Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία

Σχετικά έγγραφα
5.1 Μετρήσιμες συναρτήσεις

Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ

Ανελίξεις σε συνεχή χρόνο

Αναλυτικές ιδιότητες

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Εφαρμογές στην κίνηση Brown

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

Martingales. 3.1 Ορισμός και παραδείγματα

Επίλυση ειδικών μορφών ΣΔΕ

{ i f i == 0 and p > 0

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις

Η εξίσωση Black-Scholes

Κατασκευή της κίνησης Brown και απλές ιδιότητες

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

ΠΙΘΑΝΟΤΗΤΕΣ 2. Σάμης Τρέβεζας

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Στοχαστικές διαφορικές εξισώσεις

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

Περίληψη. του Frostman 4.1. Τέλος, η ϑεωρία του μέτρου Hausdorff αναπτύσσεται περαιτέρω στην τελευταία παράγραφο. Εισαγωγή 2

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Σχέσεις και ιδιότητές τους

Χαρακτηριστικές συναρτήσεις

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27

τους στην Κρυπτογραφία και τα

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.

Αναγνώριση Προτύπων. Σημερινό Μάθημα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Το Θεώρημα Μοναδικότητας των Stone και von Neumann

Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα

Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή)

Πιθανότητες ΙΙ 1 o Μέρος. Οικονομικό Πανεπιστήμιο Αθηνών

1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και

ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει

Εκφωνήσεις και Λύσεις των Θεμάτων

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

Συναρτήσεις. Σημερινό μάθημα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

Επιχειρησιακή Ερευνα Ι

Μαθηματικά Πληροφορικής

(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις

Η έκδοση αυτή είναι υπό προετοιμασία. Γιάννης Α. Αντωνιάδης, Αριστείδης Κοντογεώργης

Εκφωνήσεις και Λύσεις των Θεμάτων

17 Μαρτίου 2013, Βόλος

ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα

Ισοπεριμετρικές ανισότητες για το

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading

Συναρτήσεις & Κλάσεις

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Διανυσματικές Συναρτήσεις

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Αρτιες και περιττές συναρτήσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

ΠΡΟΛΟΓΟΣ. Αθήνα, 12 Απριλίου 2016.

Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

Χαρτοφυλάκια και arbitrage

Αρτιες και περιττές συναρτήσεις

Αναγνώριση Προτύπων 1

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

(20 ο ) ΣΤΑΔΙΑΚΕΣ ΚΑΤΑΣΚΕΥΕΣ Ι: ΑΠΛΗΣΤΟΙ ΑΛΓΟΡΙΘΜΟΙ

Αναγνώριση Προτύπων. Σημερινό Μάθημα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

Εισαγωγή στις Διακριτές Πιθανότηες. Οικονομικό Πανεπιστήμιο Αθηνών

Σημειώσεις Μαθηματικών Μεθόδων. Οικονομικό Πανεπιστήμιο Αθηνών

CSE.UOI : Μεταπτυχιακό Μάθημα

σε ευκλείδειους χώρους και σε πολλαπλότητες Riemann

Μονάδες α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

ΘΕΩΡΙΑ ΣΥΝΟΛΩΝ: μια σύνοψη των θεμελιακών χαρακτηριστικών.

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

14 Φεβρουαρίου 2014, Βόλος

Transcript:

1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν σε αυτήν. Ο ρόλος της είναι να αποτρέψει προβλήματα/παράδοξα. Αντίθετα, στις πιθανότητες η σ-άλγεβρα έχει διαισθητικό νόημα. Χρησιμοποιείται για να κωδικοποιήσει «πληροφορία» και συχνά, όταν δουλεύουμε σε έναν χώρο, θεωρούμε πολλές σ-άλγεβρες. Ενας χώρος πιθανότητας (Ω, F, P) μοντελοποιεί ένα πείραμα. Για κάθε πραγματοποίηση ω Ω του πειράματος, η πληροφορία που θεωρούμε ότι μας δίνει η σ-άλγεβρα F είναι σε ποια στοιχεία της ανήκει το ω και σε ποια όχι. Περισσότερα για αυτή την οπτική θα δούμε στο επόμενο κεφάλαιο. Παράδειγμα 1.1. Για τη ρίψη ενός ζαριού, ο φυσιολογικός δειγματικός χώρος είναι ο Ω := {1, 2, 3, 4, 5, 6} και συνήθως θεωρούμε ως σ-άλγεβρα για το πείραμα την F := P(Ω). Η F δίνει όλη την πληροφορία για το αποτέλεσμα μιας πραγματοποίησης αφού περιέχει τα μονοσύνολα {1},..., {6}. Η πληροφορία που παρέχει η σ-άλγεβρα F 1 := {, Ω, {1, 3, 5}, {2, 4, 6}} είναι μόνο αν η ένδειξη του ζαριού είναι άρτιος ή περιττός. Δεν μπορεί να διακρίνει τα αποτελέσματα 1 και 3. Ετσι περιέχει λιγότερη πληροφορία από την F. 1.2 Σ-άλγεβρα παραγόμενη από διαμέριση Οι σ-άλγεβρες που παράγονται από διαμέριση εμφανίζονται σε πολλά πιθανοτικά μοντέλα και βοηθούν στην κατανόηση εννοιών που ορίζονται γενικά για όλες τις σ-άλγεβρες (π.χ. μετρησιμότητα, δέσμευση κτλ). Υπενθυμίζουμε τον ορισμό της σ-άλγεβρας παραγόμενης από μια οικογένεια συνόλων. Ορισμός 1.2. Εστω X σύνολο και C P(X). Ορίζουμε J := {A P(X) : A C και η A είναι σ-άλγεβρα}, δηλαδή το σύνολο των σ-αλγεβρών στο X που καθεμία τους περιέχει την οικογένεια C. Η σ-άλγεβρα που παράγεται από την C ορίζεται ως η τομή όλων των σ-άλγεβρων που περιέχουν την C και συμβολίζεται με σ(c), δηλαδή σ(c) = A J A. Η σ(c) περιέχει ακριβώς όλα τα B X με την ιδιότητα B A για κάθε σ-άλγεβρα A στο X με A C. Αποδεικνύεται εύκολα ότι η σ(c) είναι πράγματι σ-άλγεβρα που περιέχει την οικογένεια C και από την κατασκευή της είναι η μικρότερη με την ιδιότητα αυτή. Δηλαδή περιέχεται σε οποιανδήποτε σ-άλγεβρα περιέχει την C. Προφανώς, αν η C είναι σ-άλγεβρα, τότε σ(c) = C. Μπορούμε να έχουμε στο μυαλό μας ότι η σ(c) προκύπτει με την εξής αναδρομική διαδικασία. Ξεκινάμε με την C και, αν αυτή δεν είναι σ-άλγεβρα, π.χ., γιατί το συμπλήρωμα ενός στοιχείου της ή κάποια αριθμήσιμη ένωση στοιχείων της δεν είναι στοιχείο της, προσθέτουμε σε αυτή το σύνολο 3

4 Εισαγωγικά που ανακαλύψαμε ότι της λείπει. Αυτό πρέπει να το κάνουμε πολλές φορές με τη νέα οικογένεια που προκύπτει μετά την προσθήκη κάθε συνόλου. Κάποια στιγμή φτάνουμε σε μια οικογένεια που είναι σ-άλγεβρα και τότε σταματάμε, βρήκαμε τη σ(c). Παράδειγμα 1.3 (Σ-άλγεβρα παραγόμενη από αριθμήσιμη διαμέριση). Εστω X σύνολο και C := {A i : i I} αριθμήσιμη διαμέριση του X (δηλαδή τα A i είναι μη κενά σύνολα, ξένα ανά δύο, με ένωση το X), με I = {1, 2,..., k} για κάποιο k N\{0} ή I = N. Για τη σ-άλγεβρα που παράγει η C, έχουμε την εξής απλή περιγραφή, σ(c) = { i J A i : J I }. (1.1) Δηλαδή ένα σύνολο της σ(c) είναι ένωση κάποιων στοιχείων της διαμέρισης C. Ας ονομάσουμε A το σύνολο στο δεξί μέλος της παραπάνω σχέσης. Τότε έχουμε τα εξής: Η οικογένεια A περιέχει τη C. Πράγματι, οποιοδήποτε σύνολο της C είναι της μορφής A i0 για κάποιο i 0 I. Η επιλογή J = {i 0 } I στην περιγραφή στοιχείων της A δίνει i J A i = A i0 A. Οποιαδήποτε σ-άλγεβρα A 1 περιέχει τη C πρέπει να περιέχει την A. Γιατί οποιαδήποτε ένωση i J A i είναι αριθμήσιμη αφού το I είναι αριθμήσιμο. Και εφόσον η A 1 είναι σ-άλγεβρα και περιέχει τα A i με i J, θα περιέχει και την ένωσή τους. Η A είναι σ-άλγεβρα. Πράγματι, η επιλογή J = δίνει i J A i =. Επίσης, αν πάρουμε A της μορφής A = i J A i για κάποιο J I, τότε X\A = i I \J A i που είναι στοιχείο της A. Τέλος, αν έχουμε ακολουθία (B n ) n 1 στοιχείων της A με B n = i Jn A i, όπου J n I για κάθε n 1, τότε για J := n=1 J n έχουμε n=1 B n = i J A i που πάλι είναι στοιχείο της A. Συνδυάζοντας αυτές τις τρεις παρατηρήσεις παίρνουμε την (1.1). Παράδειγμα 1.4 (Μετρήσιμες συναρτήσεις στην {, X}). Εστω A = {, X} η τετριμμένη σ-άλγεβρα στο X. Ισχυρισμος: Μια συνάρτηση f : X R είναι A-μετρήσιμη αν και μόνο αν είναι σταθερή. Πράγματι, αν η f (x) = c για κάθε x X όπου c R σταθερά, τότε για κάθε A R σύνολο Borel έχουμε f 1 X αν c A, (A) = αν c R\A. Επειδή λοιπόν f 1 (A) A για κάθε A B(R), έχουμε ότι η f είναι A-μετρήσιμη. Εστω τώρα f : X R που είναι A-μετρήσιμη. Αν δεν είναι σταθερή, τότε παίρνει δύο διαφορετικές τιμές, έστω a, b με a < b. Υπάρχουν x 1, x 2 X με f (x 1 ) = a, f (x 2 ) = b. Λόγω μετρησιμότητας πρέπει το σύνολο := f 1 ((, a]) να ανήκει στην A. Ομως αφού περιέχει το x 1, και X αφού δεν περιέχει το x 2, επομένως A, άτοπο. Αρα η f πρέπει να είναι σταθερή. Γενίκευση του προηγούμενου παραδείγματος είναι το εξής. Παράδειγμα 1.5 (Μετρήσιμες συναρτήσεις σε σ-άλγεβρα παραγόμενη απο αριθμήσιμη διαμέριση). Τι μορφή έχουν οι πραγματικές συναρτήσεις που είναι μετρήσιμες ως προς τη σ-άλγεβρα σ(c) πιο πάνω; Ισχυρισμος: Μια σ(c)-μετρήσιμη συνάρτηση f : X R πρέπει να είναι σταθερή σε κάθε σύνολο της διαμέρισης. Πράγματι, έστω f μετρήσιμη και i 0 I. Ας υποθέσουμε ότι η f παίρνει δύο διαφορετικές τιμές a < b στο A i0. Θα έπρεπε λοιπόν το σύνολο A i0 { f < b} να ανήκει στη σ(c). Ομως αυτό το σύνολο είναι μη κενό και γνήσιο υποσύνολο του A i0. Τέτοιο σύνολο δεν υπάρχει στη σ(c) (δες την περιγραφή της σ(c) στην (1.1)). Επίσης, είναι εύκολο να δείξει κανείς ότι μια συνάρτηση που είναι σταθερή σε κάθε σύνολο της διαμέρισης είναι μετρήσιμη. Αρα, αυτές είναι ακριβώς όλες οι μετρήσιμες συναρτήσεις στον (X, σ(c))

1.3 Σ-άλγεβρα παραγόμενη από συναρτήσεις 5 1.3 Σ-άλγεβρα παραγόμενη από συναρτήσεις Ορισμός 1.6. Εστω Ω σύνολο. Για μια συνάρτηση f : Ω [, ], ονομάζουμε σ-άλγεβρα παραγόμενη από την f το σύνολο σ( f ) := { f 1 (A) : A B([, ])}. Αυτή είναι η ελάχιστη σ-άλγεβρα A στο Ω η οποία κάνει την f μετρήσιμη στον (Ω, A) [ Ασκηση]. Βέβαια αν στο Ω έχει ήδη οριστεί μία σ-άλγεβρα F ώστε η f να είναι μετρήσιμη στον (Ω, F ), τότε θα έχουμε σ( f ) F. Σε περίπτωση που έχουμε πολλές συναρτήσεις { f i : i I} ορισμένες στο σύνολο Ω και θέλουμε να βρούμε μία σ-άλγεβρα A ώστε να είναι όλες μετρήσιμες στον (Ω, A), τότε πρέπει και αρκεί σ( f i ) A για κάθε i I. Δηλαδή η A να περιέχει την ένωση i I σ( f i ). Από όλες τις A που ικανοποιούν αυτή την ιδιότητα διαλέγουμε τη μικρότερη. Ορισμός 1.7. Εστω Ω σύνολο. Αν { f i : i I} είναι οικογένεια συναρτήσεων στο Ω με τιμές στο [, ], ονομάζουμε σ-άλγεβρα παραγόμενη από τις συναρτήσεις { f i : i I} το σύνολο σ ( { f i : i I} ) := σ ( i I σ( f i ) ). (1.2) Αυτή είναι η ελάχιστη σ-άλγεβρα που κάνει όλες τις { f i : i I} μετρήσιμες. Παράδειγμα 1.8 (Ακολουθία ρίψεων νομίσματος). Παίρνουμε Ω = { 1, 1} N+. Μπορούμε να δούμε αυτό το σύνολο ως το δειγματικό χώρο για μια ακολουθία ρίψεων ενός νομίσματος. Το 1 παριστά το αποτέλεσμα «Κορώνα» και το 1 το αποτέλεσμα «Γράμματα». Για n N +, ορίζουμε τη συνάρτηση X n : Ω R με X n (ω) = ω n, όπου ω = (ω n ) n 1 Ω. Δηλαδή η X n είναι η προβολή στη n-οστή συντεταγμένη. Η X n παίρνει μόνο δύο τιμές. Οπότε η σ(x n ) είναι ακριβώς το σύνολο {, Ω, A n, 1, A n,1 }, με A n, 1 := Xn 1 ( ) { 1} = {ω Ω : ωn = 1} = { 1, 1} n 1 { 1} { 1, 1} N+ \[n], A n,1 := Xn 1 ( ) {1} = {ω Ω : ωn = 1} = { 1, 1} n 1 {1} { 1, 1} N+ \[n], όπου [n] := {1, 2,..., n}. Θα περιγράψουμε τώρα τη σ-άλγεβρα F n := σ ( {X 1, X 2,..., X n } ). Για δεδομένη ακολουθία s = (s 1, s 2,..., s n ) { 1, 1} n, θεωρούμε το σύνολο A s : = { (s 1, s 2,..., s n, x n+1, x n+2,...) : x i { 1, 1} για κάθε i n + 1 } = X1 1 ( {s1 } ) X2 1 ( {s2 } ) Xn 1 ( {sn } ). Δηλαδη το A s περιέχει όλες τις άπειρες ακολουθίες από 1 και 1 που το αρχικό τους τμήμα είναι το s και μετά είναι ελεύθερες να έχουν ό,τι θέλουν. Για μια ακολουθία που ανήκει στο A s, η συμπεριφορά της ως τον χρόνο n είναι γνωστή. Ισχυρισμος: Η F n είναι η σ-άλγεβρα που παράγεται από τη διαμέριση C := {A s : s { 1, 1} n } του Ω. Από τον ορισμό της η F n πρέπει να περιέχει τα Xi 1 ( {si } ) για i = 1, 2,..., n. Αρα, ως σ-άλγεβρα, περιέχει και το A s, που είναι πεπερασμένη τομή των Xi 1 ( {si } ). Επομένως σ(c) F n. Από την άλλη, κάθε X i με 1 i n είναι μετρήσιμη ως προς τη σ(c). Για παράδειγμα, Xi 1 ( ) {1} = s { 1,1} n :s i =1A s είναι πεπερασμένη ένωση στοιχείων της σ(c), άρα στοιχείο της. Από την ελαχιστότητα της F n έπεται ότι F n σ(c) και ο ισχυρισμός αποδείχθηκε.

6 Εισαγωγικά 1.4 Οι χώροι L p Για X τυχαία μεταβλητή στον χώρο πιθανότητας (Ω, F, P) και p [1, ), ορίζουμε X p = {E( X p )} 1/p και L p (Ω, F, P) := {X τυχαία μεταβλητή στο Ω : X p < }. Οταν είναι σαφές ποιος είναι ο χώρος Ω και ποια η σ-άλγεβρα F, γράφουμε L p (P) αντί L p (Ω, F, P). Αποδεικνύεται ότι η συνάρτηση X X p ικανοποιεί τις ιδιότητες λx p = λ X p, X + Y p X p + Y p, για X, Y L p (P) και λ R. Επεται ότι το σύνολο L p (P) είναι διανυσματικός χώρος. Η συνάρτηση p θα ήταν νόρμα αν επιπλέον ικανοποιούσε την X p = 0 X 0. Ομως δεν την ικανοποιεί γιατί ενδέχεται μια τυχαία μεταβλητή X να μην είναι η μηδενική, αλλά να ισούται με 0 με πιθανότητα 1, δηλαδή P(X = 0) = 1, και επομένως να έχει X p = 0. Η λύση σε αυτό το πρόβλημα είναι να ορίσουμε στον L p (P) μια σχέση ισοδυναμίας: X Y αν P(X = Y) = 1, δηλαδη δύο τυχαίες μεταβλητές τις ταυτίζουμε αν είναι ίσες με πιθανότητα 1. Συμβολίζουμε το σύνολο των κλάσεων ισοδυναμίας με L p (Ω, F, P) ή L p (P). Σχεδόν όποια συνάρτηση έχουμε ορίσει σε τυχαίες μεταβλητές μπορούμε να ορίσουμε και για τα στοιχεία της L p (P). Πώς; Μέσω ενός αντιπροσώπου. Ας το δούμε για τη συνάρτηση p. Εστω H L p (P) μία κλάση και X ένα στοιχείο της κλάσης (λέμε αυτό το στοιχείο εκδοχή της H). Ορίζουμε H p = X p. Ο ορισμός δεν εξαρτάται από την επιλογή του αντιπροσώπου X γιατί αν Y είναι άλλος αντιπρόσωπος, τότε E( X p ) = E( Y p ) (αφού οι X, Y είναι σχεδον παντού ίσες), οπότε X p = Y p. Από την άλλη, για μια H L p ([0, 1], B([0, 1]), λ) δεν έχει νόημα να μιλάμε για την τιμή H(1) γιατί αν πάρουμε δύο αντιπροσώπους f, g από την κλάση H, δεν ισχύει απαραίτητα f (1) = g(1). Για μετροθεωρητικά θέματα, θεωρούμε δύο τυχαίες μεταβλητές που είναι ίσες με πιθανότητα 1 ταυτόσημα αντικείμενα. Με τον ίδιο τρόπο, βλέπουμε τον χώρο L p (P) ως χώρο τυχαίων μεταβλητών και όχι ως χώρο κλάσεων ισοδυναμίας. Τώρα η συνάρτηση p ορισμένη στον L p (P) είναι νόρμα γιατί για μία X L p (P) η X p = 0 συνεπάγεται P(X = 0) = 1, άρα η κλάση της X είναι η κλάση της μηδενικής συνάρτησης. Αυτή η κλάση είναι το 0 του διανυσματικού χώρου L p (P). Πρόταση 1.9. (Ανισότητα Hölder) Εστω X, Y τυχαίες μεταβλητές, p (1, ), και q (1, ) τέτοιο ώστε p 1 + q 1 = 1. Τότε E XY X p Y q. Ειδική περίπτωση της ανισότητας Hölder (p = q = 2) είναι η ανισότητα Cauchy-Schwarz: E XY {E(X 2 )} 1/2 {E(Y 2 )} 1/2. Πρόταση 1.10. Για κάθε τυχαία μεταβλητή X και 1 r < s, ισχύει X r X s. Απόδειξη. Είναι συνέπεια της ανισότητας Hölder, όπου τη θέση της X έχει η X r, την θέση της Y έχει η σταθερή συνάρτηση 1, p = s/r, και q = s/(s r). Δηλαδή, E X r = E( X r 1) E( X s ) r/s (E(1 q )) 1/q = E( X s ) r/s και το συμπέρασμα έπεται.

1.4 Οι χώροι L p 7 Κατά συνέπεια L s (P) L r (P). Ο τελευταίος εγκλεισμός όμως έπεται και πιο εύκολα από την παρατήρηση ότι X r X s + 1 (το 1 καλύπτει την περίπτωση που X(ω) < 1). Η νόρμα p ορίζει μία μετρική d p στον χώρο L p (P). Ισχύει το εξής σημαντικό αποτέλεσμα [Κουμουλλής Γ. και Νεγρεπόντης Σ (1991), Θεώρημα 11.17]. Θεώρημα 1.11. Ο μετρικός χώρος (L p (P), d p ) είναι πλήρης. Οταν είναι σαφές ποιο είναι το μέτρο P, τότε γράφουμε L p αντί L p (P). 1.1 Εστω f όπως στον Ορισμό 1.6. Να δειχθεί ότι (α) Η f είναι σ( f )-μετρήσιμη. Ασκήσεις (β) Αν η f είναι F -μετρήσιμη, όπου F είναι σ-άλγεβρα στο Ω, τότε σ( f ) F. Αρα η σ( f ) είναι η ελάχιστη σ-άλγεβρα στο Ω που κάνει την f μετρήσιμη. 1.2 Εστω f, g : Ω R συναρτήσεις στο σύνολο Ω. Να δειχθεί ότι σ( f ) σ( f, g). 1.3 Εστω F το σύνολο των συναρτήσεων f : R R που είναι άρτιες. Να προσδιοριστεί η σ-άλγεβρα στο R που παράγει η οικογένεια F (Ορισμός 1.7).