Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23
|
|
- Νικόλαος Κωνσταντόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου /23
2 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα στην εξαρτημένη μεταβλητή και σε μία η περισσότερες ανεξάρτητες μεταβλητές. Πρώτα διαπιστώνεται η γραμμικότητα της σχέσης μεταξύ εξαρτημένης και ανεξάρτητων μεταβλητών Μετά εκτιμώνται οι συντελεστές της σχέσης (παράμετροι των μεταβλητών) με σκοπό την ελαχιστοποίηση ενός στατιστικού κριτηρίου. Η ανάλυση διακύμανσης είναι πιο γενικό εργαλείο γιατί δεν υποθέτει κάποια συναρτησιακή μορφή μεταξύ εξαρτημένης και ανεξάρτητης τ.μ. Είναι σημαντικό να κάνουμε τον εξής διαχωρισμό: στο πλαίσιο της γραμμικής παλινδρόμησης και πάλι λαμβάνει χώρα ανάλυση διακύμανσης για την παραγωγή του F τεστ καλής προσαρμογής. Το F τεστ μετράει το κατά πόσο η μεταβλητότητα της εξαρτημένης μεταβλητής εξηγείται από το μοντέλο που υποθέσαμε. Η ανάλυση διακύμανσης που μελετάμε εδώ έχει άλλο σκοπό: μπορεί να περιλάβει και ποιοτικές μεταβλητές και αποσκοπεί στο να εξηγήσει κατά πόσο κάθε παράγοντας (δηλ. ποιοτική μεταβλητή) επηρεάζει την εξαρτημένη μεταβλητή. 2/23
3 Ανάλυση Διακύμανσης κατά ένα παράγοντα. Στην πιο απλή περίπτωση μας ενδιαφέρει να μελετήσουμε την ανάλυση της διακύμανσης ως προς τα επίπεδα ενός μόνο παράγοντα. Θεωρούμε ότι η εξαρτημένη μεταβλητή για το επίπεδο του παράγοντα ακολουθεί κανονική κατανομή N(µ, σ 2 ), = 1,..., m όπου m είναι ο αριθμός των επιπέδων του υπό μελέτη παράγοντα. Ο σκοπός είναι να διαπιστώσουμε αν οι μέσες τιμές µ, = 1,..., m διαφέρουν ή αν όντως ο μέσος είναι σταθερός για όλα τα επίπεδα του παράγοντα. Η στατιστική μελέτη για την απάντηση του ερωτήματος βασίζεται σε ένα τυχαίο δείγμα τιμών της εξαρτημένης μεταβλητής από τα διάφορα επίπεδα του παράγοντα. Ξεκινάμε παίρνοντας δείγμα μεγέθους n, = 1,..., m από το επίπεδο του παράγοντα. Δεν είναι απαραίτητο τα n να είναι ίσα για κάθε επίπεδο. Πρέπει όμως οι παρατηρήσεις του δείγματος μέσα σε κάθε επίπεδο και μεταξύ των επιπέδων να είναι ανεξάρτητες. 3/23
4 Ανάλυση Διακύμανσης κατά ένα παράγοντα. Τα δεδομένα που συγκεντρώσαμε συνοψίζονται ως εξής: Επίπεδα Σύνολα Μέσοι 1 Y 11 Y Y 1n1 Y 1 Ȳ 1 2 Y 21 Y Y 2n2 Y 2 Ȳ m Y m1 Y m2... Y mnm Y m Ȳ m Y Ȳ Y j είναι η j παρατήρηση του επιπέδου, n = n 1 + n n m είναι ο συνολικός αριθμός παρατηρήσεων και n Y = Y j, Ȳ = n 1 Y j=1 είναι τα μερικά αθροίσματα και μέσοι όροι ανά γραμμή. Επίσης, το ολικό άθροισμα και γενικός μέσος είναι αντίστοιχα Y = n Y j, Ȳ = n 1 Y j=1 4/23
5 Ανάλυση Διακύμανσης κατά ένα παράγοντα. Το μοντέλο ανάλυσης διασποράς κατά ένα παράγοντα είναι: Y j = µ + ε j, ε j N(0, σ 2 ) Τα ε j, j = 1,..., n, = 1,..., m είναι ανεξάρτητα και ισόνομα κατανεμημένα τυχαία σφάλματα Οι μέσοι µ, = 1,..., m είναι οι άγνωστες παράμετροι του μοντέλου Δηλ. το μοντέλο υποθέτει ότι τα διάφορα επίπεδα του υπό μελέτη παράγοντα διαφέρουν ως προς το μέσο όρο τους αλλά έχουν κοινή διασπορά. Η υπόθεση που μας ενδιαφέρει να ελέγξουμε είναι H 0 : µ = µ, = 1,..., m έναντι H 1 : µ µ για τουλάχιστον ένα Για να μπορέσουμε να ελέγξουμε την υπόθεση, πρέπει να αναλύσουμε τη συνολική διασπορά των δεδομένων σε δυο συνιστώσες: διασπορά μέσα στα επίπεδα διασπορά ανάμεσα στα επίπεδα Διαισθητικά περιμένουμε ότι αν η διασπορά ανάμεσα στα επίπεδα είναι μεγαλύτερη από τη διασπορά μέσα στα επίπεδα τότε ο μέσος όρος δεν θα είναι σταθερός για όλα τα επίπεδα. 5/23
6 Ανάλυση Διακύμανσης κατά ένα παράγοντα. Η συνολική μεταβλητότητα του δείγματος ορίζεται από το άθροισμα των τετραγώνων των αποκλίσεων των παρατηρήσεων από το συνολικό μέσο του δείγματος: n SST = (Y j Ȳ ) 2 j=1 Παρατήρηση: Η απόκλιση της Y j από το συνολικό μέσο Ȳ μπορεί να γραφτεί ως Οπότε μπορούμε να γράψουμε SST = Y j Ȳ = (Y j Ȳ ) + (Ȳ Ȳ ). n { (Yj Ȳ ) + (Ȳ Ȳ ) } 2 n = (Y j Ȳ ) 2 j=1 j=1 j=1 n n + (Ȳ Ȳ ) (Y j Ȳ )(Ȳ Ȳ ). j=1 6/23
7 Ανάλυση Διακύμανσης κατά ένα παράγοντα. Ομως n n 2 (Y j Ȳ )(Ȳ Ȳ ) = 2 (Ȳ Ȳ ) (Y j Ȳ ) = j=1 j=1 n 2 (Ȳ Ȳ ) Y j n Ȳ = [ 2 (Ȳ Ȳ )(n Ȳ ] n Ȳ ) = 0 Άρα j=1 SST = j=1 n n (Y j Ȳ ) 2 + (Ȳ Ȳ ) 2. j=1 Το άθροισμα των τετραγώνων των αποκλίσεων από τους μέσους των επιπέδων που ανήκουν n SSE = (Y j Ȳ ) 2 j=1 εκφράζει τη μεταβλητότητα μέσα στα επίπεδα του παράγοντα. 7/23
8 Ανάλυση Διακύμανσης κατά ένα παράγοντα. Το άθροισμα των τετραγώνων των αποκλίσεων από το συνολικό μέσο του δείγματος SSF = (Ȳ Ȳ ) 2 εκφράζει τη μεταβλητότητα ανάμεσα στα επίπεδα. Συνολικά: SST = SSE + SSF Η μεταβλητότητα ανάμεσα στα επίπεδα είναι αυτή που οφείλεται στις διαφορές των επιπέδων του παράγοντα και εκφράζεται από το συνολικό άθροισμα τετραγώνων του παράγοντα SSF. Η μεταβλητότητα μέσα στα επίπεδα οφείλεται στην τυχαιότητα και εκφράζεται από το συνολικό άθροισμα τετραγώνων των τυχαίων σφαλμάτων. Τα m επίπεδα του υπό μελέτη παράγοντα κινούνται σε m 1 βαθμούς ελευθερίας Μέσα σε κάθε επίπεδο οι βαθμοί ελευθερίας είναι n 1 άρα συνολικά στα επίπεδα έχουμε n = m βαθμούς ελευθερίας. Οι συνολικοί βαθμοί ελευθερίας στο πείραμα είναι n 1. 8/23
9 Ανάλυση Διακύμανσης κατά ένα παράγοντα. Για κάθε επίπεδο ορίζουμε τη συνάρτηση W 2 n = (n 1) 1 (Y j Ȳ ) 2, = 1,..., m. j=1 Οι παρατηρήσεις του επιπέδου αποτελούν δείγμα από την κανονική κατανομή N(µ, σ 2 ). Οπότε n σ 2 (Y j Ȳ ) 2 = σ 2 (n 1)W 2 χ 2 n 1. Άρα j=1 E = σ 2 (n 1)W 2 = n 1 EW 2 = σ 2. Άρα η W 2 είναι αμερόληπτη εκτιμήτρια της διασποράς σ 2 βασισμένη σε δείγμα από το επίπεδο. Τώρα, το άθροισμα m ανεξάρτητων τ.μ. που ακολουθούν χ 2 κατανομή είναι επίσης τ.μ. με χ 2 κατανομή με βαθμούς ελευθερίας ίσους με το άθροισμα των βαθμών ελευθερίας των αρχικών m κατανομών. 9/23
10 Ανάλυση Διακύμανσης κατά ένα παράγοντα. Άρα, σ 2 Οπότε, (n 1)W 2 = σ 2 n (Y j Ȳ ) 2 = σ 2 SSE χ 2 n m. j=1 Eσ 2 SSE = n m E(n m) 1 SSE = σ 2. Επομένως η (n m) 1 SSE είναι μία αμερόληπτη εκτιμήτρια της σ 2. Υπό την H 0 όλες οι παρατηρήσεις Y j είναι δείγμα από την ίδια κατανομή N(µ, σ 2 ). Εστω η συνάρτηση Εχουμε ότι σ 2 n (Y j Ȳ ) 2 = (n 1) 1 SST. j=1 n σ 2 (n 1)S 2 = σ 2 (Y j Ȳ ) 2 χ 2 n 1. j=1 10/23
11 Ανάλυση Διακύμανσης κατά ένα παράγοντα. Άρα E { σ 2 (n 1)S 2} = n 1 (n 1) 1 SST = σ 2. Άρα η S 2 = (n 1) 1 SST υπό την H 0 είναι μια αμερόληπτη εκτιμήτρια της διασποράς σ 2. Ισχύει σ 2 SST = σ 2 SSE + σ 2 SSF. Από το θεώρημα των τετραγωνικών μορφών, υπό την H 0 η συνάρτηση SSF/σ 2 χ 2 m 1. Άρα, Eσ 2 SSF = m 1 (m 1) 1 SSF = σ 2. Άρα η (m 1) 1 SSF υπό την H 0 είναι μια αμερόληπτη εκτιμήτρια της διασποράς σ 2. Άρα υπό την H 0 έχουμε ότι SSF/(m 1) SSE/(n m) F m 1,n m. 11/23
12 Ανάλυση Διακύμανσης κατά ένα παράγοντα. Η ελεγχοσυνάρτηση SSF/(m 1) SSE/(n m) μπορεί να χρησιμοποιηθεί για τον έλεγχο της ισότητας μέσων στην ανάλυση διακύμανσης. Η H 0 απορρίπτεται σε επίπεδο σημαντικότητας α αν η παρατηρούμενη τιμή της ελεγχοσυνάρτησης είναι μεγαλύτερη από το α ποσοστιαίο σημείο της κατανομής F με m 1 και n m βαθμούς ελευθερίας. Δηλαδή αν SSF/(m 1) SSE/(n m) > F α,m 1,n m. Παρατήρηση: Η εκτιμήτρια του σ 2 που βασίζεται στο SSE είναι πάντα αμερόληπτη. Ομως η εκτιμήτρια που βασίζεται στο SSF είναι αμερόληπτη κάτω από την H 0. Αν η H 0 δεν είναι αληθής τότε 1 m 1 E {SSF} > σ2. 12/23
13 Ανάλυση Διακύμανσης κατά ένα παράγοντα. Απόδειξη: E {SSF} = E (Ȳ Ȳ ) 2 = E n Ȳ 2 2 = E = = n Ȳ 2 2nȲ 2 + nȳ 2 = E n EȲ 2 neȳ 2 n Ȳ Ȳ + nȳ 2 n Ȳ 2 nȳ 2 n ( (Ȳ ) + E 2 (Ȳ )) n( (Ȳ ) + E 2 (Ȳ )) ( ) ( ) σ 2 σ = n + µ 2 2 n n n + µ2 = (m 1)σ 2 + n (µ 2 µ 2 ) > σ 2. 13/23
14 Υποθέσεις μοντέλου ανάλυσης διακύμανσης. 1. Η κατανομή των παρατηρήσεων σε κάθε επίπεδο είναι κανονική: y j N(µ, σ 2 ), j = 1,..., n, για το επίπεδο. 2. Η κανονική κατανομή σε κάθε επίπεδο έχει την ίδια διασπορά σ Οι τυχαίοι όροι ε j είναι ισόνομα κατανεμημένοι με ε j N(0, σ 2 ) για κάθε, j. 4. Οι παρατηρήσεις σε κάθε επίπεδο του παράγοντα είναι ανεξάρτητες και ισόνομα κατανεμημένες και είναι ανεξάρτητες από τις παρατηρήσεις στα άλλα επίπεδα. Στόχοι του μοντέλου ανάλυσης διακύμανσης. 1. Ελεγχος αν οι μέσοι των επιπέδων είναι ίσοι: H 0 : µ = µ, = 1,..., m έναντι H 1 : µ µ για τουλάχιστον ένα 2. Αν οι μέσοι δεν είναι ίσοι, ποιες είναι οι διαφορές; Αν οι μέσοι δεν διαφέρουν τότε το συμπέρασμα είναι οτι η εξαρτημένη μεταβλητή δεν εξαρτάται από τα επίπεδα του παράγοντα. 14/23
15 Ελεγχος για την ισότητα των διασπορών. Το μοντέλο της ανάλυσης διασποράς που αναπτύξαμε υποθέτει ότι οι διακυμάνσεις των κανονικών κατανομών σε όλα τα επίπεδα είναι ίσες. Στην πράξη αυτό ελέγχεται: Bartlett s test Εστω S 2 η δειγματική διασπορά του επιπέδου. Για τον έλεγχο της H 0 : σ 2 1 = = σ2 m = σ 2 έναντι H 1 : σ σ 2 για τουλάχιστον ένα χρησιμοποιείται η στατιστική συνάρτηση χ 2 0 = qc 1 όπου q = (n m) log S 2 p (n 1) log S 2 1 c = 1 + (n 3(m 1) 1) 1 (n m) 1 Sp 2 = 1 (n 1)S 2 n m 15/23
16 Ελεγχος για την ισότητα των διασπορών. Η ποσότητα q είναι ίση με 0 όταν τα S 2 είναι ίσα και γίνεται μεγάλη όταν τα S 2 διαφέρουν πολύ. Επομένως απορρίπτουμε την H 0 για μεγάλες τιμές του χ 2 0 δηλαδή για χ 2 0 > χ2 1 α,m 1. Παρατήρηση: οι υποθέσεις του μοντέλου μπορούν να ελεγχθούν και γραφικά με τη βοήθεια των υπολοίπων. Τα υπόλοιπα ορίζονται ως ε j = Y j ˆµ = Y j Ȳ Με ένα pp plot πλοτ ελέγχουμε την κανονικότητα των υπολοίπων Με ένα scatter plot ελέγχουμε τυχαιότητα και ανεξαρτησία. 16/23
17 Επιμέρους έλεγχοι υποθέσεων για τους μέσους. Αν το F τεστ για την ισότητα των μέσων έδειξε ότι οι μέσοι των επιπέδων διαφέρουν, τότε έχει νόημα προχωρήσουμε σε περαιτέρω ανάλυση. Μια αμερόληπτη εκτιμήτρια του μέσου του επιπέδου µ είναι ο δειγματικός μέσος του επιπέδου ˆµ = Ȳ, με διακύμανση n 1 σ 2 Μία αμερόληπτη εκτιμήτρια του σ 2 είναι το MSE/n αφού το MSE είναι αμερόληπτη εκτιμήτρια του σ 2. Εφόσον Ȳ N(µ, n 1 σ 2 ), αυτό συνεπάγεται ότι ( MSE/n ) 1 (Ȳ µ ) t n m όπου n m είναι οι βαθμοί ελευθερίας που συνδέονται με το MSE. Ετσι για κάθε µ έχουμε το ακόλουθο διάστημα εμπιστοσύνης Ȳ MSE/n t 1 α/2,n m µ Ȳ + MSE/n t 1 α/2,n m Από τέτοια διαστήματα εμπιστοσύνης για όλα τα µ παίρνουμε μια πρώτη εικόνα για το πως διαφέρουν οι μέσοι των επιπέδων. 17/23
18 Επιμέρους έλεγχοι υποθέσεων για τους μέσους. Για να εκτιμήσουμε τη διαφορά των μέσων 2 επιπέδων: Ορίζουμε D = Ȳ Ȳ j. Η τ.μ. D ακολουθεί κανονική κατανομή ως γραμμικός συνδυασμός ανεξάρτητων κανονικών τ.μ. Εφόσον Ȳ, Ȳ j ανεξάρτητα, η διασπορά της D είναι σ 2 D = σ 2 Ȳ + σ 2 Ȳ j = σ 2 ( 1 n + 1 n j ) και η εκτιμήτρια είναι Άρα ( 1 S 2 D = MSE + 1 n n j D (µ µ j ) S 2 D t n m Ενα δ/μα εμπιστοσύνης για τη διαφορά µ µ j είναι D S 2 Dt 1 α/2,n m µ µ j D + S 2 Dt 1 α/2,n m. ). 18/23
19 Επιμέρους έλεγχοι υποθέσεων για τους μέσους. Για τον έλεγχο H 0 : µ µ j = 0 έναντι µ µ j 0 απορρίπτουμε την H 0 αν D(S 2 D) 1/2 > t 1 α/2,n m. Ορισμός: Contrasts Contrast λέγεται μία σύγκριση που εμπλέκει 2 η περισσότερα επίπεδα του παράγοντα L = c µ όπου c είναι συντελεστές τέτοιοι ώστε c c m = 0. Παράδειγμα Το Contrast L = µ 1 µ 2 όπου c 1 = 1, c 2 = 1 και c = 3,..., m αντιστοιχεί σε διαφορά μέσων. Το Contrast L = µ 1+µ 2 µ 3+µ 4 με 2 2 m = 4, c 1 = c 2 = 1/2 και c 3 = c 4 = 1/2 συγκρίνει μέσες τιμές ζευγών μέσων επιπέδων. 19/23
20 Επιμέρους έλεγχοι υποθέσεων για τους μέσους. Μια αμερόληπτη εκτιμήτρια για το L είναι η ˆL = c Ȳ. Αφού τα Ȳ είναι ανεξάρτητα, η διασπορά του ˆL είναι σ 2ˆL = m c2 n 1 με εκτιμήτρια S 2ˆL = MSE c 2 n 1 Η ˆL είναι γραμμικός συνδυασμός κανονικών τ.μ. και άρα ακολουθεί την κανονική κατανομή, επομένως, (ˆL L)S 1 ˆL t n m Το διάστημα εμπιστοσύνης είναι ˆL S 2ˆL t n m,1 α/2 µ µ j ˆL + S 2ˆL.t n m,1 α/2 20/23
21 Η μέθοδος της ελάχιστης σημαντικής διαφοράς. Η μέθοδος της ελάχιστης σημαντικής διαφοράς είναι ο πιο δημοφιλής πολλαπλός έλεγχος. Πρόκειται για σύνολο ελέγχων της μορφής H 0 : µ = µ j για όλα τα j έναντι H 1 : µ µ j Οι έλεγχοι γίνονται με χρήση του στατιστικού t = Ȳ Ȳ j t n m MSE(n 1 + n 1 ) j Οι μέσοι µ και µ j διαφέρουν στατιστικά σημαντικά σε επίπεδο σημαντικότητας α αν Ȳ Ȳ j > t n m,α/2 MSE(n 1 + n 1 j ) Δηλαδή στην ουσία πρόκειται για τεστ ισοδύναμο με το t test. Ενα μειονέκτημα βέβαια είναι ότι όσο μεγαλώνει ο αριθμός των τεστ τόσο αυξάνει η πιθανότητα σφάλματος τύπου Ι. 21/23
22 Η μέθοδος Scheffe. Ο Scheffe πρότεινε μια μέθοδο γα τη σύγκριση κάποιων ή όλων των δυνατών contrasts ανάμεσα σε μέσους επιπέδων. Εστω ένα σύνολο από contrasts Ισχύει, L j = c j µ, j = 1,..., r. ˆL j = c jˆµ = c j Ŷ, S 2ˆLj = MSE c 2 j n 1 Ο Scheffe κατασκεύασε ταυτόχρονα διαστήματα εμπιστοσύνης της μορφής ˆL j S 2ˆLj C L j ˆLj + S 2ˆLj C, C = (m 1)F m 1,n 1,1 α τέτοια ώστε με πιθανότητα τουλάχιστον 1 α όλα τα δ/τα να είναι αληθή. 22/23
23 Η μέθοδος Scheffe. Για έλεγχο υποθέσεων της μορφής H 0 : L j = 0 έναντι H 1 : L j 0 απορρίπτουμε την H 0 αν L j S 2 L j > C. Η συνολική πιθανότητα σφάλματος τύπου Ι για τους πολλαπλούς ελέγχους είναι το πολύ α. Τα απλά δ/τα εμπιστοσύνης της κατανομής t είναι πιο στενά από τα αντίστοιχα δ/τα της μεθόδου Scheffe. Αυτό οφείλεται στο ότι κατασκευάζουμε ταυτόχρονα δ/τα για μια οικογένεια contrasts οπότε υπάρχει μεγαλύτερη αβεβαιότητα. Η πιθανότητα σφάλματος τύπου Ι στη μέθοδο Scheffe είναι α αν πάρουμε όλα τα contrasts Στην αντίθετη περίπτωση είναι μικρότερη του α. 23/23
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 14 Μαρτίου 018 1/34 Διαστήματα Εμπιστοσύνης. Εχουμε δει εκτενώς μέχρι τώρα τρόπους εκτίμησης
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται
Διαβάστε περισσότεραΑνάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότερα9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
Διαβάστε περισσότεραΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ
ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος
Διαβάστε περισσότεραΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
Διαβάστε περισσότεραΣτατιστική Συμπερασματολογία
4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...
ΚΕΦΑΛΑΙΟ 0 Ένα Πρόβλημα Δεδομένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Απλή Γραμμική Παλινδρόμηση Μωυσιάδης Χρόνης 6 o Εξάμηνο Μαθηματικών Έχει σχέση το με το ; Ειδικότερα
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Διαβάστε περισσότεραΧ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
Διαβάστε περισσότερα7. Ανάλυση Διασποράς-ANOVA
7. Ανάλυση Διασποράς-ANOVA Παράδειγμα Μετρήσεις της συγκέντρωσης του strodum (mg/ml) σε πέντε υδάτινες περιοχές (Α,Β,C,D,Ε). Α Β C D Ε 8, 39,6 46,3 4,0 56,3 33, 40,8 4, 44, 54, 36,4 37,9 43,5 46,4 59,4
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΜέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
Διαβάστε περισσότεραΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)
Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ
Διαβάστε περισσότεραΣημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη
Σημειακή εκτίμηση και εκτίμηση με διάστημα 11 η Διάλεξη Εκτιμήτρια Κάθε στατιστική συνάρτηση που χρησιμοποιείται για την εκτίμηση μιας παραμέτρου ενός πληθυσμού (π.χ. ο δειγματικός μέσος) Σημειακή εκτίμηση
Διαβάστε περισσότεραΑντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Πολλαπλές συγκρίσεις Στην ανάλυση διακύμανσης ελέγχουμε την ισότητα
Διαβάστε περισσότεραΕισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,
ΜΕΜ64: Εφαρμοσμένη Στατιστική 1 ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=0, X = 7.5, σ = 16, α = 5%. Πως αλλάζει το διάστημα αν
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Διαβάστε περισσότεραΣτατιστική. Ανάλυση ιασποράς με ένα Παράγοντα. One-Way Anova. 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς
Στατιστική Ανάλυση ιασποράς με ένα Παράγοντα One-Way Anova Χατζόπουλος Σταύρος Κεφάλαιο 8ο. Ανάλυση ιασποράς 8.1 Εισαγωγή 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς 8.3 Ανάλυση ιασποράς με
Διαβάστε περισσότερα5. Έλεγχοι Υποθέσεων
5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος
Διαβάστε περισσότεραΓια το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας
Διαβάστε περισσότεραΈλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
Διαβάστε περισσότεραΕργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Διαβάστε περισσότεραΤμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων Γρεβενά Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Ιδιότητες εκτιμώμενης ευθείας παλινδρόμησης με τη μέθοδο των ελαχίστων
Διαβάστε περισσότεραΔιαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 30 Μαρτίου /32
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 30 Μαρτίου 2017 1/32 Ανάλυση Παλινδρόμησης: Γενικά. Με την ανάλυση παλινδρόμησης εξετάζουμε
Διαβάστε περισσότεραΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική
Διαβάστε περισσότεραΠολλαπλή παλινδρόμηση (Multivariate regression)
ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
Διαβάστε περισσότεραΔειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Διαβάστε περισσότεραx y max(x))
ΚΕΦΑΛΑΙΟ 0 Απλή Γραµµική Παλινδρόµηση Μωυσιάδης Χρόνης 6 o Εξάµηνο Μαθηµατικών Ένα Πρόβληµα εδοµένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 y 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Έχει σχέση το yµε το ; Ειδικότερα
Διαβάστε περισσότεραΑναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 7-8 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές
Διαβάστε περισσότερα2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ
.5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων
Διαβάστε περισσότερα7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων
7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες
Διαβάστε περισσότεραΔειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Διαβάστε περισσότερα2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)
.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην
Διαβάστε περισσότεραΔιαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
Διαβάστε περισσότερα2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ
.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα
Διαβάστε περισσότεραX = = 81 9 = 9
Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη
Διαβάστε περισσότεραΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων
ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού
Διαβάστε περισσότεραΚεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα
Διαβάστε περισσότεραΣτατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 10: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Β μέρος: Ετεροσκεδαστικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΣΙΜΟΣ ΜΕΙΝΤΑΝΗΣ, Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών, ΕΚΠΑ ΓΙΑΝΝΗΣ Κ. ΜΠΑΣΙΑΚΟΣ, Επίκουρος Καθηγητής Τμήμα Οικονομικών
Διαβάστε περισσότεραΥ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..
Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας
Διαβάστε περισσότεραΜέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics)
Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Τυχαίο δείγμα και στατιστική συνάρτηση Χ={x 1, x,, x n } τυχαίο δείγμα μεγέθους n προερχόμενο από μια (παραμετρική) κατανομή με σ.π.π. f(x;θ).
Διαβάστε περισσότεραΕρωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
Διαβάστε περισσότεραΣτατιστικοί Ελεγχοι. t - Έλεγχος για τον μέσο μ ενός πληθυσμού. t-έλεγχος για την σύγκριση των μέσων δύο πληθυσμών
Στατιστικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον μέσο μ ενός πληθυσμού Έλεγχος : t - Έλεγχος για τον μέσο μ ενός πληθυσμού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύμανση Έλεγχος 4: t-έλεγχος για την
Διαβάστε περισσότεραΓ. Πειραματισμός Βιομετρία
Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.
Διαβάστε περισσότερα4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
Διαβάστε περισσότεραΣτατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 5 ου κεφαλαίου Ελεγχοσυναρτήσεις για τις Παραμέτρους της Κανονικής Κατανομής Σταύρος Χατζόπουλος 08/05/207, 5/05/207 Εισαγωγή Στις παραγράφους που ακολουθούν παρουσιάζονται
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
Διαβάστε περισσότεραΚεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ
ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι
Διαβάστε περισσότεραΣτατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΑνάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα
Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια
Διαβάστε περισσότεραΑναλυτική Στατιστική
Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων
Διαβάστε περισσότεραΥ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..
Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ
Διαβάστε περισσότεραΑνάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017
Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017 2 α x b Παραγοντικό Πείραμα (1) Όταν θέλουμε να μελετήσουμε την επίδραση (στη μεταβλητή απόφασης) δύο παραγόντων, έστω Α και Β, με α στάθμες ο Α και b στάθμες
Διαβάστε περισσότεραΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΣτατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ
Διαβάστε περισσότεραΚεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Διαβάστε περισσότεραΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) Θέμα ο (Παρ..3.4, Παρ..4.3, Παρ..4.8.) Εάν = ( ) τυχαίο δείγμα από την ομοιόμορφη ( 0, ) X X,, X. Δείξτε ότι η στατιστική συνάρτηση T = X = το δειγματικό
Διαβάστε περισσότεραΑνάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη
Διαβάστε περισσότεραΔιάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
Διαβάστε περισσότεραΈλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι
Διαβάστε περισσότεραΓ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Διαβάστε περισσότεραΗ ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21
ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις
Διαβάστε περισσότεραΑ Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ
ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι
Διαβάστε περισσότερα6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά
Διαβάστε περισσότερα3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)
3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί
Διαβάστε περισσότεραΣτατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13
ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ (Analyss of Varance for two factor Experments) (Two-Way Analyss of Varance) Ο πειραματικός σχεδιασμός για τον οποίο θα μιλήσουμε είναι μια επέκταση της μεθοδολογίας
Διαβάστε περισσότερα