Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σχετικά έγγραφα
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΟ 11. β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη παράμετρο λ 0.

ΦΡΟΝΤΙΣΤΗΡΙΑ 7 ΚΑΙ 8

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων

Θεωρία Αποφάσεων ο. 4 Φροντιστήριο. Λύσεις των Ασκήσεων

(p 1) (p m) (m 1) (p 1)

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

HMY 795: Αναγνώριση Προτύπων

ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

HMY 795: Αναγνώριση Προτύπων

Εφαρμοσμένη Στατιστική

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 13 Μαρτίου /31

HMY 795: Αναγνώριση Προτύπων

Στατιστική. Εκτιμητική

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

Αναγνώριση Προτύπων Ι

Στατιστική Συμπερασματολογία

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων

(X1 X 2 ) 2}. ( ) f 1 (x i ; θ) = θ x i. (1 θ) n x i. x i log. i=1. i=1 t2 i

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 3ο Φροντιστήριο

Στατιστική Συμπερασματολογία

Μέθοδος μέγιστης πιθανοφάνειας

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Θεωρία Λήψης Αποφάσεων

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

Κεφάλαιο 2: Θεωρία Απόφασης του Bayes 2.1 Εισαγωγή

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική

Αναγνώριση Προτύπων Ι

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Πολλαπλή παλινδρόμηση (Multivariate regression)

HMY 795: Αναγνώριση Προτύπων

ΔΙΑΧΩΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΚΡΗΤΙΚΟΥ ΚΑΤΕΡΙΝΑ NΙΚΑΚΗ ΚΑΤΕΡΙΝΑ NΙΚΟΛΑΪΔΟΥ ΧΡΥΣΑ

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ

( ) S( x ) 2 ( ) = ( ) ( ) = ( ) ( )

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Μέθοδος μέγιστης πιθανοφάνειας

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...

Στατιστική Συμπερασματολογία

Γραµµικοί Ταξινοµητές

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Μπαεσιανοί Ταξινοµητές (Bayesian Classifiers)

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

Δειγματοληψία στην Ερευνα. Ετος

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Στατιστική Συμπερασματολογία

HMY 795: Αναγνώριση Προτύπων

Εκτιμήτριες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Εκτιμήτριες. μέθοδος ροπών και μέγιστης πιθανοφάνειας

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις και σημειακή εκτίμηση παραμέτρων Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή συμπερασμάτων για το σ

Ψηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση

Εφαρμοσμένη Στατιστική

Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις, σημειακή εκτίμηση παραμέτρων και γραμμική παλινδρόμηση Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Αναγνώριση Προτύπων Ι

A(θ) = n log θ B(x ) = 0. T (x ) = x i. Γ(n)θ n =

ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. Κατηγοριοποίηση. Αριστείδης Γ. Βραχάτης, Dipl-Ing, M.Sc, PhD

Transcript:

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson

Σχεδιαζόντας ταξινομητές: Τα δεδομένα Στην πράξη η γνώση σχετικά διαδικασία γέννεσης των δεδομένων είναι πολύ σπάνια γνωστή. Το μόνο που έχουμε στη διάθεσή μας είναι ένα σύνολο δεδομένων data set. l Y {, d, R, d {,,..., m},,... D} όπου είναι η l-διάστατη αναπαράσταση του -στου από τις οντότητες διάνυσμα δεδομένων data vector d είναι η ετικέτα της κλάσης όπου ανήκει το για την ω, για την ω,. Ο βασικός στόχος ενός ταξινομητή Δοθέντος ενός καταχώρησέ το στην πιο κατάλληλη κατηγορία. Ανάλογα με τον τρόπο που σχεδιάζεται ένας ταξινομητής, έχουμε δύο κύριες κατηγορίες: Παραμετρικοί ταξινομητές Parametrc classfers Μη παραμετρικοί ταξινομητές onparametrc classfers

Στην περίπτωση αυτή: Σχεδιάζοντας ταξινομητές: Η παραμετρική περίπτωση Υποθέτουμε ότι η μορφή του παραμετρικού μοντέλου παράγει τα διανύσματα δεδομένων είναι γνωστή, ενώ οι άγνωστες παράμετροί του εκτιμώνται με βάση το διαθέσιμο σύνολο δεδομένων. Η ταξινόμηση ενός νέου διανύσματος δεδομένων βασίζεται στο μοντέλο που ορίστηκε παραπάνω. ΣΗΜ: Η ταξινόμηση του εξαρτάται έμμεσα από το διαθέσιμο σύνολο δεδομένων. Στην περίπτωση αυτή: Σχεδιάζοντας ταξινομητές: Η μη παραμετρική περίπτωση Η ταξινόμηση του εξαρτάται άμεσα από το διαθέσιμο σύνολο δεδομένων.

Σχεδιάζοντας ταξινομητές: Εκτιμώντας την απόδοσή τους Ένα σημαντικό ζήτημα: Πώς γνωρίζουμε το βαθμό αξιοπιστίας του ταξινομητή που σχεδιάστηκε; Είναι σαφές ότι, αν χρησιμοποιήσουμε όλα τα διανύσματα δεδομένων του διαθέσιμου συνόλου δεδομένων Υ, δεν μπορούμε να χρησιμοποιήσουμε τα ίδια δεδομένα για να αξιολογήσουμε αντικειμενικά την απόδοσή του, καθώς ή γνώση που περιέχεται σ αυτά έχει ήδη χρησιμοποιηθεί για το σχεδιασμό του ταξινομητή. Μια συνηθισμένη και απλή στρατηγική ταξινόμησης*: Διαίρεσε το Y σε δύο σύνολα, X και X, και στοιχείων, αντιστοίχως. * Άλλη σχετική τεχνική είναι το k- fold cross valdaton. Χρησιμοποίησε το X σύνολο εκπαίδευσης για τη σχεδίαση του ταξινομητή Χρησιμοποίησε το X σύνολο δοκιμής για την αξιολόγηση της απόδοσης του σχεδιασθέντος ταξινομητή Αν η απόδοση είναι ικανοποιητική, ο ταξινομητής χρησιμοποιείται στη συνέχεια σε πραγματικό περιβάλλον. Διαφορετικά, θα πρέπει να αναθεωρηθούν κάποια βήματα της διαδικασίας σχεδιασμού. Με βάση ποιο κριτήριο αξιολογείται η απόδοση του ταξινομητή; Συνήθως με βάση το ποσοστό των εσφαλμένα ταξινομημένων διανυσμάτων του συνόλου δοκιμής X που είναι μια εκτίμηση της πιθανότητας σφάλματος

ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί ταξινομητές Μη παραμετρικοί ταξινομητές Παραμετρικοί ταξινομητές Ταξινομ. Bayes Ευκλείδειας απόστασης Τετραγ. Ταξινομ. Γραμμικοί Ταξινομ. Mahalanobs απόστασης Ταξινομ. Bayes Ταξιν. k- πλησιέστ. γειτόνων Perceptron Γραμμικοί Ταξινομ. Ταξιν. Ελαχ. τετραγώνων Μηχανές διανυσμ. στήριξης Μη γραμ. ταξινομ. Νευρωνικά δίκτυα

A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Για το σχεδιασμό ΟΛΩΝ των παραμετρικών ταξινομητών, y=f;w, υπάρχουν δύο κύριες φάσεις -> Καθορισμός του παραμετρικού μοντέλου -> Εκτίμησητων παραμέτρων Ο ταξινομητής Bayes με χρήση παραμετρικών μοντέλων Ποιες είναι οι παράμετροι που εμπλέκονται στον ταξινομητή Bayes στην περίπτωση αυτή; - Οι εκ των προτέρων πιθανότητες Pωj, j=,,m. - Οι άγνωστες παράμετροι θj των pdf των κλάσεων p ωj;θj, j=,,m. Παράδειγμα : Αν η p ωj μοντελοποιείται από μία κανονική κατανομή, Ν j, j, και οι άγνωστες παράμετροι είναι το μέσο διάνυσμα και το μητρώο συνδιασποράς τότε θj ={μj, Σj} Παράδειγμα : Αν η p ωj μοντελοποιείται από μία κανονική κατανομή, Ν j, j, και η άγνωστη παράμετρος είναι το μέσο διάνυσμα, τότε θj =μj.

A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Στην πράξη - οι τιμές των παραμέτρων είναι πολύ σπάνια γνωστές. - Έτσι, χρειάζεται να τις εκτιμήσουμε. Στην πράξη έχουμε στην διάθεσή μας ένα σύνολο δεδομένων σύνολο εκπαίδευσης l X {, d, R, d {,,..., M},,... } όπου είναι το -στό διάνυσμα εκπαίδευσης tranng vector d είναι η ετικέτα της κλάσης όπου ανήκει το για την ω, για την ω,.

A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Έστω X j l { R : d j,,... }, j,, M Το σύνολο που περιέχει τα διανύσματα δεδομένων της j-στης κλάσης. Εκτίμηση παραμέτρων βασίζεται στο σύνολο X: - Για κάθε Pω j : Χρησιμοποίησε την απλή προσέγγιση Pω j j /. - Για κάθε p ω j : - Υπάρχουν αρκετές μέθοδοι - Εκτίμηση μέγιστης πιθανοφάνειας Mamum Lkelhood ML estmaton, - Εκτίμησης μέγιστης εκ των υστέρων πιθανότητας Mamum a posteror MAP estmaton, - Εκτίμηση μέγιστης εντροπίας Mamum entropy ME estmaton, - Epectaton-Mamzaton EM estmaton mture models etc Στη συνέχεια περιγράφουμε τις μεθόδους ML, MAP και σύντομα την μέθοδο EM. j M

A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η μέθοδος εκτίμησης μέγιστης πιθανοφάνειας ML Έστω Y={,,, } ένα σύνολο από ανεξάρτητα διανύσματα δεδομένων Έστω p μια pdf γνωστής παραμετρικής μορφής αλλά με άγνωστο το διάνυσμα παράμέτρων του θ; p=p;θ. Παραδείγματα: Αν η p;θ είναι κανονική με άγνωστο μέσο διάνυσμα μ, το θ είναι απλά το μ. Αν η p;θ είναι κανονική με άγνωστο μέσο διάνυσμα μ και άγνωστο μητρώο συνδιασποράς Σ, το θ περιέχει τις συνιστώσες τόσο του μ όσο και του Σ. Το πρόβλημα: Εκτίμησε το θ ώστε η p;θ να είναι το καλύτερο δυνατό ταίριασμα για το σύνολο δεδομένων Y.

A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η μέθοδος εκτίμησης μέγιστης πιθανοφάνειας ML Έστω η συνάρτηση πιθανοφάνειας lkelhood functon του θ ως προς το Y: p Y; p,, ; p ; Στην πράξη, είναι πιο βολικό να μεγιστοποιήσουμε την συνάρτηση του λογάριθμου της πιθανοφάνειας log-lkelhood functon Lθ του θ ως προς το Y, η οποία ορίζεται ως,, ; ln p ; L ln p Y; ln p

PY;μ=3.0-9 PY;μ=3.0-9 PY;μ=6.80-5 ep ; p ep 0 ; p ep ; p PY;μ μ

A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η μέθοδος εκτίμησης μέγιστης πιθανοφάνειας ML

Η μέθοδος εκτίμησης μέγιστης πιθανοφάνειας: Μεγιστοποίησε την py;θ ή την Lθ ως προς το θ. 0 : ˆ ; ; k k k ML p p L A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ

Μια παρένθεση: Το gradent συνάρτησης Π.χ.: Το gradent της συνάρτησης f, = cos + cos 5

Η μέθοδος εκτίμησης μέγιστης πιθανοφάνειας ML - Ένα παράδειγμα -Έστω Y ένα σύνολο διανυσμάτων δεδομένων,, =,,. -Ποια είναι η κανονική κατανομή p;θ γνωστού μητρώου συνδιασποράς που μοντελοποιεί καλύτερα τα διανύσματα του συνόλου Υ? Λύση: -Το άγνωστο διάνυσμα παραμέτρων στην περίπτωση αυτή είναι το μέσο διάνυσμα μ, δηλ. θ=μ. -Είναι ep ; ; p p T l ln ; ln C p T T l T C p L ; ln A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ

-Θέτοντας την παράγωγο της Lμ ως προς το μ ίση με 0 έχουμε 0 T C L 0 0 0 ML A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η μέθοδος εκτίμησης μέγιστης πιθανοφάνειας ML - Ένα παράδειγμα

A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ - Έστω Ν=0 σημεία που παρήχθησαν από τη μονοδιάστατη κανονική κατανομή μηδενικής μέσης τιμής και μοναδιαίας συνδασποράς, 0,. - Ας προσποιηθούμε ότι έχουμε στη διάθεσή μας μόνο τα ακόλουθα: Τη γνώση ότι η κατανομή που παρήγαγε τα σημεία είναι κανονική με διασπορά ίση με και άγνωστο μέσο διάνυσμα μ. τα 0 σημεία. Η ML εκτίμηση του μέσου διανύσματος,, της κατανομής είναι 0.60 η πραγματική τιμή είναι 0. 0.7 ˆ Όσο περισσότερα σημεία είναι διαθέσιμα, τόσο πιο ακριβείς εκτιμήσεις θα έχουμε για το μέσο διάνυσμα. Σφάλμα εκτίμησης 0 0.60 0 00 0.077 0 000 0.038 0 0000 0.08 0 00000 0.0034 0 0.6 0.5 0.4 0.3 0. 0. 0.5.5 3 3.5 4 4.5 5

A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η μέθοδος εκτίμησης μέγιστης πιθανοφάνειας ML Αν πράγματι υπάρχει θ 0 έτσι ώστε p=p;θ 0 τότε lm E[ ML ] 0 lm E ML 0 0 - Ασυμπτωτικά αμερόληπτος Asymptotcally unbased εκτιμητής: Η μέση τιμή του θ, θ ML, τείνει προς την πραγματική τιμή της άγνωστης παραμέτρου θ 0, καθώς. - Ασυμπτωτικά συνεπής Asymptotcally consstent εκτιμητής: Η διασπορά της ML εκτίμησης τείνει στο 0, καθώς.

A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η μέθοδος εκτίμησης μέγιστης πιθανοφάνειας ML Άσκηση: Η τυχαία μεταβλητή ακολουθεί την κατανομή Erlang p ; ep u με u= αν >0 και 0, διαφορετικά. α Δεδομένου ενός συνόλου δειγμάτων,,, του, να δείξετε ότι η εκτίμηση ML του θ είναι ML k β Δεδομένου ότι η μέση τιμή της κατανομής ισούται με /θ ποια είναι η ML εκτίμησή της με βάση το παραπάνω σύνολο δειγμάτων; k

A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η μέθοδος εκτίμησης μέγιστης πιθανοφάνειας ML Άσκηση: Η τυχαία μεταβλητή ακολουθεί την κατανομή Raylegh p ; ep με u= αν >0 και 0, διαφορετικά. α Δεδομένου ενός συνόλου δειγμάτων,,, του, να δείξετε ότι η εκτίμηση ML του θ είναι ML k β Δεδομένου ότι η μέση τιμή της κατανομής ισούται με π/4θ ποια είναι η ML εκτίμησή της με βάση το παραπάνω σύνολο δειγμάτων; k u

A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η μέθοδος εκτίμησης μέγιστης πιθανοφάνειας ML Άσκηση: Θεωρείστε ένα πρόβλημα ταξινόμησης δύο κλάσεων, ω και ω, όπου οι εμπλεκόμενες οντότητες χαρακτηρίζονται από ένα μόνο χαρακτηριστικό. Είναι γνωστό ότι οι τιμές 0.90, 0.95,.0,.0, 0.99,.30,.5, 0.87, 0.93,.0 ανήκουν στην κατηγορία ω, ενώ οι τιμές.90,.95,.0,.0,.99,.30,.5,.87,.93,.0,.03,.9,.5,.88,.07 ανήκουν στην κατηγορία ω. Μοντελοποιώντας με κανονικές κατανομές τις pdfs των δύο κλάσεων για τις οποίες είναι γνωστές οι διασπορές σ =0.00 για την ω και σ =0.07 για την ω αλλά άγνωστες οι μέσες τιμές τους: α Εκτιμήστε τις μέσες τιμές των κατανομών β Διατυπώστε τον προσεγγιστικό κανόνα του Bayes για το πρόβλημα. γ Ταξινομείστε τα σημεία.4,.7, 0.,.5 με βάση τον παραπάνω κανόνα.