ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)
|
|
- Αθορ Μακρή
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) Θέμα ο (Παρ..3.4, Παρ..4.3, Παρ..4.8.) Εάν = ( ) τυχαίο δείγμα από την ομοιόμορφη ( 0, ) X X,, X. Δείξτε ότι η στατιστική συνάρτηση T = X = το δειγματικό μέγιστο, είναι επαρκής και πλήρης για το. Να βρεθούν αμερόληπτοι ομοιόμορφα ελάχιστης διασποράς (ΑΟΕΔ) εκτιμητές για τα g g =. Επάρκεια: = ( > 0) (, ) ( ) x ( ) = και fx ( x; ) = ( xi;0, ) = ( 0 < xi < ) = 0 < x x < i= i= f X ( x; ) = hfn ( x) gfn ( T ( x), ) : Fisher Neyma hfn x x T x = gfn x = x < έτσι T( X) = X = επαρκής για το g Πληρότητα: =. 0 < t < 0 t FT ( t; ) = P{ X t} = P { X t,, X t} ( P { X t} ) 0 t = = < t < t ft ( t; ) = ( 0 < t < ), + 0, 0, 0 t= 0 ( ) ϕ T = Θ= ϕ t t dt = > t= 0 ϕ t t dt = 0, > 0 ϕ = 0, > 0 ϕ t = 0, t > 0. από όπου και T( X) = X = πλήρης για το g =.
2 ΑΟΕΔ για g 0 = + ( T ) = t t dt T, = = Θ= T T = αμερόληπτος για το g =. Επειδή T ψ ( T) = με T = επαρκής και πλήρης για το, από το θεώρημα Lehma- Scheffe (και πιο συγκεκριμένα από το πόρισμα.4.5) έχουμε ότι ο T είναι ΑΟΕΔ για το g =. g = ΑΟΕΔ για t dt,, + =, T = = Θ= t T 0 T T = g =. αμερόληπτος για το Επειδή T ψ ( T) = επαρκής και πλήρης για το από το θεώρημα Lehma-Scheffe (πόρισμα.4.5) έχουμε ότι ο T είναι ΑΟΕΔ για το g = όταν. Το T είναι και ο μοναδικός ΑΟΕΔ για 3 (πεπερασμένη διασπορά) εφόσον +, 3,, 3, 0 < Θ= < > T T Θέμα ο (Πρόταση.5.3) Έστω X = X,, X δεδομένα με κατανομή P με Θ. Εάν h : μετρήσιμη συνάρτηση του δείγματος X, και A μετρήσιμο υποσύνολο του, δείξτε ότι η στατιστική T = T X = h X A είναι ένας αμερόληπτος εκτιμητής του συνάρτηση g = P h X A. Ποίο το μέσο τετραγωνικό σφάλμα του T ; Επειδή
3 { } { } { } P T = = P h X A = = P h X A = g { } { } { } { } P T = 0 = P h X A = 0 = P h X A = P h X A = g θα έχουμε ότι ( ) T T ~ Bi, g T = g b = 0 MSE T = g g MSE ( T, ) = ( T ) + bt (, ). 3
4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών - Εισαγωγική κατεύθυνση ΣΑΧΜ ΣΤΑΤΙΣΤΙΚΗ Ι (Μέρος Β) Ιούνιος 06 ΔΙΔΑΣΚΩΝ: Αθανάσιος Ρακιτζής Θέμα 3. Δίνεται τυχαίο δείγμα,, από κατανομή με πυκνότητα πιθανότητας με Θ = (0, ). (; ) = ( ) I (,) (), (α) Να βρεθεί ο εκτιμητής μέγιστης πιθανοφάνειας (ΕΜΠ) του. (Μονάδες.5) Λύση: Η συνάρτηση πιθανοφάνειας είναι ) ( ) = ( = ) ( ) ( Λογαριθμίζοντας, παίρνουμε το λογάριθμο της πιθανοφάνειας, ο οποίος είναι log ( ) = log + 3 log( ) Παραγωγίζοντας τη log ( ) ως προς, έχουμε ότι απ' όπου έπεται ότι = Στη συνέχεια, λύνουμε την εξίσωση = +., Θ = (0, )., Θ = (0, ). = + 4, = 0 ως προς, από την οποία προκύπτει + = 0 = =. Το σημείο αυτό είναι για τη συνάρτηση της πιθανοφάνειας πιθανό σημείο ακρότατης τιμής. Θα χρησιμοποιήσουμε το κριτήριο της ας παραγώγου ώστε να εξετάσουμε αν είναι μέγιστο ή ελάχιστο. Πράγματι, η η παράγωγος του λογαρίθμου της συνάρτησης της πιθανοφάνειας είναι απ' όπου έπεται ότι = + ( ), και για =, είναι = =,
5 = 5 = ( 4) < 0. Άρα, αφού για =, η < 0, στο σημείο αυτό η ( ) μεγιστοποιείται και άρα ο ζητούμενος ΕΜΠ είναι ο =. (β) Να δείξετε ότι η κατανομή της τ.μ. είναι η Εκθετική με παράμετρο (δηλ., ~E( )). Στη συνέχεια να δώσετε την ασυμπτωτική κατανομή του ΕΜΠ. (Μονάδες.0) Δίνεται: Αν ~E(), > 0, τότε (; ) = (/) I (,) (), με () =, () =. Λύση: Έστω τ.μ. =. Τότε, η αθροιστική συνάρτηση κατανομής (α.σ.κ.) αυτής είναι () = ( ) = ( ) = ( / ) = ( / ). Άρα, η συνάρτηση πυκνότητας της είναι () = () και με απευθείας αντικατάσταση, λαμβάνουμε δηλαδή = ~E( ). = ( / )( / ) = / ( / ), () = / / / I (,) () = / I (,) (), (γ) Να κατασκευάσετε ένα 00( )% διάστημα εμπιστοσύνης ίσων ουρών για το, βασιζόμενοι στον εκτιμητή που βρήκατε στο (α). (Μονάδες.0) Λύση: Αφού =, θα είναι = ή =. Όμως, από το (β), η ~E( ) άρα = ~(, ). Κατά συνέπεια, η τ.μ. (; ()) = = ~, δηλαδή η ; () = / εξαρτάται μόνο από το ενώ η κατανομή της είναι ανεξάρτητη αυτού. Άρα, είναι ποσότητα οδηγός και θα τη χρησιμοποιήσουμε για την κατασκευή ενός 00( )% διάστημα εμπιστοσύνης ίσων ουρών για το. Ψάχνουμε σταθερές, με <, τέτοιες ώστε ; () = / και ; () > = /. Αφού (; ())~, θα είναι = ;/ και = ;/. Άρα, θα ισχύει ότι ;/ ; () =, ;/ = ;/ = ;/ ;/ ;/ ;/ ;/ =, =,
6 Άρα, το ζητούμενο ΔΕ για το, είναι το ;/ ;/,. Θέμα 4. Έστω τυχαίο δείγμα,, από αρνητική διωνυμική κατανομή (3, ), Θ = (0,). (α) Να βρεθεί ο εκτιμητής μεθόδου ροπών (ΕΜΡ) του. (Μονάδες 0.5) Δίνεται: Αν ~(, ), > 0, 0 < <, τότε (;, ) = και () = ( )/, () = ( )/. Γ( + ) ( ) I,,, () Γ()! Λύση: Για την εύρεση του ΕΜΡ του, λύνουμε ως προς την παρακάτω εξίσωση () = () = 3 = ( + 3) =, αφού, με βάση τον τύπο της συνάρτησης πιθανότητας της Αρνητικής Διωνυμικής κατανομής, είναι = 3, =. (β) Να δοθεί η ασυμπτωτική κατανομή του ΕΜΡ. Είναι ο ΕΜΡ συνεπής εκτιμητής του ; Να αιτιολογήσετε την απάντησή σας. (Μονάδες.0) Λύση: Από το Κ.Ο.Θ. είναι ( ) (0, ), όπου = 3( )/ και = 3( )/. Έστω η συνάρτηση h() = 3/( + 3) με h () = 3/( + 3) 0 για κάθε R. Άρα, με εφαρμογή της Μεθόδου Δέλτα, έχουμε ότι δηλαδή, και μετά από πράξεις (h( ) h()) (0, (h ()) ), καθώς, 0, () h (), καθώς, 0, (), καθώς,. Τέλος, ο ΕΜΡ είναι συνεπής εκτιμητής του ως ασυμπτωτικά κανονικός.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού
A(θ) = n log θ B(x ) = 0. T (x ) = x i. Γ(n)θ n =
ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΣΤΑΤΙΣΤΙΚΗ Ι : ΕΚΤΙΜΗΤΙΚΗ» Πέµπτη 24 Ιουνίου 24 Εξεταστική περίοδος Ιουνίου 24 ΘΕΜΑΤΑ. Θεωρώντας ως κριτήριο το µέσο τετραγωνικό σφάλµα : (α ( µονάδες Εστω, 2 δύο εκτιµητές τού g(θ.
Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics)
Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Τυχαίο δείγμα και στατιστική συνάρτηση Χ={x 1, x,, x n } τυχαίο δείγμα μεγέθους n προερχόμενο από μια (παραμετρική) κατανομή με σ.π.π. f(x;θ).
ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ
ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. ΑΓΓΕΛΟΥ ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Εκτιμητική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου
Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III
0 TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III Νοέμβριος Eστω,,, τυχαίο δείγμα από κατανομή f( x; ), όπου συμβολίζει άγνωστη παράμετρο (a) Να ορισθεί η έννοια του επαρκούς στατιστικού
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 13 Μαρτίου /31
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 13 Μαρτίου 2017 1/31 Βασικοί ορισμοί. Ορισμός 1: Τυχαίο δείγμα. Τυχαίο δείγμα μεγέθους n από
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 14 Μαρτίου 018 1/34 Διαστήματα Εμπιστοσύνης. Εχουμε δει εκτενώς μέχρι τώρα τρόπους εκτίμησης
Στατιστική. Εκτιμητική
Στατιστική Εκτιμητική Χατζόπουλος Σταύρος 28/2/2018 και 01 /03/2018 Εισαγωγή Το αντικείμενο της Στατιστικής είναι η εξαγωγή συμπερασμάτων που αφορούν τον πληθυσμό ή το φαινόμενο που μελετάμε, με τη βοήθεια
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 4 ου κεφαλαίου Ελεγχοσυναρτήσεις Γενικευμένου Λόγου Πιθανοφανειών Σταύρος Χατζόπουλος 27/03/2017, 03/04/2017, 24/04/2017 1 Εισαγωγή Έστω το τ.δ. X,,, από την κατανομή
Στατιστική Συμπερασματολογία
4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε
(X1 X 2 ) 2}. ( ) f 1 (x i ; θ) = θ x i. (1 θ) n x i. x i log. i=1. i=1 t2 i
ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΣΤΑΤΙΣΤΙΚΗ I: ΕΚΤΙΜΗΤΙΚΗ 8 Ιουνίου 005 Εξεταστική περίοδος Ιουνίου 005 ΘΕΜΑΤΑ Εστω X = (X,, X n ), n, τυχαίο δείγµα από κατανοµή Bernoull B(, θ), θ Θ = (0, ) (α) (0 µονάδες) Να δειχθεί
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
Μέθοδος μέγιστης πιθανοφάνειας
Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σκ της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα Χ=(Χ, Χ,, Χ ) από πληθυσμό το
n + 1 X(1 + X). ) = X i i=1 i=1
ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΣΤΑΤΙΣΤΙΚΗ I: ΕΚΤΙΜΗΤΙΚΗ 6 Σεπτεµβρίου 005 Εξεταστική περίοδος Σεπτεµβρίου 005 ΘΕΜΑΤΑ 1 1. Εστω X (X 1,..., X ) τυχαίο δείγµα από γεωµετρική κατανοµή Ge(), Θ (0, 1). (α) (10 µονάδες)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.
Άσκηση : Έστω Χ,,Χ τυχαίο δείγµα µεγέους από την κατανοµή µε σππ 3 p (,, >, > 0 α είξτε ότι η στατιστική συνάρτηση Τ( Χ : Χ ( m είναι επαρκής για την παράµετρο και πλήρης κ β Βρείτε ΑΕΕ του α Το στήριγµα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Παραμέτρων
Μέθοδος μέγιστης πιθανοφάνειας
Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα
Εκτιμήτριες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Εκτιμήτριες. μέθοδος ροπών και μέγιστης πιθανοφάνειας
Εκτιμήτριες Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Εκτιμήτριες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α μέθοδος ροπών και μέγιστης πιθανοφάνειας κριτήρια αμεροληψίας και συνέπειας 9 άλυτες ασκήσεις 6 9 7.
Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις και σημειακή εκτίμηση παραμέτρων Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή συμπερασμάτων για το σ
10ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 10ο Μάθημα
ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)
ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη) Για διακριτή τυχαία μεταβλητή ισχύει μία συνάρτηση πιθανότητας ικανοποιεί τις ακόλουθες δύο ιδιότητες: (α) ( ) 0, για κάθε i,, i (β) ( i ) i S Παράδειγμα
( ) S( x ) 2 ( ) = ( ) ( ) = ( ) ( )
Ορίζουμε την πληροφορία κατά Fsher ( σαν το ποσό της πληροφορίας που περιέχει η παρατήρηση για την παράμετρο Συμβολίζοντας με S( την λογαριθμική παράγωγο της πιθανοφάνειας ως προς την παράμετρο (score
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή
Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις, σημειακή εκτίμηση παραμέτρων και γραμμική παλινδρόμηση Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή
Πιθανότητες και Αρχές Στατιστικής (10η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 48 Σημερινό
Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα
CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ
CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X
Εισαγωγή-Αµερόληπτοι Εκτιµητές
Κεφάλαιο Εισαγωγή-Αµερόληπτοι Εκτιµητές. Στοιχεία Θεωρίας Το πρόβληµα που καλούµαστε να αντιµετωπίσουµε στο κοµµάτι της Στατιστικής που λέγεται εκτιµητική έχει ως εξής. Εστω ότι δίνονται δεδοµένα X = (X,
X = = 81 9 = 9
Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών Βασικά χαρακτηριστικά τυχαίας μεταβλητής: Μέση Τιμή (Me Vlue) Διακύμανση (Vrice) Γενικά χαρακτηριστικά: Ροπές μεταβλητών / Ροπογεννήτριες Χαρακτηριστικές συναρτήσεις
ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ
ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα
Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1
Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
Πανεπιστήμιο Πελοποννήσου
Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 5 ου κεφαλαίου Ελεγχοσυναρτήσεις για τις Παραμέτρους της Κανονικής Κατανομής Σταύρος Χατζόπουλος 08/05/207, 5/05/207 Εισαγωγή Στις παραγράφους που ακολουθούν παρουσιάζονται
Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής
Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΣΥΝΔΥΑΣΤΙΚΗ 1.1 ΒΑΣΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 13 1.2 ΠΡΟΣΘΕΤΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 15 1.3 ΔΙΑΤΑΞΕΙΣ..... 16 1.4 ΜΕΤΑΘΕΣΕΙΣ... 18 1.5 ΣΥΝΔΥΑΣΜΟΙ... 20 1.6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΤΑΘΕΣΕΙΣ......
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ
ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 7-8 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..
Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται
ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...
ΚΕΦΑΛΑΙΟ 0 Ένα Πρόβλημα Δεδομένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Απλή Γραμμική Παλινδρόμηση Μωυσιάδης Χρόνης 6 o Εξάμηνο Μαθηματικών Έχει σχέση το με το ; Ειδικότερα
ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ
ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε
ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ( ) ΟΜΑΔΑ Α ( 40% )
ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ (0-6-005) ΟΜΑΔΑ Α ( 40% ) ) Έστω μια τυχαία μεταβλητή Χ και ένα δείγμα x, x,, x n. Θεωρούμε την τιμή k = n i= ( x && x) i.να διευκρινιστεί
Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών
Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 6 Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:
Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα
Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΙΑ ΣΥΝΤΟΜΗ ΑΝΑΣΚΟΠΗΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΙΑ ΣΥΝΤΟΜΗ ΑΝΑΣΚΟΠΗΣΗ ΓΕΩΡΓΙΟΣ ΤΖΑΒΕΛΑΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ Ακαδημαϊκό έτος 03-4 Τι είναι
Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )
Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή
Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας
Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2014 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής Με λόγια, η f ( x, y) δίνει την πιθανότητα να εμφανισθεί
Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας
Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
Βιομαθηματικά BIO-156
Βιομαθηματικά BIO-156 Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 013 lika@biology.uoc.gr Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε απλό ενδεχόμενο
ΦΡΟΝΤΙΣΤΗΡΙΟ 11. β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη παράμετρο λ 0.
ΦΡΟΝΤΙΣΤΗΡΙΟ Άσκηση Έστω X, X,..., X d τυχαίες μεταβλητές με ~ Posso ( ), Να εξάγετε α) τη συνάστηση πιθανοφάνειας στις 3 μορφές τις και β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη παράμετρο
X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας
Ροπογεννήτριες (mome geerig fucios), πιθανογεννήτριες (robbiliy geerig fucios) και χαρακτηριστικές συναρτήσεις (chrcerisic fucios) Η ροπογεννήτρια συνάρτηση της τμ είναι η πραγματική συνάρτηση πραγματικής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
( t) ( ) ( 0,1) ( ) ( ) ( ) ( ) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem Lindeberg Levy) τότε η τ.μ. Sn
Κεντρικό Οριακό Θεώρημα (Cetral Lmt Theorem Leberg Levy Εάν ~ f (, με [ ] µ, Var [ ] σ < και S τότε η τμ S ( S S µ συγκίνει ως προς κατανομή (coverges strbuto στη Var S σ ( N ( 0,, δηαδή N( 0, ή ισοδύναμα
Στατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 2 ου κεφαλαίου Σταύρος Χατζόπουλος 20/02/2017, 06/03/2017, 13/03/2017 1 Κεφάλαιο 2. Έλεγχος Απλών Υποθέσεων Τα προβλήματα ελέγχου υποθέσεων απορρέουν από παρατηρήσεις
7. Εκτιμήσεις Τιμων Δεικτων
Μαθηματικά και Στατιστικη στην Βιολογια ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ (1 ο ) Τμημα Βιολογιας Αριστοτελειο Πανεπιστημιο Θεσσαλονικης Mathematics and Statistics in Biology WINTER SEMESTER (1 st ) School of Biology Aristotle
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
Χ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80.
ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑΙΟΤ ΧΟΛΗ ΕΠΙΣΗΜΩΝ ΣΗ ΔΙΟΙΚΗΗ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑ ΚΑΙ ΔΙΟΙΚΗΗ ΣΑΣΙΣΙΚΗ Ακαδ. Έτος -3 Διδάσκων: Βασίλης ΚΟΤΣΡΑ Διδάσκων επί Συμβάσει Π.Δ 47/8 v.kouras@fμe.aegea.gr Σηλ: 735457 Διωνυμικό
Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.
Περιεχόμενα της Ενότητας Στατιστική ΙI Ενότητα 1: Δειγματοληψία και Κατανομές Δειγματοληψίας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 1. ειγµατοληψία Πιθανοτικές
& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο ΠΡΟΣΟΧΗ: Τα θέµατα που ακολουθούν καλύπτουν ένα ευρύ φάσµα διαφόρων περιοχών των Μαθηµατικών. Αυτό
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 3 ου κεφαλαίου Έλεγχος Σύνθετων Υποθέσεων Σταύρος Χατζόπουλος 13/03/2017, 20/03/2017, 27/03/2017 1 Ιδιότητα Μονότονου Λόγου Πιθανοφανειών Συνήθως, καταστάσεις, όπως
f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g
ΦΡΟΝΤΙΣΤΗΡΙΑ 7 ΚΑΙ 8
ΦΡΟΝΤΙΣΤΗΡΙΑ 7 ΚΑΙ 8 Άσκηση Έστω X, X,..., X d τυχαίες μεταβλητές με Beroull ( p ), p, Να εξάγετε α) τη συνάρτηση πιθανοφάνειας στις 3 μορφές τις και β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 7/07/207 Πρωί: Απόγευμα: Θεματική ενότητα: Αρχές Αναλογιστικής Προτυποποίησης, Κατασκευή και Αξιολόγηση Αναλογιστικών Προτύπων. Οι αναλογιστές μιας εταιρείας μοντελοποιούν την
ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ
στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί Lorentz 3. Δυναμική ενός σωματιδίου (Νόμοι της δυναμικής-ορμή-στροφορμήσυστήματα
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ - ΠΑΠΑΔΟΠΟΥΛΟΣ ΜΑΡΙΝΟΣ ΠΕΡΙΕΧΟΜΕΝΑ. Τίτλος Θεματικές Ενότητες Σελίδες. Δυο λόγια προς τους μαθητές.
ΠΕΡΙΕΧΟΜΕΝΑ Τίτλος Θεματικές Ενότητες Σελίδες Προλογικό Σημείωμα Δυο λόγια προς τους μαθητές. ΚΕΦΑΛΑΙΟ 1 ο Όρια Συνέχεια Συνάρτησης 1-177 Μέρος 1 ο ΣΥΝΑΡΤΗΣΕΙΣ 1-85 Μάθημα 1 Έννοια συνάρτησης Πεδίο ορισμού
Μαθηματικά Και Στατιστική Στη Βιολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 5 : Εκτιμήσεις Ι. Αντωνίου, Χ. Μπράτσας Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό
9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
Τυχαία μεταβλητή (τ.μ.)
Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως
Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.
Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς
P(200 X 232) = =
ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη
ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ
ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ Ανάλυση συχνότητας ενός υδρολογικού μεγέθους: Είναι η εύρεση της σχέσεως μεταξύ του υδρολογικού φαινομένου και της πιθανότητας εμφανίσεως του μεγέθους αυτού. Μεταβλητή:
2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ
.5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων
Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }
Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το
Στατιστική Ι-Θεωρητικές Κατανομές Ι
Στατιστική Ι-Θεωρητικές Κατανομές Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές Η Χρήση των Θεωρητικών
Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii
Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...
Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη
Σημειακή εκτίμηση και εκτίμηση με διάστημα 11 η Διάλεξη Εκτιμήτρια Κάθε στατιστική συνάρτηση που χρησιμοποιείται για την εκτίμηση μιας παραμέτρου ενός πληθυσμού (π.χ. ο δειγματικός μέσος) Σημειακή εκτίμηση