ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
|
|
- Ανάργυρος Φλέσσας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία
2 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση παλινδρόμησης του πληθυσμού μπορούμε να γράψουμε την αντίστοιχη k-μεταβλητών ως Y i = β 0 + β 1 X 1i + β 2 X 2i + +β k X ki + u i όπου Υ είναι η εξαρτημένη μεταβλητή, X 1,, X k οι ερμηνευτικές μεταβλητές (ή παλινδρομητές), u ο στοχαστικός διαταρακτικός όρος, και i η i η παρατήρηση. Οικονομετρία 2
3 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Ο β 0 είναι η σταθερά. Ως συνήθως, εκφράζει το μέσο ή τη μέση επίδραση στη Y του συνόλου των μεταβλητών που εξαιρούνται από το υπόδειγμα, αν και η ερμηνεία της είναι ότι αποτελεί τη μέση τιμή της Υ όταν οι X 1,, X k ορίζονται ότι ισούνται με το μηδέν. Οι συντελεστές β 1,,β k ονομάζονται συντελεστές μερικής παλινδρόμησης (partial regression coefficients). Οικονομετρία 3
4 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Υποθέσεις 1. Γραμμικό υπόδειγμα παλινδρόμησης, ή γραμμικό ως προς τις παραμέτρους. Επίσης, ο αριθμός των παρατηρήσεων n πρέπει να είναι μεγαλύτερος από τον αριθμό των παραμέτρων (k+1) που θα πρέπει να εκτιμηθούν. 2. Μηδενική μέση τιμή του διαταρακτικού όρου u i. E(u i ) = 0 για κάθε i 3. Ομοσκεδαστικότητα ή σταθερή διακύμανση του u i. var (u i ) = σ 2 για κάθε i 4. Απουσία αυτοσυσχέτισης μεταξύ των τιμών διαταρακτικών όρων. cov (u i, u j ) = 0 για κάθε i j Οικονομετρία 4
5 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Υποθέσεις 5. Σταθερές οι τιμές της X ή οι τιμές της X ανεξάρτητες από τον όρο σφάλματος. Αυτό σημαίνει ότι ζητούμε μηδενική συνδιακύμανση μεταξύ u i και κάθε μεταβλητής X. cov (u i, X 1i ) = = cov (u i, X ki ) = 0 για κάθε i 6. Δεν υπάρχει ακριβής γραμμική σχέση μεταξύ X 1,, X k. Δηλαδή, οι μεταβλητές X 1,, X k είναι γραμμικά ανεξάρτητες. Αυτό σημαίνει ότι δεν υπάρχει πολυσυγγραμμικότητα στο υπόδειγμα. 7. u i ~N 0, σ 2 και επομένως Y i ~N β 0 + β 1 X 1i + β 2 X 2i + +β k X ki, σ 2 Οικονομετρία 5
6 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Λαμβάνοντας υπόψη τις υποθέσεις του κλασικού υποδείγματος παλινδρόμησης, προκύπτει ότι, παίρνοντας την υπό συνθήκη προσδοκία της Y και στις δύο πλευρές της Εξίσωσης Y i = β 0 + β 1 X 1i + β 2 X 2i + +β k X ki + u i παίρνουμε E(Y i X 1,, X k ) = β 0 + β 1 X 1i + β 2 X 2i + +β k X ki Με άλλα λόγια, η παραπάνω σχέση δίνει την υπό συνθήκη μέση ή προσδοκώμενη τιμή της Y η οποία εξαρτάται από τις δοθείσες ή σταθερές τιμές των X 1,, X k. Οικονομετρία 6
7 4.2 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Εκτίμηση με τη μέθοδο ελαχίστων τετραγώνων Η διαδικασία OLS αποτελείται από την επιλογή των τιμών των αγνώστων παραμέτρων, ούτως ώστε το άθροισμα των τετραγώνων των καταλοίπων (ESS) u i 2 να είναι όσο το δυνατόν μικρότερο. Συμβολικά, min u i 2 = Y i β 0 β 1 Χ 1i β k Χ ki 2 Οικονομετρία 7
8 4.2 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Εκτίμηση με τη μέθοδο ελαχίστων τετραγώνων Επειδή η διαδικασία αυτή απαιτεί πολλές αλγεβρικές πράξεις, είναι πιο εύκολο να γραφεί το υπόδειγμα με τη βοήθεια της γραμμικής άλγεβρας σε μορφή πινάκων (μητρών). Y1 1 x11 x21... xk1 0 u1 Y 1 x x... x u k Y 3 1 x13 x23... x k3 2 u 3 Y = Xβ + u Y 1 x x... x u n 1n 2n kn k n Ο εκτιμητής ελαχίστων τετραγώνων δίνεται ως εξής: X X 1 ˆ ' X ' Y Οικονομετρία 8
9 4.2 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Εκτίμηση με τη μέθοδο ελαχίστων τετραγώνων β 0 Δηλαδή, β = β 1 β 2 β 3 β k Επομένως το εκτιμημένο υπόδειγμα είναι: Y i = β 0 + β 1 Χ 1i + β 2 Χ 2i + + β k Χ ki Οικονομετρία 9
10 4.2 Ιδιότητες των Εκτιμητών των Ελαχίστων Τετραγώνων: Το Θεώρημα Gauss-Markov 1. Είναι γραμμικοί, δηλαδή, μία γραμμική συνάρτηση μίας τυχαίας μεταβλητής, όπως είναι η εξαρτημένη μεταβλητή Y στο υπόδειγμα παλινδρόμησης. 2. Είναι αμερόληπτοι, δηλαδή, η μέση ή προσδοκώμενη τιμή τους, π.χ. E( β k ), είναι ίση με την πραγματική τιμή, β k. 3. Έχουν ελάχιστη διακύμανση της τάξης όλων των αντίστοιχων γραμμικών αμερόληπτων εκτιμητών ένας αμερόληπτος εκτιμητής με τη μικρότερη διακύμανση είναι γνωστός ως ένας αποτελεσματικός (efficient) εκτιμητής. Οικονομετρία 10
11 4.2 Ιδιότητες των Εκτιμητών των Ελαχίστων Τετραγώνων: Το Θεώρημα Gauss-Markov Το Θεώρημα Gauss-Markov Λαμβάνοντας υπόψη τις υποθέσεις του κλασσικού γραμμικού υποδείγματος παλινδρόμησης, οι εκτιμητές των ελαχίστων τετραγώνων, της τάξης των αμερόληπτων γραμμικών εκτιμητών, έχουν την ελάχιστη διακύμανση, δηλαδή, είναι BLUE (Βest Linear Unbiased Estimator). Συνέπεια: Οι εκτιμητές που προκύπτουν με τη μέθοδο ελαχίστων τετραγώνων είναι και συνεπείς. Δηλαδή, αν n, τότε β 1 β 1, β 2 β 2,, β k β k Οικονομετρία 11
12 4.3 Ο Συντελεστής Πολλαπλού Προσδιορισμού R 2 και ο Διορθωμένος Συντελεστής Προσδιορισμού R 2 Ο R 2 μετρά την αναλογία ή το ποσοστό της συνολικής μεταβλητότητας της Y που εξηγείται από το υπόδειγμα παλινδρόμησης. Συγκεκριμένα: R 2 = ( Y i Y) 2 (Y i Y) 2 = RSS TSS = 1 ESS TSS = 1 2 u i Y i Y 2 Μια σημαντική ιδιότητα του R 2 είναι ότι πρόκειται για μία μη φθίνουσα συνάρτηση του αριθμού των ερμηνευτικών μεταβλητών ή παλινδρομητών που υπάρχουν στο υπόδειγμα. Καθώς ο αριθμός των παλινδρομητών αυξάνεται, ο R 2 αυξάνεται σχεδόν σταθερά και δε μειώνεται ποτέ. Οικονομετρία 12
13 4.3 Ο Συντελεστής Πολλαπλού Προσδιορισμού R 2 και ο Διορθωμένος Συντελεστής Προσδιορισμού R 2 Για να συγκρίνουμε δύο υποδείγματα σε όρους R 2, πρέπει να λάβουμε υπόψη τον αριθμό των μεταβλητών X που υπάρχουν στο υπόδειγμα. Αυτό μπορεί να γίνει εύκολα αν σκεφτούμε έναν εναλλακτικό συντελεστή προσδιορισμού, ο οποίος είναι ο εξής: R 2 = 1 u i 2 /(n k 1) Y i Y 2 /(n 1) όπου k+1 = ο αριθμός των παραμέτρων του υποδείγματος, συμπεριλαμβανομένου του σταθερού όρου. Ο R 2 όταν ορίζεται έτσι είναι γνωστός ως ο διορθωμένος R 2 και συμβολίζεται με R 2. Ο όρος διορθωμένος σημαίνει διόρθωση ως προς τους βαθμούς ελευθερίας που σχετίζονται με τα αθροίσματα των τετραγώνων. Οικονομετρία 13
14 4.3 Ο Συντελεστής Πολλαπλού Προσδιορισμού R 2 και ο Διορθωμένος Συντελεστής Προσδιορισμού R 2 Ποιον R 2 θα πρέπει να χρησιμοποιήσει κάποιος στην πράξη; Όπως σημειώνει ο Theil: είναι καλή πρακτική να χρησιμοποιούμε το R 2 και όχι το R 2 επειδή ο R 2 δίνει μία υπερβολικά αισιόδοξη εικόνα της προσαρμογής της παλινδρόμησης, ιδιαίτερα όταν ο αριθμός των ερμηνευτικών μεταβλητών δεν είναι πολύ μικρός σε σχέση με τον αριθμό των παρατηρήσεων. Οικονομετρία 14
15 4.3 Ο Συντελεστής Πολλαπλού Προσδιορισμού R 2 και ο Διορθωμένος Συντελεστής Προσδιορισμού R 2 Συγκρίνοντας Δύο Τιμές R 2 Είναι σημαντικό να σημειωθεί ότι κατά τη σύγκριση δύο υποδειγμάτων με βάση το συντελεστή προσδιορισμού, είτε διορθωμένο είτε όχι, το μέγεθος του δείγματος n και η εξαρτημένη μεταβλητή πρέπει να είναι ίδια οι ερμηνευτικές μεταβλητές μπορούν να πάρουν οποιαδήποτε μορφή. Επομένως, για τα υποδείγματα ln Y i = β 1 + β 2 X 2i + β 3 X 3i + u i Y i = a 1 + a 2 X 2i + a 3 X 3i + u i οι όροι R 2 που έχουν υπολογιστεί δε μπορούν να συγκριθούν. Οικονομετρία 15
16 4.4 Ελέγχοντας τη Συνολική Σημαντικότητα της Παλινδρόμησης του Δείγματος Ο Έλεγχος F Κανόνας Απόφασης Έστω το υπόδειγμα παλινδρόμησης k-μεταβλητών: Y i = β 0 + β 1 X 1i + β 2 X 2i + +β k X ki + u i Για να ελέγξουμε την υπόθεση Η 0 : β 1 = β 2 = = β k = 0 (δηλαδή, όλοι οι συντελεστές κλίσης είναι ταυτόχρονα μηδέν) έναντι της Η 1 : Δεν είναι όλοι οι συντελεστές κλίσης ταυτόχρονα μηδέν υπολογίζουμε την ακόλουθη στατιστική: F = RSS/df ESS/df = RSS/k ESS/(n k 1) Εάν F > F α (k, n k 1), απορρίπτουμε τη H 0, όπου F α (k, n k 1) είναι η κρίσιμη τιμή F στο επίπεδο σημαντικότητας α. Οι βαθμοί ελευθερίας του αριθμητή είναι (k) και οι βαθμοί ελευθερίας του παρονομαστή είναι (n k 1). Εναλλακτικά, εάν η τιμή p-value του F είναι επαρκώς χαμηλή, μπορούμε να απορρίψουμε τη Η 0. Οικονομετρία 16
17 4.4 Ελέγχοντας τη Συνολική Σημαντικότητα της Παλινδρόμησης του Δείγματος Μία Σημαντική Σχέση μεταξύ R 2 και F Η στατιστική F που είδαμε παραπάνω διαμορφώνεται ως εξής: F = n k 1 k F = RSS = n k 1 ESS k R 2 /k (1 R 2 )/(n k 1) RSS = n k 1 TSS RSS k RSS/TSS = n k 1 1 (RSS/TSS) k R 2 1 R 2 Επομένως, για τον έλεγχο της υπόθεσης, Η 0 : β 1 = β 2 = = β k = 0 Υπολογίζουμε τη στατιστική: F = R 2 /k (1 R 2 )/(n k 1) Εάν F > F α (k, n k 1), απορρίπτουμε τη H 0 (Σημείωση: Ο συνολικός αριθμός των παραμέτρων που πρέπει να εκτιμηθούν είναι k+1, εκ των οποίων 1 είναι ο σταθερός όρος). Οικονομετρία 17
18 4.4 Ελέγχοντας τη Συνολική Σημαντικότητα της Παλινδρόμησης του Δείγματος Ανάλυση Διακύμανσης (Analysis of Variance-ANOVA) Πηγή Μεταβολής (Διακύμανσης) β.ε Άθροισμα Τετραγώνων Μέσο Άθροισμα Τετραγώνων Παλινδρόμηση k RSS RSS/k Υπόλοιπα n-k-1 ESS ESS/(n-k-1) Συνολικό n-1 TSS F RSS n - k -1 F= ESS k Η απόρριψη της μηδενικής υπόθεσης σημαίνει ότι τουλάχιστον μια από τις ανεξάρτητες μεταβλητές είναι στατιστική σημαντική. Δηλαδή, η παλινδρόμηση είναι χρήσιμη για την ερμηνεία της εξαρτημένης μεταβλητής και κατ επέκταση την πραγματοποίηση προβλέψεων. Οικονομετρία 18
19 4.5 Τιμή p-value Η πιθανότητα που ονομάζεται τιμή p (δηλαδή, τιμή πιθανότητας probability value), είναι επίσης γνωστή ως η παρατηρούμενη ή το ακριβές επίπεδο σημαντικότητας ή η ακριβής πιθανότητα να διαπράξουμε σφάλμα Τύπου Ι. Σε πιο τεχνικούς όρους, η τιμή p ορίζεται ως το χαμηλότερο επίπεδο σημαντικότητας στο οποίο μπορεί να απορριφθεί μία μηδενική υπόθεση. Δηλαδή, στο δικατάληκτο έλεγχο θα είχαμε: p value P t tstat P t tstat Αν το p-value είναι μικρότερο του επιπέδου σημαντικότητας του ελέγχου τότε απορρίπτουμε τη μηδενική υπόθεση. Το p-value δίνεται από το στατιστικό πακέτο (π.χ., e-views). Οικονομετρία 19
20 4.6 Η Συνάρτηση Παραγωγής Cobb-Douglas Η συνάρτηση παραγωγής Cobb-Douglas, στη στοχαστική της μορφή, μπορεί να εκφραστεί ως β Y i = β 1 X 2 β 2i X 3 3i e u i όπου Y = εκροή X 2 = εισροή εργασία X 3 = εισροή κεφάλαιο u = στοχαστικός διαταρακτικός όρος e = βάση του φυσικού λογαρίθμου Από την Εξίσωση (7.9.1) είναι σαφές ότι η σχέση μεταξύ της εκροής και των δύο εισροών είναι μη-γραμμική. Ωστόσο, αν μετατρέψουμε το υπόδειγμα αυτό σε λογαρίθμους, παίρνουμε: ln Y i = ln β 1 + β 2 ln X 2i + β 3 ln X 3i + u i = β 0 + β 2 ln X 2i + β 3 ln X 3i + u i όπου β 0 = ln β 1. Εάν γραφεί έτσι, το υπόδειγμα είναι γραμμικό ως προς τις παραμέτρους β 0, β 2, και β 3 και ως εκ τούτου είναι ένα γραμμικό υπόδειγμα παλινδρόμησης. Οικονομετρία 20
21 4.6 Η Συνάρτηση Παραγωγής Cobb-Douglas Οι ιδιότητες της συνάρτησης παραγωγής Cobb-Douglas είναι αρκετά γνωστές: 1. Ο β 2 είναι η (μερική) ελαστικότητα της εκροής σε σχέση με την εισροή εργασία, δηλαδή, μετρά την ποσοστιαία μεταβολή της εκροής για μία μεταβολή 1 τοις εκατό της εισροής εργασία, διατηρώντας την εισροή κεφάλαιο σταθερή. 2. Παρομοίως, ο β 3 είναι η (μερική) ελαστικότητα της εκροής σε σχέση με την εισροή κεφάλαιο, διατηρώντας την εισροή εργασία σταθερή. 3. Το άθροισμα (β 2 + β 3 ) δίνει πληροφορίες για τις αποδόσεις κλίμακας, δηλαδή, την ανταπόκριση της εκροής σε μία ανάλογη μεταβολή στις εισροές. Αν αυτό το ποσό είναι 1, τότε υπάρχουν σταθερές αποδόσεις κλίμακας, δηλαδή, διπλασιάζοντας τις εισροές θα διπλασιάσουμε την εκροή, τριπλασιάζοντας τις εισροές θα τριπλασιάσουμε την εκροή, και ούτω καθεξής. Οικονομετρία 21
22 4.6 Η Συνάρτηση Παραγωγής Cobb-Douglas Τώρα αν θέλουμε να ελέγξουμε αν υπάρχουν σταθερές αποδόσεις κλίμακας θα διεξάγουμε τον ακόλουθο έλεγχο: Η 0 : β 2 + β 3 = 1 Ο έλεγχος θα γίνει χρησιμοποιώντας την ακόλουθη στατιστική: = t = β 2 + β 3 β 2 + β 3 se β 2 + β 3 β 2 + β 3 1 var β 2 + var β Cov β 2, β 3 Οικονομετρία 22
23 4.7 Εφαρμογή Με στοιχεία της περιόδου , που αφορούν κάποιο βιομηχανικό κλάδο της ελληνικής οικονομίας, υπολογίστηκε το ακόλουθο υπόδειγμα (με τα τυπικά σφάλματα στις παρενθέσεις): Y i = 15,278 (7,21) + 0,274Χ 1i + 0,178Χ 2i 0,489Χ 3i 0,112 (0,098) (0,065) (0,079) 0,21 Χ 4i R 2 = 0,887, Cov β 1, β 2 = 0,005, R 2 = 0,810 όπου Υ: κέρδη, Χ 1 : πωλήσεις, Χ 2 : αριθμός νοικοκυριών, Χ 3 : μέση τιμή πωλούμενων προϊόντων, Χ 4 : αριθμός επιχειρήσεων στον κλάδο. Ζητούνται τα ακόλουθα: 1. Να ερμηνεύσετε τα πρόσημα των μεταβλητών. 2. Να σχολιάσετε τη στατιστική σημαντικότητα των ερμηνευτικών μεταβλητών του υποδείγματος. Οικονομετρία 23
24 4.7 Εφαρμογή 3. Να ελεγχθεί η συνολική στατιστική σημαντικότητα του εκτιμηθέντος υποδείγματος. 4. Να ελεγχθεί η υπόθεση Η 0 : β 1 = β 2 Όλοι οι έλεγχοι να γίνουν σε επίπεδο σημαντικότητας 5%. Λύση 1. β 1 = 0,274. Δηλαδή, αν αυξηθεί το Χ 1 κατά μία μονάδα, δεδομένου ότι όλα τα άλλα παραμένουν σταθερά, το Υ θα αυξηθεί κατά 0,274. Τα πρόσημα είναι τα αναμενόμενα. Οικονομετρία 24
25 4.7 Εφαρμογή 2. Στατιστική σημαντικότητα 1. Διατύπωση της υπόθεσης Η 0 : β 1 = 0 Η 1 : β Υπολογισμός του στατιστικού του ελέγχου t 1 = β 0 1 = 0,274 = 2,80 σ β1 0, Ορισμός επιπέδου σημαντικότητας: α=5% 4. Κριτική τιμή: t crit = t n 5,a/2 = t 36 5, 0,05/2 = t 31, 0,025 = 2, Συμπέρασμα: Επειδή t > t crit απορρίπτω την Η 0 σε επίπεδο σημαντικότητας 5%. Δηλαδή, ο β 1 είναι στατιστικά διάφορος από το μηδέν. Ομοίως, t 2 = 2,74, t 3 = 2,33, t 4 = 1,42. Δηλαδή, μόνο ο β 4 δεν είναι στατιστικά σημαντικός. Οικονομετρία 25
26 4.7 Εφαρμογή 3. Συνολική στατιστική σημαντικότητα 1. Διατύπωση της υπόθεσης Η 0 : β 1 = β 2 = β 3 = β 4 = 0 Η 1 : β 1 0 ή β 2 0 ή β 3 0 ή β Υπολογισμός του στατιστικού του ελέγχου F = R 2 /k = 0,887/4 = 60,83 (1 R 2 )/(n k 1) (1 0,887)/(36 4 1) 3. Ορισμός επιπέδου σημαντικότητας: α=5% 4. Κριτική τιμή: F α (k, n k 1)=F 0,05 (4, 35) = 2,69 5. Συμπέρασμα: Επειδή F > F crit απορρίπτω την Η 0 σε επίπεδο σημαντικότητας 5%. Δηλαδή, τουλάχιστον ένας συντελεστής β είναι στατιστικά διάφορος από το μηδέν. Οικονομετρία 26
27 4.7 Εφαρμογή 4. Έλεγχος υπόθεσης β 1 = β 2 1. Διατύπωση της υπόθεσης Η 0 : β 1 - β 2 = 0 Η 1 : β 1 - β Υπολογισμός του στατιστικού του ελέγχου t = β 1 β 2 β 1 β 2 se β 1 β 2 = var β 1 + β 1 β 2 0 = var β 2 2 cov β 1, β 2 0,274 0,178 0, , ,005 = 0,096 0, = 0,096 0,06188 = 1,55 Επειδή t = 1,55 < t crit = 2,042 αποδέχομαι την Η 0 σε επίπεδο σημαντικότητας 5%. Οικονομετρία 27
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Διαβάστε περισσότεραΧ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
Διαβάστε περισσότεραΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική
Διαβάστε περισσότεραΕισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Διαβάστε περισσότεραΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression
Διαβάστε περισσότεραΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: ageliki.papaa@gmail.com, agpapaa@auth.gr Webpage: http://users.auth.gr/agpapaa
Διαβάστε περισσότεραΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 6.1 Ετεροσκεδαστικότητα: Εισαγωγή Συχνά, η υπόθεση της σταθερής διακύμανσης των όρων σφάλματος,
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2
013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ
Διαβάστε περισσότεραΠολλαπλή παλινδρόμηση (Multivariate regression)
ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ
Διαβάστε περισσότεραΔιαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 3: Θεώρημα των Gauss Markov Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation
Διαβάστε περισσότεραΑντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 7.1 Πολυσυγγραμμικότητα: Εισαγωγή Παραβίαση υπόθεσης Οι ανεξάρτητες μεταβλητές δεν πρέπει
Διαβάστε περισσότεραΗ τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ:
Πανεπιστήμιο Πατρών, Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιανουαρίου 2014 (18-Φεβ-2014) 9:00-11:00 Μάθημα: «ΟΙΚΟΝΟΜΕΤΡΙΑ» ΟΙΚΟΝ 320 Διδάσκων: Επίκουρος Καθηγητής Ιωάννης Α. Βενέτης Διάρκεια
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 10: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Β μέρος: Ετεροσκεδαστικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr
Διαβάστε περισσότεραΠολλαπλή παλινδρόµηση. Μάθηµα 3 ο
Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση I
Απλή Γραμμική Παλινδρόμηση I. Εισαγωγή Έστω ότι θέλουμε να ερευνήσουμε εμπειρικά τη σχέση που υπάρχει ανάμεσα στις δαπάνες κατανάλωσης και στο διαθέσιμο εισόδημα, των οικογενειών. Σύμφωνα με την Κεϋνσιανή
Διαβάστε περισσότεραΤμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων Γρεβενά Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Ιδιότητες εκτιμώμενης ευθείας παλινδρόμησης με τη μέθοδο των ελαχίστων
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 5.1 Αυτοσυσχέτιση: Εισαγωγή Συχνά, η υπόθεση της μη αυτοσυσχέτισης ή σειριακής συσχέτισης
Διαβάστε περισσότεραΠρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21
Περιεχόμενα Πρόλογος... 15 Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης... 19 1 Αντικείμενο της οικονομετρίας... 21 1.1 Τι είναι η οικονομετρία... 21 1.2 Σκοποί της οικονομετρίας... 24 1.3 Οικονομετρική
Διαβάστε περισσότεραΑπλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
Διαβάστε περισσότεραΑναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Α μέρος: Πολυσυγγραμμικότητα. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 9: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Α μέρος: Πολυσυγγραμμικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr
Διαβάστε περισσότεραΟικονομετρία. Απλή Παλινδρόμηση. Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Διαβάστε περισσότεραΜέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 Μαρί-Νοέλ Ντυκέν Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΕρωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 9: Αυτοσυσχέτιση Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : σ =Ε(Χ )-µ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : Cov(X,Υ)=Ε(ΧΥ)-Ε(Χ)Ε(Υ) ΑΣΚΗΣΗ 3 Να δείξετε ότι
Διαβάστε περισσότεραΠΑΛΙΝΔΡΟΜΗΣΗ. Απλή Παλινδρόμηση. (Όγκος πωλήσεων = α +b έξοδα διαφήμησης +e ) Εκτίμηση Απλής Παλινδρόμησης. α= εκτίμηση της τεταγμένης για χ=0
ΠΑΛΙΝΔΡΟΜΗΣΗ ΓΡΑΜΜΙΚΟ ΜΗ ΓΡΑΜΜΙΚΟ ΔΕΝ ΥΠΑΡΧΕΙ ΣΧΕΣΗ Απλή Παλινδρόμηση Y = a + bx + e (Όγκος πωλήσεων = α +b έξοδα διαφήμισης +e ) Εκτίμηση Απλής Παλινδρόμησης Y = a + bx (Όγκος πωλήσεων = α +b έξοδα διαφήμησης
Διαβάστε περισσότεραΤμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΓ. Πειραματισμός Βιομετρία
Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. σε μη γραμμικές μορφές. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 7: Επεκτάσεις του γραμμικού υποδείγματος σε μη γραμμικές μορφές Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ
ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100
Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς
Διαβάστε περισσότεραΕυαισθησία της γραμμής παλινδρόμησης (Sensitivity of linear regression)
ΜΑΘΗΜΑ 6ο Ευαισθησία της γραμμής παλινδρόμησης (Sensitivity of linear regression) Γιατηνευαισθησίατηςγραμμήςπαλινδρόμησης χρησιμοποιούμε την ανάλυση της διακύμανσης ή το στατιστικό F Έλεγχος βελτίωσης
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης
ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι
Διαβάστε περισσότεραΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ
Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά
Διαβάστε περισσότεραΕισαγωγή στην Γραμμική Παλινδρόμηση
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 13-11-015 Εισαγωγή στην Γραμμική Παλινδρόμηση Γραμμική σχέση μεταξύ μεταβλητών Αν. Καθ. Μαρί-Νοέλ Ντυκέν Στόχος Πολύ συχνά, η Τ.Μ. που εξετάζουμε π.χ. η κατανάλωση των νοικοκυριών
Διαβάστε περισσότεραΜάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος
ΤΜΜΑ ΕΠΙΧΕΙΡΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΜΑΤΩΝ Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος - Στο παρόν µάθηµα δίνεται µε κάποια απλά παραδείγµατα-ασκήσεις
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα
Διαβάστε περισσότεραΟικονομετρία. Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση των εισαγωγικών εννοιών που
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 11: Αυτοσυσχέτιση Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Περιεχόμενο ενότητας
Διαβάστε περισσότεραΧρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση II
. Ο Συντελεστής Προσδιορισμού Η γραμμή Παλινδρόμησης στο δείγμα, αποτελεί μία εκτίμηση της γραμμής παλινδρόμησης στον πληθυσμό. Αν και από τη μέθοδο των ελαχίστων τετραγώνων προκύπτουν εκτιμητές που έχουν
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΚΑΤΕΥΘΥΝΣΗ : «ΕΦΑΡΜΟΣΜΕΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΑ
Διαβάστε περισσότερα7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων
7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες
Διαβάστε περισσότεραΓ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Η μέθοδος των βοηθητικών μεταβλητών. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 12: Σφάλματα μέτρησης στις μεταβλητές Η μέθοδος των βοηθητικών μεταβλητών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Διαβάστε περισσότεραΠανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Το Γενικευμένο Γραμμικό Υπόδειγμα (Α) ΔΙΑΛΕΞΗ 05 Μαρί-Νοέλ Ντυκέν,
Διαβάστε περισσότεραΙδιότητες της ευθείας παλινδρόµησης
Ιδιότητες της ευθείας παλινδρόµησης Ηευθεία παλινδρόµησης περνάει από το σηµείο αφού a b, a b ( b ) b b ( + + + ) ( ) + b u u a b a b Αυτό όµως προϋποθέτει την ύπαρξη του a. Αν δηλαδή υποχρεώσουµε την
Διαβάστε περισσότεραΕπαυξημένος έλεγχος Dickey - Fuller (ADF)
ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια
Διαβάστε περισσότερα9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (3 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΧρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
Διαβάστε περισσότεραΕργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο
Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν
Διαβάστε περισσότεραΑν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν
ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην
Διαβάστε περισσότεραΟικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Εξειδίκευση του υποδείγματος Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Διαβάστε περισσότεραΣτασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή
Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Π E Ρ IEXOMENA Πρόλογος... xiii ΜΕΡΟΣ ΠΡΩΤΟ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΤΑΤΙΣΤΙΚΩΝ Ε ΟΜΕΝΩΝ 1.1 Εισαγωγή... 3 1.2 Ορισµός και αντικείµενο της στατιστικής... 3
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
Διαβάστε περισσότεραΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ-ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2012-2013 ΕΠΙΧ Οικονοµετρικά
Διαβάστε περισσότεραΠΑΛΑΙΑ ΘΕΜΑΤΑ ******************************************************
ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΚΑΘΗΓΗΤΗΣ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ******************************************************
Διαβάστε περισσότεραΟικονομετρία. Πολλαπλή Παλινδρόμηση. Υποθέσεις, ιδιότητες εκτιμητών και μέθοδος Ελαχίστων Τετραγώνων. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Πολλαπλή Παλινδρόμηση Υποθέσεις ιδιότητες εκτιμητών και μέθοδος Ελαχίστων Τετραγώνων Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Διαβάστε περισσότεραΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 8ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 8ο Επιλογή του αριθμού των χρονικών υστερήσεων Στις περισσότερες οικονομικές χρονικές σειρές υπάρχει υψηλή συσχέτιση μεταξύ της τρέχουσας
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΟγενικός(πλήρης) έλεγχος των Dickey Fuller
ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης
Διαβάστε περισσότεραΜΑΘΗΜΑ 3ο. Βασικές έννοιες
ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής
Διαβάστε περισσότεραΣυνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος
ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή
Διαβάστε περισσότεραΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Συσχέτιση (Correlation) - Copulas Σημασία της μέτρησης της συσχέτισης Έστω μία εταιρεία που είναι εκτεθειμένη σε δύο μεταβλητές της αγοράς. Πιθανή αύξηση των 2 μεταβλητών
Διαβάστε περισσότεραΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)
Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία I.1 Τι Είναι η Οικονομετρία; Η κυριολεκτική ερμηνεία της λέξης, οικονομετρία είναι «οικονομική
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 8.1 Η Φύση των Ψευδομεταβλητών Οι μεταβλητές που παίρνουν τιμές 0 και 1 ονομάζονται ψευδομεταβλητές
Διαβάστε περισσότεραΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ
Διαβάστε περισσότεραΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ SOS & ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΩΝ 5 ΟΥ ΕΞΑΜΗΝΟΥ www.dap papei.gr 2 ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Τι θα γράψω: Στις εξετάσεις τα θέματα περιλαμβάνουν ερωτήσεις και ασκήσεις (κυρίως ασκήσεις) όπου
Διαβάστε περισσότερα3η Ενότητα Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr
Διαβάστε περισσότεραΈλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
Διαβάστε περισσότεραΠανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Οι παραβιάσεις των σημαντικότερων υποθέσεων των γραμμικών υποδειγμάτων
Διαβάστε περισσότερα