχος Γιάννης. Παληάμπελος Αλέξανδρος

Ο Πυθαγόρας ήταν ο πρώτος που διατύπωσε τον μαθηματικό ορισμό της αναλογίας χρησιμοποιώντας δύο ευθύγραμμα τμήματα.

ΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ

Ευκλείδεια Γεωμετρία

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

Σταυρούλα Πατσιομίτου

6 Γεωμετρικές κατασκευές

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1

Διήμερη εκδρομή στην Αθήνα

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

Transcript:

Η τέχνη των Μαθηματικών και τα Μαθηματικά της τέχνης Γεωμετρία και Τέχνη από την Αρχαιότητα έως σήμερα! Η έρευνά μας εστίασε στην εξελικτική πορεία της Τέχνης και τη συνεχή αλληλεπίδρασή της με θεμελιώδεις μαθηματικές έννοιες.

Στόχοι ερευνητικής εργασίας: ΔΙΕΡΕΥΝΟΥΜΕ: Με ποιον τρόπο και σε ποιο βαθμό επέδρασε η μαθηματική σκέψη σε διάφορες μορφές Τέχνης [Γλυπτική, Ζωγραφική, Μουσική, Αρχιτεκτονική..] και ποια τα αποτελέσματά της; Ποιοι μεγάλοι μαθηματικοί και με ποιον τρόπο έθεσαν τις βάσεις για την ανάπτυξη των θετικών αλλά και πολλών θεωρητικών επιστημών; Πώς συνδέονται η αρμονία και η συμμετρία στη φύση με το άρτιο αισθητικά αποτέλεσμα; Πώς συνδέεται η μουσική αρμονία με τους Πυθαγόρειους, τη χρυσή τομή και άλλες μαθημ. έννοιες; Σε ποιο βαθμό.επιτυγχάνεται μέσω διαθεματικών/ διεπιστημονικών προσεγγίσεων και καινοτόμων δραστηριοτήτων βελτίωση της σχέσης των μαθητών με τα μαθηματικά;

PROJECT A3

Ο χρυσός αριθμός και οι «όμορφες» ιδιότητές του Ο αριθμός Φ=1,618033989 ονομάζεται χρυσός αριθμός και συμβολίζεται με Φ προς τιμή του μεγάλου γλύπτη Φειδία. ΟΜΟΡΦΕΣ ΙΔΙΟΤΗΤΕΣ 5 1 1) 1,618033989 2 2) 1 0,618033989 Φ 3) Φ2 Φ 1 5 1 2 4) Φ 1 1 1 1 1 1 1 1 5) 1 1 1 1 1

Τι είναι η χρυσή αναλογία και τι η χρυσή τομή; A Γ B Γ A B Το σημείο Γ χωρίζει το ευθύγραμμο τμήμα ΑΒ στη χρυσή αναλογία: ΓΑ ΑΒ 1,618033989 ΓΒ ΓΑ δηλαδή η διαίρεση όλου του τμήματος ΑΒ με το μεγαλύτερο τμήμα ΓΑ να δίνει το ίδιο πηλίκο με τη διαίρεση του μεγάλου τμήματος ΓA με το μικρό τμήμα ΓB. Το σημείο Γ ονομάζεται χρυσή τομή του τμήματος ΑΒ.

Τι είναι η ακολουθία Fibonacci; Η ακολουθία αριθμών στην οποία ο κάθε αριθμός είναι ίσος με το άθροισμα των δύο προηγούμενων είναι γνωστή ως ακολουθία Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,... Επιπλέον, ο λόγος δύο διαδοχικών αριθμών της ακολουθίας τείνει προς την αποκαλούμενη Χρυσή Τομή, ή Χρυσή αναλογία, ή Αριθμό φ =1.618033989. Ο αντίστροφος της Χρυσής Τομής 1/φ = 0.618033989, με αποτέλεσμα να ισχύει: 1/φ=φ-1. Ένα ορθογώνιο τετράπλευρο του οποίου ο λόγος των πλευρών είναι ίσος με 1/φ ονομάζεται Χρυσό Ορθογώνιο. 1,618033989 1

Πως κατασκευάζεται ένα χρυσό ορθογώνιο; Κατασκευάζουμε τετράγωνο με πλευρά ίση με 1. Το χωρίζουμε σε δύο ίσα μέρη - ορθογώνια. Σχεδιάζουμε τη διαγώνιο του ενός από τα δύο ορθογώνια. Με κέντρο το μέσο της πλευράς του τετραγώνου και ακτίνα τη διαγώνιο αυτή γράφουμε κύκλο.

ΠΥΡΑΜΙΔΕΣ

Οι πυραμίδες της Γκίζας, Τέταρτη Δυναστεία, 27232563π.Χ.

ΤΟ ΑΙΓΥΠΤΙΑΚΟ ΤΡΙΓΩΝΟ Το Αιγυπτιακό τρίγωνο Εάν πάρουμε μια διαγώνιο της πυραμίδας τότε παίρνουμε ένα τρίγωνο, το αιγυπτιακό τρίγωνο. Αυτό το τρίγωνο είναι ειδικό γιατί περιέχει την χρυσή τομή. Συγκεκριμένα ο λόγος του παράπλευρου ύψους της πυραμίδας h προς την μισή βάση b είναι σε χρυσή αναλογία. Πράγματι οι διαστάσεις της πυραμίδας είναι: Ύψος=146,515 m και η βάση= 230,363 m Eπομένως η μισή βάση είναι = 230,363 m/ 2 = 115,182 m Διαιρώντας το παράπλευρο ύψος με το μισό της βάσης έχουμε 186,369/ 115,182 =1,61804 Επομένως όντως η Μεγάλη πυραμίδα περιέχει την χρυσή αναλογία.

ΠΥΡΑΜΙΔΕΣ Το ύψος, 147,649 μ., αν πολλαπλασιαστεί επί ένα δις, δίνει με μεγάλη προσέγγιση την απόσταση Γης-Ήλιου. Το βάρος της πυραμίδας το οποίο είναι 5.273.000 τόνοι, με την προσθήκη 15 μηδενικών μας δίνει το βάρος της γης. Αν πολλαπλασιάσουμε το ύψος της πυραμίδας με το δέκα και υψώσουμε το γινόμενο στην 9η δύναμη θα βρούμε την απόσταση Γης - Ήλιου.

Παρθενώνας, Ακρόπολη Αθηνών 447-432.

ΜΑΘΗΜΑΤΙΚΑ ΣΤΟΝ ΠΑΡΘΕΝΩΝΑ Χτίστηκε το 441 π.χ. από τον Ικτίνο και τον Καλλικράτη με την επίβλεψη του Φειδία και του Περικλή. Ο ρυθμός ήταν δωρικός, με ορθογώνιο σχήμα. Έχει 8 κίονες κατά πλάτος και 17 κατα μήκος. Στις στενές πλευρές υπήρχε και δεύτερη σειρά 6 κιόνων που δημιουργούσε την ψευδαίσθηση δεύτερου ναού. Οι δημιουργοί του Παρθενώνα κατείχαν ξεχασμένες γνώσεις που τις εφάρμοσαν στην κατασκευή του. Συγκεκριμένα σε κάθε μέρος του ναού επικρατούσε ένα σύστημα αναλογίας σύμφωνα με τον κανόνα του Πολυγνώτου και όλες οι διαστάσεις είχαν μία δεδομένη σχέση με την διάμετρο του κίονα. Κάθε κίονας είχε ελάχιστα μεγαλύτερη διάμετρο από τη βάση μέχρι τη μέση, λέπταινε προς την κορυφή και έκλεινε προς το κέντρο της κιονοστοιχίας στην οποία ανήκε. Έτσι οι κίονες του Παρθενώνα δεν είναι κάθετοι αλλά αν προεκταθούν νοητά προς τα επάνω συναντιούνται στα 1852 μ. σχηματίζοντας μια νοητή πυραμίδα η κορυφή της οποίας βρίσκεται ακριβώς πάνω από το σημείο που ήταν τοποθετημένο το κεφάλι της Αθηνάς. Οι μετόπες έδιναν την εντύπωση του τετραγώνου και όμως είχαν κάποιες καμπύλες που εξουδετέρωναν τις οπτικές απάτες γιατί διαφορετικά δεν θα υπήρχε η οπτική αρμονία. Αυτές οι προσαρμογές απαιτούσαν πολύ υψηλές γνώσεις μαθηματικών και οπτικής σε μια τέλεια ένωση με την τέχνη..

ΜΑΘΗΜΑΤΙΚΑ ΣΤΟΝ ΠΑΡΘΕΝΩΝΑ Επίσης στο σχέδιο του Παρθενώνα δεν υπάρχει καμία ευθεία γραμμή. Παντού συναντάμε απαλές καμπύλες. Στην μπροστινή όψη ισχύει : πλάτος = Φ * ύψος ( όπου Φ είναι ο αριθμός της χρυσής τομής) ενώ στις αναλογίες του ναού συναντάμε και τη σχέση α/2α+1. Η πλατφόρμα πάνω στην οποία στέκονται οι κολόνες του ναού έχουν μία ελαφριά καμπύλη και στις 4 γωνίες σαν να ήταν ένα μικρό κομμάτι μιας γιγαντιαίας σφαίρας, της σφαίρας της γης.

Η κύρτωση του στυλοβάτη (σε υπερβολή)

Οι εκλεπτύνσεις του Παρθενώνα σε υπερβολή

απόσπασμα video από : «Τα μυστικά του Παρθενώνα» [εκλεπτύνσεις]

Γεωμετρικές αρχές σε ναούς και στον Παρθενώνα!

Το χρυσό ορθογώνιο εμφανίζεται συνέχεια στην κατασκευή του Παρθενώνα. Στο παραπάνω σχήμα μόνο, βλέπουμε έξι (6) τέτοια χρυσά ορθογώνια.

Τ

Γιατί είναι τόσο σημαντικό το χρυσό ορθογώνιο στην αρχαία Ελληνική αρχιτεκτονική; Οι αρχαίοι Έλληνες το θεωρούσαν απαραίτητο για ένα αντικείμενο ώστε αυτό να φαίνεται «όμορφο». Η χρησιμοποίησή του σε καλλιτεχνικά δημιουργήματα και κατασκευές (γενικά) οδηγούσε σε «άριστα» και «ωραία» αποτελέσματα. Ο Φειδίας το χρησιμοποίησε πάρα πολύ στα έργα του. Ειδικότερα ο Παρθενώνας παρουσιάζει τόσο τέλεια αρμονικές (χρυσές) αναλογίες μέχρι την παραμικρή του λεπτομέρεια, ώστε του προσδίδουν μια μνημειώδη μεγαλοπρέπεια και πρωτοφανή χάρη, που εντυπωσίαζε τους επισκέπτες της Ακρόπολης διαχρονικά.

Είπαν. «Δεν υπάρχει τίποτα ισοδύναμο στην αρχιτεκτονική της οικουμένης και όλων των εποχών... Η πλαστική επεξεργασία του Παρθενώνα είναι αλάθητη, αμείλικτη. Η αυστηρότητά του ξεπερνά τις συνήθειες μας και τις φυσιολογικές δυνατότητες του ανθρώπου» Le Corbusier Vers une architecture, 1923: «Οι αρχαίοι Έλληνες μαθήτευσαν τους Αιγυπτίους και όλοι εμείς μαθητεύσαμε στους Έλληνες» S.H.Gombrich, Ιστορία της Τέχνης, 1994

Αιγυπτιακή Ελληνική Γλυπτική Σύγκριση Άγαλμα ιερέα του Ρανόφερ 3η χιλιετία π.χ. Αιγυπτιακό Μουσείο Καΐρου Έργο του Πολυμήδη. Πιθανότατα ο Κλέοβις και ο Βίτων. Γύρω στο 580π.Χ

Άγαλμα του Μυκερίνου 2520 π.χ. Museum of Fine Arts, Boston Κούρος της Νέας Υόρκης 590/580 π.χ.. The Metropolitan Museum of Art.

«οι Έλληνες καλλιτέχνες ξεκίνησαν από κει που είχαν σταματήσει οι Αιγύπτιοι» Οι Αιγύπτιοι τεχνίτες έφτιαχναν πάνω στη λεία επιφάνεια του ορθογώνιου όγκου του μαρμάρου ένα προκαταρκτικό σχέδιο της μορφής με τη βοήθεια σχάρας με 21 τετράγωνα από τη γραμμή των ματιών μέχρι τις πατούσες.

Ο Φαραώ Τουταγχαμών και η γυναίκα του. Επιχρυσωμένο ανάγλυφο σε ξύλο. Γύρω στο 1350 π.χ. Μουσείο Καΐρου Επιτύμβια στήλη της Ηγησώς. Γύρω στο 420 π.χ. Εθν. Αρχαιολογικό Μουσείο, Αθήνα

ΕΛΛΗΝΙΚΑ ΓΛΥΠΤΑ Κλασική Εποχή Όσον αφορά τα ελληνικά γλυπτά της Κλασικής εποχής, εδώ και πάλι οι έρευνες έδειξαν την μαθηματική αναλογία των μελών του ανθρωπίνου σώματος. Ο γλύπτης Πολύκλειτος συνέγραψε κείμενο για τις κανονικές αναλογίες του ανθρωπίνου σώματος και φιλοτέχνησε το άγαλμα του Δορυφόρου το οποίο χρησιμοποιήθηκε ως πρότυπο, ως «κανών». Ο Ρώσος αρχιτέκτονας G.D.Grimm δείχνει την συμφωνία των αναλογιών του διάσημου αγάλματος με την χρυσή αναλογία.

Δορυφόρος [ρωμαϊκό αντίγραφο]

Στα Προπύλαια, απαράμιλλου κάλλους γλυπτά, οι Καρυάτιδες, αναδεικνύουν τη μυστική σχέση αναλογίας και χάρης!

Μαθηματικές δομές στην αρχιτεκτονική και τη γλυπτική των Ρωμαίων Κολοσσαίο Ρωμαϊκή σαρκοφάγος

Εφαρμογές της χρυσής τομής στη ναοδομία των Νεότερων χρόνων: Notre Dam, καθεδρικός ναός στο Παρίσι

Η Χρυσή τομή στη σύγχρονη αρχιτεκτονική. Στο κτίριο του ΟΗΕ στη Νέα Υόρκη, στο σχεδιασμό του οποίου συμμετείχε και ο Λε Κορμπιζιέ, συνάδελφος του Γιάννη Ξενάκη, συναντάμε χρυσά ορθογώνια. 33

Η Χρυσή τομή στη σύγχρονη αρχιτεκτονική. Ο Le Corbusier μεταχειρίστηκε το σύστημα της χρυσής τομής για να σχηματίσει το δικό του σύστημα αναλογιών, γνωστό ως Modulor. 34

Modulor - Le Corbusier... Για να βγάλει τις διαστάσεις του modulor, o Le Corbusier διαίρεσε το συνολικό ύψος ενός ανθρώπου, από τα πόδια ως την παλάμη του σηκωμένου χεριού του, σε 2 ίσα μέρη στο ύψος του αφαλού, και αποδείχθηκε ότι το συνολικό ύψος διαιρείται σύμφωνα με τη χρυσή τομή στο ύψος του καρπού του χεριού που κρέμεται (86:140). 35

Η Αρχιτεκτονική του Le Corbusier 36

Η Αρχιτεκτονική του Le Corbusier 37

Ville Contemporaine 1922 (διακρίνονται τα immeuble villa και οι πύργοι γραφείων) 38

Twentieth Century Astronomical Art

Η αντίληψη του Le Corbusier θα μεταφερθεί και στην Αρχιτεκτονική (βίλα Savoye) όπου διαφάνεια και δυναμισμός των στοιχείων υποτάσσονται στην αυστηρή γεωμετρικότητα της οργανώσεως που χαρακτηρίζουν και τους πίνακες του. 40

Μοντέλα αστικού σχεδιασμού (20ος αι.) O Le Corbusier και η λειτουργική πολεοδομία 41

Ευχαριστούμε για την προσοχή σας Επιμέλεια: Μακρυνικόλα Νικολέττα, Μπισίλκα Μαρία, Μυκονιάτης Αριστείδης, Παπαγεωργίου Έλενα.