ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ



Σχετικά έγγραφα
ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ

Insert(K,I,S) Delete(K,S)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 4η: Σύνολα - Λεξικά Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

ΕΝΟΤΗΤΑ 5 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ. ΗΥ240 - Παναγιώτα Φατούρου 1

αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών

Ενότητα 7 Ουρές Προτεραιότητας

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΗΥ240 - Παναγιώτα Φατούρου 2

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ

Διδάσκων: Παναγιώτης Ανδρέου

ΠΛΗ111. Ανοιξη Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

Ενότητα 7 Ουρές Προτεραιότητας

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2018 Διδάσκουσα: Παναγιώτα Φατούρου Προγραμματιστική Εργασία - 2o Μέρος

Οι βασικές πράξεις που ορίζουν τον ΑΤ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα?

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Αλγόριθµοι και Πολυπλοκότητα

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

ένδρα (tail, head) Γονέας Παιδί (ancestor, descendant) Φύλλο Εσωτερικός Κόµβος (leaf, non-leaf) που αποτελεί το γονέα του v.

Cuckoo Hashing. Αλγόριθμοι και Πολυπλοκότητα. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Δομές δεδομένων. Ενότητα 5η: Υλοποίηση Λεξικών με Ισοζυγισμένα Δένδρα Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΝΟΤΗΤΑ 5 ΥΛΟΠΟΙΗΣΗ ΛΕΞΙΚΩΝ ΜΕ ΙΣΟΖΥΓΙΣΜΕΝΑ ΔΕΝΔΡΑ

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

υαδικά έντρα Αναζήτησης

Προγραµµατισµός Ι (ΗΥ120)

ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος Προγραμματιστική Εργασία - 2o Μέρος

Ενότητα 2 Στοίβες Ουρές - Λίστες

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL

Διασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1

ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS)

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ενότητα 2 Στοίβες Ουρές - Λίστες. ΗΥ240 - Παναγιώτα Φατούρου 1

Δομές Δεδομένων και Αλγόριθμοι

Στοίβες Ουρές - Λίστες

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

Προγραμματισμός Ι (ΗΥ120)

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Διδάσκων: Κωνσταντίνος Κώστα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

διεύθυνση πρώτου στοιχείου διεύθυνση i-οστού στοιχείου T t[n]; &t[0] είναι t &t[i] είναι t + i*sizeof(t)

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 3 ο Μέρος

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Προγραμματισμός Ι (ΗΥ120)

Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Πρόβληµα (ADT) Λεξικού. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Λεξικό, Union - Find 2

Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Διάλεξη 04: Παραδείγματα Ανάλυσης

Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε:

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

ΗΥ240: Δομές Δεδομένων Εαρινό Εξάμηνο Ακαδημαϊκό Έτος 2017 Διδάσκουσα: Παναγιώτα Φατούρου Προγραμματιστική Εργασία - 2o Μέρος

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

Διδάσκων: Παναγιώτης Ανδρέου

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων

ΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ. ΗΥ240 - Παναγιώτα Φατούρου 1

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Διασυνδεδεμένες Δομές. Λίστες. Προγραμματισμός II 1

Ταξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research

Διάλεξη 14: Δέντρα IV - B-Δένδρα

Διδάσκων: Παναγιώτης Ανδρέου

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat

Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης

Δομές Δεδομένων και Αλγόριθμοι

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κεφάλαιο 14 Προηγμένες Ουρές Προτεραιότητας

Εισαγωγή στους Αλγορίθμους

Transcript:

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν αριθµό και µια λέξη, κ.ο.κ.). Αν S είναι ένα σύνολο και x είναι ένα αντικείµενο του χώρου από όπου το S προέρχεται, είτε x S ή x S. Ένα σύνολο δεν περιέχει το ίδιο στοιχείο 2 ή περισσότερες φορές. Ένα πολυσύνολο (multi-sets) µπορεί να περιέχει πολλαπλά στιγµιότυπα του ίδιου στοιχείου. Χρησιµότητα Πολλές εφαρµογές χρησιµοποιούν σύνολα και απαιτούν να είναι δυνατή η απάντηση ερωτήσεων του στυλ «Είναι το στοιχείο x S»; Παραδείγµατα Υπάρχει αυτός ο εργαζόµενος στη βάση δεδοµένων των εργαζοµένων; Υπάρχει αυτό το τηλέφωνο στον ηλεκτρονικό τηλεφωνικό κατάλογο; Υπάρχει αυτή η κράτηση στη βάση δεδοµένων µιας αεροπορικής ή ακτοπλοϊκής εταιρείας; ΗΥ240 - Παναγιώτα Φατούρου 2

Λειτουργίες Συνόλων MakeEmptySet(): Επιστρέφει το κενό σύνολο. IsEmptySet(S): Επιστρέφει true αν S είναι το κενό σύνολο και false διαφορετικά. Isert(x,S): Προσθέτει το στοιχείο x στο σύνολο S ή δεν πραγµατοποιεί καµία ενέργεια αν x S. Delete(x,S): ιαγράφει το στοιχείο x από το S ή δεν πραγµατοποιεί καµία ενέργεια αν x S. Member(x,S): επιστρέφει true αν το x είναι µέλος του συνόλου S και false διαφορετικά. Size(S): Επιστρέφει S, δηλαδή το πλήθος των στοιχείων του S. Uio(S,T): επιστρέφει S T, δηλαδή το σύνολο που αποτελείται από τα στοιχεία εκείνα που είναι µέλη είτε του S ή του Τ. Itersectio(S,T): επιστρέφει S T, δηλαδή το σύνολο που αποτελείται από τα στοιχεία εκείνα που είναι µέλη και του S και του Τ. Differece(S,T): Επιστρέφει S \ T, δηλαδή το σύνολο των στοιχείων που ανήκουν στο S αλλά δεν ανήκουν στο Τ. Equal(S,T): Επιστρέφει true αν S = T και false διαφορετικά. Iterate(S,F): Εφαρµόζει τη λειτουργία F σε κάθε στοιχείο του S. Για χώρους στοιχείων στους οποίους ορίζεται η ιδιότητα της γραµµικής διάταξης: Mi(S) (Μax(S)): επιστρέφει το µικρότερο (µεγαλύτερο) στοιχείο του S. ΗΥ240 - Παναγιώτα Φατούρου 3 Σύνολα Λεξικά Θεωρούµε ότι κάθε στοιχείο του συνόλου είναι ένα ζεύγος <K,I> όπου Κ είναι το κλειδί που χαρακτηρίζει µοναδικά στοιχείου, και Ι είναι πληροφορίες (δεδοµένα, data) τύπου Type που συνοδεύουν το στοιχείο µε κλειδί Κ. Θα επικεντρωθούµε στην υλοποίηση του αφηρηµένου τύπου δεδοµένων που υποστηρίζει κύρια τις παρακάτω λειτουργίες σε σύνολα: MakeEmptySet() IsEmptySet() Isert(K,I,S) Delete(K,S) LookUp(K,S): εδοµένου ενός κλειδιού Κ, επιστρέφει τα δεδοµένα Ι, τέτοια ώστε <Κ,Ι> S. Αν δεν υπάρχει στοιχείο µε κλειδί Κ στο S, επιστρέφει ill. Λεξικά Ο αφηρηµένος τύπος δεδοµένων που υποστηρίζει µόνο τις παραπάνω λειτουργίες (MakeEmptySet, IsEmptySet, Isert, Delete, και LookUp) λέγεται λεξικό. ΗΥ240 - Παναγιώτα Φατούρου 4 2

Υλοποίηση Λεξικών µε Λίστες Αποθήκευση των στοιχείων του συνόλου σε µια (µη-ταξινοµηµένη) λίστα: Στατική λίστα (χρήση πίνακα) Συνδεδεµένη Λίστα (απλά ή διπλά συνδεδεµένη). Τα στοιχεία βρίσκονται στη λίστα διατεταγµένα βάσει της σειράς εισαγωγής τους. Υλοποίηση Λειτουργιών Συνδεδεµένη Λίστα Χρονική Πολυπλοκότητα LookUp(): Θ() Στη χειρότερη περίπτωση το στοιχείο είναι το τελευταίο στη λίστα! Χρονική Πολυπλοκότητα Isert(): Θ() Θα πρέπει να προηγηθεί αναζήτηση και αν το στοιχείο υπάρχει να µην εισαχθεί ξανά στη λίστα. Χρονική Πολυπλοκότητα Delete(): Θ() Αναζήτηση του στοιχείου και διαγραφή του -> Η αναζήτηση κοστίζει Ο(). Στατική Λίστα Το µέγιστο πλήθος στοιχείων του συνόλου πρέπει να είναι γνωστό εξ αρχής. Ποια είναι η χρονική πολυπλοκότητα των LookUp, Isert, Delete; ΗΥ240 - Παναγιώτα Φατούρου 5 Υλοποίηση Λεξικών µε Λίστες - Αναµενόµενο Κόστος Υποθέτουµε πως η πιθανότητα p η LookUp() να ψάχνει για το -οστό στοιχείο είναι η ίδια για κάθε,. Έτσι, αν έχουµε στοιχεία, η πιθανότητα είναι /. Έστω ότι c είναι το κόστος που πληρώνουµε για να βρούµε το -οστό στοιχείο c =. Το αναµενόµενο κόστος είναι το άθροισµα των (c *p ) για κάθε : Αναµενόµενο Κόστος = */+2*/+ +*/ = (+2+ +)/ = (+)/(2) = (+)/2 = Θ(). ιαφορετικές Πιθανότητες για διαφορετικά κλειδιά Κ,..., Κ : τα κλειδιά στο σύνολο σε φθίνουσα διάταξη ως προς τη συχνότητα µε την οποία αναζητούνται µέσω της LookUp(). p p 2... p : πιθανότητα µια LookUp() να ψάχνει για τα Κ, Κ 2,..., Κ, αντίστοιχα. Ο αναµενόµενος χρόνος αναζήτησης ελαχιστοποιείται όταν τα στοιχεία έχουν τη διάταξη Κ, Κ 2,..., Κ στη λίστα: Γιατί αυτό είναι βέλτιστο; C opt = k= k p k ΗΥ240 - Παναγιώτα Φατούρου 6 3

Αναµενόµενο Κόστος Ας υποθέσουµε, για να καταλήξουµε σε άτοπο, ότι η διάταξη των κλειδιών που οδηγεί στο ελάχιστο αναµενόµενο πλήθος συγκρίσεων είναι Km, Km 2,, Km, όπου η ακολουθία m,, m, αποτελεί µετάθεση της,, και ότι pm i < pm για κάποιo i <. Το κόστος C τότε είναι: C = ( k= k i k k p ) + ip + p k mi m Τότε, ανταλλάσσοντας τις θέσεις των Km i και Km στην ακολουθία θα προέκυπτε µια άλλη ακολουθία, της οποίας το κόστος C θα ήταν: C = ( k= k i k k m mi Έχουµε C C = ipm i + pm ipm pm i = (-i)(pm -pm i ) > 0 k p ) + ip + p Άρα, η διάταξη Km, Km 2,, Km δεν οδηγεί στο ελάχιστο αναµενόµενο πλήθος συγκρίσεων, το οποίο αντιτίθεται στην υπόθεση. ΗΥ240 - Παναγιώτα Φατούρου 7 Ευριστικά Η πραγµατική κατανοµή πιθανότητας συνήθως δεν είναι γνωστή. Το λεξικό µπορεί να αλλάζει µέγεθος κατά τη χρήση του. Η µελέτη πιθανοτικών µοντέλων κάποιες φορές απέχει αρκετά από το τι γίνεται στην πράξη! Ευριστικό Move-To-Frot (Ευριστικό «Μετακίνησης στην Αρχή») «Μετά από κάθε επιτυχηµένη αναζήτηση, το στοιχείο που βρέθηκε µετακινείται στην αρχή της λίστας.» Χρονική Πολυπλοκότητα; (α) Συνδεδεµένη Λίστα; (β) Στατική Λίστα; Ευριστικό «Αλληλοµετάθεσης» (Traspose) «Μετά από κάθε επιτυχηµένη αναζήτηση, το στοιχείο που βρέθηκε µετακινείται µια θέση προς την αρχή της λίστας (δηλαδή ανταλλάσσεται µε το προηγούµενό του στη λίστα)». Σύγκριση µεταξύ Ευριστικών Το ευριστικό Traspose αποδεικνύεται ότι έχει καλύτερο αναµενόµενο κόστος από το MoveToFrot. Ωστόσο, το Traspose σταθεροποιείται σε µια σταθερή καλή κατάσταση πιο αργά από το MoveToFrot. ΗΥ240 - Παναγιώτα Φατούρου 8 4

Ευριστικό «Μετακίνησης στην Αρχή» - Αναµενόµενο Κόστος Ας υποθέσουµε ότι η διαδικασία αναζήτησης κλειδιών έχει πραγµατοποιηθεί για αρκετά µεγάλο χρονικό διάστηµα, ώστε όλα τα κλειδιά να έχουν αναζητηθεί αρκετές φορές και η λίστα να βρίσκεται σε κάποιου είδους «σταθερή» κατάσταση. p(i,): πιθανότητα ότι το κλειδί K i προηγείται του K στη λίστα Ποια είναι η τιµή της p(i,) συναρτήσει των p i και p ; Προκειµένου το K i να βρίσκεται πριν από το K στη λίστα θα πρέπει η τελευταία LookUp(K i,s) να έχει συµβεί πιο πρόσφατα από την τελευταία LookUp(K,S). Αν επικεντρωθούµε στην τελευταία LookUp που πραγµατοποιείται για κάποιο από τα κλειδιά K i και K και αγνοήσουµε τις υπόλοιπες, τότε p(i,) είναι η πιθανότητα, από τα δύο αυτά δυνατά ενδεχόµενα, η LookUp να αναζητά το K i. Άρα, p(i,) = p i / (p i +p ). ΗΥ240 - Παναγιώτα Φατούρου 9 Ευριστικό «Μετακίνησης στην Αρχή» - Αναµενόµενο Κόστος Το αναµενόµενο πλήθος κλειδιών που προηγούνται του K στη λίστα είναι εποµένως p( i, ). i Άρα, το αναµενόµενο πλήθος συγκρίσεων για να βρεθεί το κλειδί K είναι + p( i, ). i Καταλήγουµε πως το αναµενόµενο πλήθος συγκρίσεων που απαιτούνται για την εύρεση ενός κλειδιού είναι: C MTF = p ( + p( i, )) = p + p p( i, ) = + p p( i, ) = i = = i i p p p p = + i = + 2 i i pi + p i< pi+ p p i p pi pi σ = = p p ( ), sice, i, p + p p + p p + p Πως συγκρίνεται το C MFT µε το C OPT ; i< i = i< i = i = C, sice p =. OPT = Το αναµενόµενο κόστος του MoveToFrot είναι το πολύ 2 φορές χειρότερο από εκείνο του βέλτιστου αλγόριθµου! Άρα, C MFT /C OPT (+2σ)/(+σ) = (2+2σ -)/(+σ) = 2(+σ)/(+σ) /(+σ) = 2 /(+σ) < 2. ΗΥ240 - Παναγιώτα Φατούρου 0 5

Ταξινοµηµένες Στατικές Λίστες Χρήση πίνακα για αποθήκευση των στοιχείων του συνόλου. Κάθε στοιχείο του πίνακα είναι ένα struct µε πεδία Key και data. Τα στοιχεία του πίνακα είναι ταξινοµηµένα βάσει του κλειδιού τους. Χρήση δυαδικής αναζήτησης για την υλοποίηση της LookUp(). BiarySearch Type BiarySearchLookUp(key K, table T[0..-]) /* Retur iformatio stored with key K i T, or ill if K is ot i T */ left = 0; right = -; repeat forever if (right < left) the retur ill; else middle = (left+right)/2 ; if (K == T[middle]->Key) the retur T(middle]->data; else if (K < T[middle]->Key) the right = middle-; else left = middle+; ΗΥ240 - Παναγιώτα Φατούρου υνατές Εκτελέσεις BiarySearchLookUp Κυκλικοί κόµβοι: εσωτερικοί Τετραγωνισµένοι κόµβοι: εξωτερικοί Το δένδρο περιγράφει όλες τις δυνατές εκτελέσεις της ΒiarySearch() σε ένα πίνακα 0 στοιχείων. Θεώρηµα Ο αλγόριθµος δυαδικής αναζήτησης εκτελεί O(log) συγκρίσεις για κάθε αναζήτηση στοιχείου σε πίνακα µε στοιχεία. ΗΥ240 - Παναγιώτα Φατούρου 2 6

Ταξινοµηµένα υαδικά ένδρα ( ένδρα υαδικής Αναζήτησης) 5 0 5 25 55 Είναι δυαδικά δένδρα στα κλειδιά των οποίων είναι ορισµένη µια γραµµική διάταξη. Για κάθε κόµβο η τιµή του κλειδιού του είναι µεγαλύτερη από όλες τις τιµές των κόµβων του αριστερού υποδένδρου του και µικρότερη από όλες τις τιµές των κόµβων του δεξιού υποδένδρου του. Κάθε κόµβος είναι ένα struct µε πεδία key, data, LC, RC. Το µέγιστο ύψος δυαδικού δένδρου µε κόµβους είναι -. Γιατί; Το ελάχιστο ύψος δυαδικού δένδρου µε κόµβους είναι log. Γιατί; Ποια η σχέση των ταξινοµηµένων δυαδικών δένδρων και της ενδοδιατεταγµένης διάσχισης? ΗΥ240 - Παναγιώτα Φατούρου 3 Ταξινοµηµένα ένδρα Αναδροµική Έκδοση fuctio BiarySearchTreeLookUp( key K, poiter R):Type /* Εύρεση του κλειδιού Κ στο δένδρο µε ρίζα P και επιστροφή του πεδίου data ή ill αν το κλειδί δεν υπάρχει στο δένδρο */ if (R == NULL) retur ill; else if (K == R->key) retur R->data; else if (K < R->key) retur(biarytreelookup(k, R->LC)); else retur(biarytreelookup(k, R->RC)); Χρονική πολυπλοκότητα; Μη-Αναδροµική Έκδοση fuctio BiarySearchTreeLookUp ( key K, poiter R):Type /* Εύρεση του κλειδιού Κ στο δένδρο µε ρίζα P και επιστροφή του πεδίου data ή ill αν το κλειδί δεν υπάρχει στο δένδρο */ while (P!= NULL && K!= P->key) { if (K < P->key) P = P->LC; else P = P->RC; if (P!= NULL) retur(p->data); else retur ill; ΗΥ240 - Παναγιώτα Φατούρου 4 7

Ταξινοµηµένα ένδρα µε Κόµβο Φρουρό G Ποια η χρησιµότητα του κόµβου φρουρού; fuctio BiarySearchTreeLookUp( key K, poiter R):Type while (P!= NULL && K!= P->key) { if (K < P->key) P = P->LC; else P = P->RC; if (P!= NULL) retur(p->data); else retur ill; fuctio BiarySearchTreeGuardLookUp( key K, poiter R):Type G->Key = K; while (K!= P->Key) { if (K < P->key) P = P->LC; else P = P->RC; if (P!= G) retur(p->data); else retur ill; ΗΥ240 - Παναγιώτα Φατούρου 5 Ταξινοµηµένα ένδρα - Ελάχιστο και Μέγιστο Στοιχείο fuctio BiarySearchTreeMiimum( poiter R): ifo /* o R είναι δείκτης στη ρίζα του δένδρου */ poiter P; if (P == NULL) retur error; while (P->LC!= NULL) P = P->LC; retur(p->data); Στοιχείο µε αµέσως µεγαλύτερο και αµέσως µικρότερο κλειδί από το κλειδί ενός κόµβου v Το πρόβληµα είναι ίδιο µε την εύρεση του επόµενου και προηγούµενου κόµβου του v στην ενδοδιατεταγµένη διάσχιση του δένδρου. fuctio BiarySearchTreeMaximum( poiter R): ifo /* o R είναι δείκτης στη ρίζα του δένδρου */ poiter P; if (P == NULL) retur error; while (P->RC!= NULL) P = P->RC; retur(p->data); q 2 q Πως θα βρούµε τον επόµενο του κόµβου στον οποίο δείχνει ο q, στην ενδοδιατεταγµένη διάσχιση; Πως θα βρούµε τον επόµενο του κόµβου στον οποίο δείχνει ο q 2, στην ενδοδιατεταγµένη διάσχιση; Πολυπλοκότητα; ΗΥ240 - Παναγιώτα Φατούρου 6 8

Ταξινοµηµένα ένδρα - Εισαγωγή fuctio BiarySearchTreeIsert(key K, Type I, poiter R): poiter /* ο R είναι δείκτης στη ρίζα του δένδρου */ poiter P, Q, Prev = NULL; while (P!= NULL) { if (P->Key == K) { P->data = I; retur R; Prev = P; if (K < P->Key) P = P->LC; else P = P->RC; /* ηµιουργία & προσθήκη νέου κόµβου */ Q = NewCell(Node); Q->Key = K; Q->data = I; Q->LC = Q->RC = NULL; if (Prev == NULL) retur Q; else if (K < Prev->Key) Prev->LC = Q; else Prev->RC = Q; retur R; 5 ill 6 Q Αναζήτηση κόµβου µε κλειδί ίσο µε K. Αν τέτοιος κόµβος δεν βρεθεί, ο δείκτης prev, µετά το πέρας της ανακύκλωσης, θα δείχνει στον κόµβο γονέα του προς εισαγωγή κόµβου! Παράδειγµα Εισαγωγή κόµβου µε κλειδί 6 ΗΥ240 - Παναγιώτα Φατούρου 7 P ill prev Ταξινοµηµένα ένδρα - ιαγραφή Όταν ένας κόµβος διαγράφεται, η ενδοδιατεταγµένη διάσχιση των υπόλοιπων κόµβων πρέπει να διασχίζει τους κόµβους σύµφωνα µε τη διάταξη που είχαν πριν τη διαγραφή. Περιπτώσεις ) Ο προς διαγραφή κόµβος είναι φύλλο. ιαγράφουµε τον κόµβο χωρίς να εκτελέσουµε κάποια επιπρόσθετη ενέργεια. 2) Ο προς διαγραφή κόµβος είναι εσωτερικός αλλά έχει µόνο ένα παιδί. Αντικαθιστούµε τον κόµβο µε το µοναδικό παιδί του. 3) Ο προς διαγραφή κόµβος είναι εσωτερικός µε δύο παιδιά. Αντικαθιστούµε τον κόµβο µε τον επόµενο ή τον προηγούµενό του στην ενδο-διατεταγµένη διάσχιση. Αυτός είναι κόµβος µε το πολύ ένα παιδί. Γιατί; α. β. γ. δ. a. Αρχικό ένδρο, β. ιαγραφή Ν από αρχικό δένδρο, γ. ιαγραφή Μ από αρχικό δένδρο, δ. ιαγραφή F από αρχικό δένδρο ΗΥ240 - Παναγιώτα Φατούρου 8 9

Ταξινοµηµένα ένδρα - ιαγραφή Υποθέτουµε πως το δένδρο είναι διπλά συνδεδεµένο, δηλαδή κάθε κόµβος έχει ένα δείκτη p που δείχνει στο γονικό κόµβο. poiter BiaryTreeDelete(poiter R, Key K) { /* Ο R είναι η διεύθυνση ενός δείκτη στη ρίζα του δένδρου */ /* Το Κ είναι το κλειδί του προς διαγραφή κόµβου */ if (z->lc == NULL z->rc == NULL) y = z; else y = TreeSuccessor(z); y x=null y x if (y->lc!= NULL) x = y->lc; else x = y->rc; if (x!= NULL) x->p = y->p; if (y->p == NULL) retur x; // διαγραφή ρίζας else if (y == y->p->lc) y->p->lc = x; else y->p->rc = x; x x if (y!= z) z->key = y->key; if y has other fields copy them two; retur R; ΗΥ240 - Παναγιώτα Φατούρου 9 y x z Ταξινοµηµένα ένδρα Θεώρηµα Η χρονική πολυπλοκότητα των λειτουργιών Isert(), Delete() και LookUp() σε ταξινοµηµένα δυαδικά δένδρα είναι O(h), όπου h το ύψος του δένδρου. Ποιο πρόβληµα µπορεί να προκύψει µε συνεχή αντικατάσταση του κόµβου µε τον επόµενό του στην ενδο-διατεταγµένη διάσχιση? Στατικά Ταξινοµηµένα υαδικά ένδρα Υπάρχουν κλειδιά που αναζητούνται πιο συχνά και άλλα που αναζητούνται πιο σπάνια. Σε µια λίστα, κλειδιά που αναζητούνται συχνά κρατούνται όσο το δυνατόν πιο κοντά στην αρχή της λίστας. Ποιο είναι το ανάλογο του ευριστικού Μετακίνησης στην Αρχή» σε ένα ταξινοµηµένο δυαδικό δένδρο? Κάθε φορά που αναζητείται ένα κλειδί µεταφέρεται στη ρίζα. Ωστόσο, αυτό θα πρέπει να γίνει προσεκτικά ώστε να µην καταστρέφεται η ιδιότητα ταξινόµησης του δένδρου. ΗΥ240 - Παναγιώτα Φατούρου 20 0